TP5510
Full Duplex Analog Front End (AFE) for Consumer Applications

General Description

The TP5510 consists of a μ-law monolithic AFE device utilizing the A/D and D/A conversion architecture shown in Figure 1, and a serial data interface. The device is fabricated using National's advanced double-poly CMOS process (microCMOS).
The A/D portion of the device consists of an input gain adjust amplifier, an active RC pre-filter which eliminates very high frequency noise, and a switched-capacitor band-pass filter that rejects signals below 200 Hz and above 3400 Hz . Also included are auto-zero circuitry and a compressing A/D which samples the filtered signal and converts it to the μ-law digital format. The decode portion of the device consists of an expanding D/A, which reconstructs the analog signal from the compressed μ-law code, a low-pass filter which corrects for the $\sin \mathrm{x} / \mathrm{x}$ response of the D/A output and rejects signals above 3400 Hz , followed by a singleended power amplifier capable of driving low impedance loads. The device requires a $1.536 \mathrm{MHz}, 1.544 \mathrm{MHz}$ or 2.048 MHz master clock, bit clocks which may vary from 64 kHz to 2.048 MHz ; and 8 kHz frame sync pulses.

Features

- Complete A/D and D/A with filter system including: - Serial Data Interface
- Encode high-pass and low-pass filter - Decode low-pass filter with $\sin \mathrm{x} / \mathrm{x}$ correction - Active RC noise filters
- μ-law compatible A/D and D/A
- Internal precision voltage reference
- Internal auto-zero circuitry
- μ-law-TP5510
- $\pm 5 \mathrm{~V}$ operation
- Low operating power-typically 60 mW
- Power-down standby mode-typically 3 mW
- Automatic power-down
- TTL or CMOS compatible digital interfaces
- Maximizes PC card circuit density
- Plastic DIP and SOIC packages
- 8-bit digital I/O
- 13-bit dynamic range
- Use with DSP processor
- Applications: Tapeless Answering Machines, Cordless Phones, Cellular Radio

Connection Diagram

[^0]Block Diagram

TL/H/11186-2
FIGURE 1

Pin Description

Symbol	Function
V_{BB}	Negative power supply pin. $\mathrm{V}_{\mathrm{BB}}=-5 \mathrm{~V}$ $\pm 5 \%$
GNDA	Analog ground. All signals are referenced to this pin.
	Analog output of the receive power ampli- fier.
V_{DO}	Positive power supply pin. $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ $\pm 5 \%$

Symbol	Function
FS_{D}	Decode frame sync pulse which enables $B C L K_{R}$ to shift data into $D_{D} . F_{D}$ is an 8 kHz pulse train. See Figures 2 and 3 for timing details.
D_{D}	Decode data input. Data is shifted into D_{D} following the FS_{D} leading edge.
$\mathrm{BCLK}_{\mathrm{D}} / \mathrm{CLKSEL}$	The bit clock which shifts data into D_{D} after the $F S_{D}$ leading edge. May vary from 64 kHz to 2.048 MHz . Alternatively, may be a logic input which selects either $1.536 \mathrm{MHz} / 1.544 \mathrm{MHz}$ or 2.048 MHz for master clock in synchronous mode and $B C L K_{D}$ is used for both encode and decode directions (see Table 1).

Pin Description (Continued)	
Symbol	Function
MCLK	

Functional Description

POWER-UP

When power is first applied, power-on reset circuitry initializes the AFE and places it into a power-down state. All nonessential circuits are deactivated and the D_{E} and $\mathrm{VF}_{\mathrm{D}} \mathrm{O}$ outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the $M_{C L K} / P D N$ pin and $F S_{E}$ and/or $F S_{D}$ pulses must be present. Thus, 2 power-down control modes are available. The first is to pull the MCLK ${ }_{D} / P D N$ pin high; the alternative is to hold both $F S_{E}$ and $F S_{D}$ inputs continuously low-the device will power-down approximately 2 ms after the last FS_{E} or FS_{D} pulse. Power-up will occur on the first FS_{E} or FS_{D} pulse. The TRI-STATE data output, D_{E}, will remain in the high impedance state until the second FS_{E} pulse.

SYNCHRONOUS OPERATION

For synchronous operation, the same master clock and bit clock should be used for both the encode and decode directions. In this mode, a clock must be applied to MCLK_{E} and the MCLK ${ }_{D} /$ PDN pin can be used as a power-down control. A low level on MCLK ${ }_{D} /$ PDN powers up the device and a high level powers down the device. In either case, MCLK K_{E} will be selected as the master clock for both the encode and decode circuits. A bit clock must also be applied to $B_{C L K}$ E
and the $B_{C L K}^{D} / C L K S E L$ can be used to select the proper internal divider for a master clock of $1.536 \mathrm{MHz}, 1.544 \mathrm{MHz}$ or 2.048 MHz . For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame.
With a fixed level on the BCLK ${ }_{D} / C L K S E L$ pin, $B C L K_{E}$ will be selected as the bit clock for both the encode and decode directions. Table 1 indicates the frequencies of operation which can be selected, depending on the state of $\mathrm{BCLK}_{\mathrm{D}}$ / CLKSEL. In this synchronous mode, the bit clock, BCLK ${ }_{E}$, may be from 64 kHz to 2.048 MHz , but must be synchronous with MCLK ${ }_{E}$.
Each FS_{E} pulse begins the encoding cycle and the data from the previous encode cycle is shifted out of the enabled D_{E} output on the positive edge of $\mathrm{BCLK}_{\mathrm{E}}$. After 8 -bit clock periods, the TRI-STATE D_{E} output is returned to a high impedance state. With an FS_{D} pulse, data is latched via the D_{D} input on the negative edge of $B_{C L K}$ (or $B C L K_{D}$ if running). $F S_{E}$ and $F S_{D}$ must be synchronous with $M C L K_{E / D}$.

TABLE I. Selection of Master Clock Frequencies	
BCLK $_{\text {D }}$ /CLKSEL	Master Clock Frequency Selected
	TP5510
	1.536 MHz or 1.544 MHz
0	2.048 MHz
1	1.536 MHz or 1.544 MHz

ASYNCHRONOUS OPERATION

For asynchronous operation, separate encode and decode clocks may be applied. MCLK ${ }_{E}$ and MCLK ${ }_{D}$ must be 1.536 MHz or 1.544 MHz for the TP5510, and need not be synchronous. For best transmission performance, however, $M_{C L K}$ should be synchronous with MCLK K_{E}, which is easily achieved by applying only static logic levels to the MCLK ${ }_{D} /$ PDN pin. This will automatically connect MCLK E_{E} to all internal MCLK ${ }_{D}$ functions (see Pin Description). For 1.544 MHz operation, the device automatically compensates for the 193 rd clock pulse each frame. FS_{E} starts each A/D conversion cycle and must be synchronous with MCLK_{E} and $B_{C L K} . F_{D}$ starts each D/A conversion cycle and must be synchronous with BCLK ${ }_{D}$. BCLK ${ }_{D}$ must be a clock, the logic levels shown in Table 1 are not valid in asynchronous mode. $B_{C L K}$ and $B C L K_{D}$ may operate from 64 kHz to 2.048 MHz .

SHORT FRAME SYNC OPERATION

The AFE can utilize either a short frame sync pulse or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FS_{E} and FS_{D}, must be one bit clock period long, with timing relationships specified in Figure 2. With FS_{E} high during a falling edge of $B_{C L K}$, the next rising edge of $B_{C L K}$ enables the D_{E} TRI-STATE output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the D_{E} output. With FS_{D} high during a falling edge of $B C L K_{D}$ (BCLK ${ }_{E}$ in synchronous mode), the next falling edge of $B C L K_{E}$ latches in the sign bit. The following seven falling

Functional Description (Continued)

edges latch in the seven remaining bits. Both devices may utilize the short frame sync pulse in synchronous or asynchronous operating mode.

LONG FRAME SYNC OPERATION

To use the long frame mode, both the frame sync pulses, $F S_{E}$ and FS_{D}, must be three or more bit clock periods long, with timing relationships specified in Figure 3. Based on the transmit frame sync, FS_{E}, the AFE will sense whether short or long frame sync pulses are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160 ns . The D_{E} TRI-STATE output buffer is enabled with the rising edge of $F S_{E}$ or the rising edge of $B C L K_{E}$, whichever comes later, and the first bit clocked out is the sign bit. The following seven $B C L K_{E}$ rising edges clock out the remaining seven bits. The D_{E} output is disabled by the falling $B C L K_{E}$ edge following the eighth rising edge, or by FS_{E} going low, whichever comes later. A rising edge on the decode frame sync pulse, $F S_{D}$, will cause the data at D_{D} to be latched in on the next eight falling edges of $B_{C L K}$ (BCLK $_{E}$ in synchronous mode). Both devices may utilize the long frame sync pulse in synchronous or asynchronous mode.

ENCODE SECTION

The encode section input is an operational amplifier with provision for gain adjustment using two external resistors, see Figure 4. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of RC active pre-filter, followed by an eighth order switched-ca-
pacitor bandpass filter clocked at 256 kHz . The output of this filter directly drives the A/D sample-and-hold circuit. The A/D is of compressing type according to μ-law coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload ($\mathrm{t}_{\mathrm{MAX}}$) of nominally 2.5 V peak (See Table of Transmission Characteristics). The FS_{E} frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8 -bit code is then loaded into a buffer and shifted out through D_{E} at the next $F S_{E}$ pulse. The total encoding delay will be approximately 165μ s (due to the encode filter) plus 125μ s (due to encoding delay), which totals $290 \mu \mathrm{~s}$. Any offset voltage due to the filters or comparator is cancelled by sign bit integration.

DECODE SECTION

The decode section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256 kHz . The DAC is μ-law and the 5th order low pass filter corrects for the $\sin x / x$ attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active post-filter/power amplifier capable of driving a 600Ω load to a level of 7.2 dBm . The decode section is unity-gain. Upon the occurrence of FS_{D}, the data at the D_{D} input is clocked in on the falling edge of the next eight $B_{C L K}\left(B C L K_{E}\right)$ periods. At the end of the DAC time slot, the D/A conversion cycle begins, and $10 \mu \mathrm{~s}$ later the DAC output is updated. The total DAC delay is $\sim 10 \mu \mathrm{~s}$ (DAC update) plus $110 \mu \mathrm{~s}$ (filter delay) plus $62.5 \mu \mathrm{~s}$ ($1 / 2$ frame), which gives approximately $180 \mu \mathrm{~s}$.

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
$V_{C C}$ to GNDA
7V
$V_{B B}$ to GNDA
Voltage at any Analog Input or Output

Voltage at any Digital Input or
Output

| Output | $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ to $\mathrm{GNDA}-0.3 \mathrm{~V}$ |
| :--- | ---: | ---: |
| Operating Temperature Range | $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 10 seconds) | $300^{\circ} \mathrm{C}$ |
| ESD (Human Body Model) | 2000 V |
| Latch-Up Immunity $=100 \mathrm{~mA}$ on any Pin | |

Electrical Characteristics Unless otherwise noted, limits printed in BOLD characters are guaranteed for V_{CC} $=5.0 \mathrm{~V} \pm 5 \%, V_{B B}=-5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ by correlation with 100% electrical testing at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DIGITAL INTERFACE						
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				0.6	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2			V
V_{OL}	Output Low Voltage	$\begin{aligned} & \mathrm{D}_{E}, \mathrm{I}_{\mathrm{L}}=3.2 \mathrm{~mA} \\ & \mathrm{SIG}_{\mathrm{D}}, \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~mA} \\ & \mathrm{TS}_{\mathrm{E}}, \mathrm{I}_{\mathrm{L}}=3.2 \mathrm{~mA} \text {, Open Drain } \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Output High Voltage	$\begin{aligned} & \mathrm{D}_{\mathrm{E}}, \mathrm{I}_{\mathrm{H}}=-3.2 \mathrm{~mA} \\ & \mathrm{SIG}_{\mathrm{D}}, \mathrm{I}_{\mathrm{H}}=-1.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IIL	Input Low Current	GNDA $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$, All Digital Inputs	-10		10	$\mu \mathrm{A}$
$\mathrm{IIH}_{\mathrm{H}}$	Input High Current	$\mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-10		10	$\mu \mathrm{A}$
loz	Output Current in High Impedance State (TRI-STATE)	$\mathrm{D}_{\mathrm{E}}, \mathrm{GNDA} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$	-10		10	$\mu \mathrm{A}$
ANALOG INTERFACE WITH ENCODE INPUT AMPLIFIER (ALL DEVICES)						
I,EA	Input Leakage Current	$-2.5 \mathrm{~V} \leq \mathrm{V} \leq+2.5 \mathrm{~V}, \mathrm{VF}_{\mathrm{E}^{\prime}}{ }^{+}$or $\mathrm{VF}_{\mathrm{E}^{\prime}}{ }^{-}$	-200		200	nA
RIEA	Input Resistance	$-2.5 \mathrm{~V} \leq \mathrm{V} \leq+2.5 \mathrm{~V}, \mathrm{VF}_{\mathrm{E}^{\prime}}{ }^{+}$or $\mathrm{VF}_{\mathrm{E}^{\prime}}{ }^{-}$	10			$\mathrm{M} \Omega$
RoEA	Output Resistance	Closed Loop, Unity Gain		1	3	Ω
RLEA	Load Resistance	GS_{E}	10			$\mathrm{k} \Omega$
$\mathrm{C}_{\text {L }} \mathrm{EA}$	Load Capacitance	GS_{E}			50	pF
$\mathrm{V}_{\mathrm{O}} E A$	Output Dynamic Range	$\mathrm{GS}_{\mathrm{E}}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	-2.8		2.8	V
$A_{V} E A$	Voltage Gain	$\mathrm{VF}_{\mathrm{E}}{ }^{+}$to GS_{E}	5000			V/V
FUEA	Unity Gain Bandwidth		1	2		MHz
VOSEA	Offset Voltage		-20		20	mV
$\mathrm{V}_{\mathrm{CM}} \mathrm{EA}$	Common-Mode Voltage	CMRREA > 60 dB	-2.5		2.5	V
CMRREA	Common-Mode Rejection Ratio	DC Test	60			dB
PSRREA	Power Supply Rejection Ratio	DC Test	60			dB
ANALOG INTERFACE WITH DECODE FILTER (ALL DEVICES)						
RoDF	Output Resistance	Pin VF ${ }_{\text {D }} \mathrm{O}$		1	3	Ω
RLDF	Load Resistance	$\mathrm{VF}_{\mathrm{D}} \mathrm{O}= \pm 2.5 \mathrm{~V}$	600			Ω
$\mathrm{C}_{\text {LDF }}$	Load Capacitance				500	pF
$\mathrm{VOS}_{\mathrm{D}} \mathrm{O}$	Output DC Offset Voltage		-200		200	mV
POWER DISSIPATION (ALL DEVICES)						
$\mathrm{I}_{\mathrm{CCO}}$	Power-Down Current	No Load (Note)		0.5	3	mA
IBB^{0}	Power-Down Current	No Load (Note)		0.05	1	mA
$\mathrm{I}_{\mathrm{CC}} 1$	Power-Up Active Current	No Load		6.0	12	mA
$\mathrm{I}_{\mathrm{BB}} 1$	Power-Up Active Current	No Load		6.0	12	mA

Note: $\mathrm{I}_{\mathrm{CC}} 0$ and $\mathrm{I}_{\mathrm{BB}} 0$ are measured after first achieving a power-up state.

Timing Specifications Unless otherwise noted, limits printed in BOLD characters are guaranteed for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ $\pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ by correlation with 100% electrical testing at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All timing parameters are measured at $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=$ 0.7 V . See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
1/tPM	Frequency of Master Clocks	Depends on the Device Used and the $B_{C L K} / C L K S E L$ Pin. MCLK $_{E}$ and MCLK ${ }_{D}$		$\begin{aligned} & 1.536 \\ & 1.544 \\ & \mathbf{2 . 0 4 8} \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{t}_{\text {DM }}$	Rise Time of Master Clock	MCLK_{E} and MCLK ${ }_{\text {D }}$			50	ns
t_{FM}	Fall Time of Master Clock	MCLK_{E} and MCLK ${ }_{\text {d }}$			50	ns
$t_{\text {PB }}$	Period of Bit Clock		485	488	15725	ns
t_{DB}	Rise Time of Bit Clock	$B^{\text {BLI }} \mathrm{K}_{\mathrm{E}}$ and BCLK ${ }_{\text {d }}$			50	ns
t_{FB}	Fall Time of Bit Clock	$B C L K_{E}$ and BCLK ${ }_{\text {d }}$			50	ns
$\mathrm{t}_{\text {WM }}$	Width of Master Clock High	MCLK_{E} and MCLK ${ }_{\text {d }}$	160			ns
${ }^{\text {t WML }}$	Width of Master Clock Low	MCLK_{E} and MCLK ${ }_{\text {d }}$	160			ns
${ }^{\text {t }}$ SBFM	Set-Up Time from BCLK E High to MCLK_{E} Falling Edge	First Bit Clock after the Leading Edge of FS_{E}	100			ns
${ }^{\text {tSFFM }}$	Set-Up Time from FS E_{E} High to $\mathrm{MCLK}_{\mathrm{E}}$ Falling Edge	Long Frame Only	100			ns
${ }^{\text {twBH }}$	Width of Bit Clock High	$\mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}$	160			ns
$\mathrm{t}_{\text {WBL }}$	Width of Bit Clock Low	$\mathrm{V}_{\mathrm{IL}}=0.6 \mathrm{~V}$	160			ns
${ }^{\text {thBFL }}$	Holding Time from Bit Clock Low to Frame Sync	Long Frame Only	0			ns
$t_{\text {HBFS }}$	Holding Time from Bit Clock High to Frame Sync	Short Frame Only	0			ns
${ }^{\text {t }}$ SFB	Set-Up Time from Frame Sync to Bit Clock Low	Long Frame Only	115			ns
${ }^{\text {t }}$ DBD	Delay Time from BCLK $_{E}$ High to Data Valid	Load $=150 \mathrm{pF}$ plus 2 LSTTL Loads	0		140	ns
$t_{\text {DBTS }}$	Delay Time to $\overline{\mathrm{TS}_{E}}$ Low	Load $=150 \mathrm{pF}$ plus 2 LSTTL Loads			140	ns
${ }^{\text {t }}$ DZC	Delay Time from BCLK E Low to Data Output Disabled	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ to 150 pF	50		165	ns
$t_{\text {DZF }}$	Delay Time to Valid Data from FS_{E} or $\mathrm{BCLK}_{\mathrm{E}}$, Whichever Comes Later	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ to 150 pF	20		165	ns
${ }^{\text {t }}$ SDB	Set-Up Time from D_{D} Valid to BCLK ${ }_{\text {D/E }}$ Low		50			ns
$\mathrm{t}_{\text {HBD }}$	Hold Time from BCLK ${ }_{D / E}$ Low to D_{D} Invalid		50			ns
${ }^{\text {tsF }}$	Set-Up Time from $\mathrm{FS}_{\mathrm{E} / \mathrm{D}}$ to BCLK $_{E / D}$ Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	50			ns
t_{HF}	Hold Time from BCLK ${ }_{E / D}$ Low to $\mathrm{FS}_{\mathrm{E/D}}$ Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	100			ns
$\mathrm{t}_{\text {HBFI }}$	Hold Time from 3rd Period of Bit Clock Low to Frame Sync (FS_{E} or $\mathrm{FS} \mathrm{S}_{\mathrm{D}}$)	Long Frame Sync Pulse (from 3 to 8 Bit Clock Periods Long)	100			ns
${ }^{\text {twFL }}$	Minimum Width of the Frame Sync Pulse (Low Level)	64k Bit/s Operating Mode	160			ns

Timing Diagrams

FIGURE 3. Long Frame Sync Timing

Transmission Characteristics Unless otherwise noted, ilimits printed in BOLD characters are guaranteed for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ by correlation with 100% electrical testing at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA $=0 \mathrm{~V}, \mathrm{f}=$ $1.02 \mathrm{kHz}, \mathrm{V}_{I N}=0 \mathrm{dBm0}$, encode input amplifier connected for unity gain non-inverting. Typicals specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}$ $=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
AMPLITUDE RESPONSE						
	Absolute Levels (Definition of Nominal Gain)	Nominal $0 \mathrm{dBm0}$ Level is 4 dBm (600) $0 \mathrm{dBm0}$		1.2276		Vrms
$t_{\text {MAX }}$	Max Overload Level	TP5510, (3.17 dBm0)		2.501		V_{PK}
GEA	Encode Gain, Absolute	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \text { Input at } \mathrm{GS}_{\mathrm{E}}=0 \mathrm{dBm0} \text { at } 1020 \mathrm{~Hz} \end{aligned}$	-0.5		0.5	dB
GER	Encode Gain, Relative to GEA	$\begin{aligned} & f=16 \mathrm{~Hz} \\ & f=50 \mathrm{~Hz} \\ & f=60 \mathrm{~Hz} \\ & f=200 \mathrm{~Hz} \\ & f=300 \mathrm{~Hz}-3000 \mathrm{~Hz} \\ & \mathrm{f}=3400 \mathrm{~Hz} \\ & \mathrm{f}=4000 \mathrm{~Hz} \\ & \mathrm{f}=4600 \mathrm{~Hz} \text { and Up, Measure } \\ & \text { Response from } 0 \mathrm{~Hz} \text { to } 4000 \mathrm{~Hz} \end{aligned}$	$\begin{array}{r} -2.0 \\ -0.5 \\ -1.5 \end{array}$		$\begin{gathered} -35 \\ -25 \\ -21 \\ -0.1 \\ \mathbf{0 . 1 5} \\ \mathbf{0 . 5} \\ -\mathbf{1 0} \\ -\mathbf{2 5} \end{gathered}$	dB dB
GEAT	Absolute Encode Gain Variation with Temperature	Relative to G_{EA}	-0.3		0.3	dB
GERL	Encode Gain Variations with Level	Sinusoidal Test Method Reference Level $=-10 \mathrm{dBm0}$ $\mathrm{VF}_{\mathrm{E}} \mathrm{I}^{+}=-40 \mathrm{dBm0}$ to $+3 \mathrm{dBm0}$ $\mathrm{VF}_{\mathrm{E}} \mathrm{I}^{+}=-50 \mathrm{dBm} 0$ to $-40 \mathrm{dBm0}$	$\begin{array}{r} -0.4 \\ -0.8 \end{array}$		$\begin{aligned} & 0.4 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
GDA	Decode Gain, Absolute	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \text { Input = Digital Code Sequence for } \\ & 0 \mathrm{dBm0} \text { Signal at } 1020 \mathrm{~Hz} \end{aligned}$	-0.5		0.5	dB
$G_{\text {DR }}$	Decode Gain, Relative to G ${ }_{\text {DA }}$	$\begin{aligned} & \mathrm{f}=0 \mathrm{~Hz} \text { to } 3000 \mathrm{~Hz} \\ & \mathrm{f}=3400 \mathrm{~Hz} \\ & \mathrm{f}=4000 \mathrm{~Hz} \end{aligned}$	$\begin{array}{r} -0.5 \\ -1.5 \end{array}$		$\begin{gathered} 0.5 \\ 0.5 \\ -14 \\ \hline \end{gathered}$	dB dB dB
$G_{\text {DAT }}$	Absolute Decode Gain Variation with Temperature	Relative to $\mathrm{G}_{\text {DA }}$	-0.3		0.3	dB
$G_{\text {DAV }}$	Absolute Decode Gain Variation with Supply Voltage	Relative to $G_{\text {DA }}$	-0.05		0.05	dB
$G_{\text {DRL }}$	Decode Gain Variations with Level	$\begin{aligned} & \text { Sinusoidal Test Method; Reference } \\ & \text { Input PCM Code Corresponds to an } \\ & \begin{array}{l} \text { Ideally Encoded PCM Level } \\ \quad=-40 \mathrm{dBm0} \text { to }+3 \mathrm{dBm0} \\ \quad=-50 \mathrm{dBm} \text { to }-40 \mathrm{dBm0} \\ \quad=-55 \mathrm{dBm0} \text { to }-50 \mathrm{dBm0} \end{array} \end{aligned}$	$\begin{array}{r} -0.4 \\ -0.8 \\ -2.5 \end{array}$		$\begin{aligned} & 0.4 \\ & 0.8 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
V_{DO}	Decode Output Drive Level	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	-2.5		2.5	V

Transmission Characteristics Unless otherwise noted, limits printed in BOLD characters are guaranteed for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ by correlation with 100% electrical testing at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA $=0 \mathrm{~V}, \mathrm{f}=1.02$ $\mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm0}$, encode input amplifier connected for unity gain non-inverting. Typicals specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=$ $-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
NOISE						
N_{EC}	Encode Noise, C Message Weighted	TP5510 (Note 1)		12	16	dBrnCo
$N_{\text {DC }}$	Decode Noise, C Message Weighted	Digital Code is Alternating Positive and Negative Zero -TP5510		8	11	dBrnC0
$\mathrm{N}_{\text {DS }}$	Noise, Single Frequency	$\mathrm{f}=0 \mathrm{kHz}$ to 100 kHz , Loop Around Measurement, $\mathrm{VF}_{\mathrm{E}}{ }^{+}=0 \mathrm{Vrms}$			-53	dBm0
$\mathrm{PPSR}_{\mathrm{E}}$	Positive Power Supply Rejection, Encode	$\begin{aligned} & \mathrm{VF}_{\mathrm{EI}}{ }^{+}=-50 \mathrm{dBm0} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}_{\mathrm{DC}}+100 \mathrm{mVrms} \\ & \mathrm{f}=0 \mathrm{kHz}-50 \mathrm{kHz}(\text { Note } 2) \end{aligned}$	-30			dBC
NPSR_{E}	Negative Power Supply Rejection, Encode	$\begin{aligned} & \mathrm{VF}_{\mathrm{E}} \mathrm{I}^{+}=-50 \mathrm{dBm0} \\ & \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V}_{\mathrm{DC}}+100 \mathrm{mVrms} \\ & \mathrm{f}=0 \mathrm{kHz}-50 \mathrm{kHz} \text { (Note 2) } \end{aligned}$	-30			dBC
$\mathrm{PPSR}_{\mathrm{D}}$	Positive Power Supply Rejection, Decode	PCM Code Equals Positive Zero $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}_{\mathrm{DC}}+100 \mathrm{mVrms}$ Measure $\mathrm{VF}_{\mathrm{D}} 0$ $\begin{aligned} & \mathrm{f}=0 \mathrm{~Hz}-4000 \mathrm{~Hz} \\ & \mathrm{f}=4 \mathrm{kHz}-50 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{gathered} \mathrm{dBC} \\ \mathrm{~dB} \end{gathered}$
$\mathrm{NPSR}_{\text {D }}$	Negative Power Supply Rejection, Decode	PCM Code Equals Positive Zero $\mathrm{V}_{\mathrm{BB}}=-5.0 \mathrm{~V}_{\mathrm{DC}}+100 \mathrm{mVrms}$ Measure $\mathrm{VF}_{\mathrm{D}} 0$ $\begin{aligned} & f=0 \mathrm{~Hz}-4000 \mathrm{~Hz} \\ & \mathrm{f}=4 \mathrm{kHz}-50 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{gathered} \mathrm{dBC} \\ \mathrm{~dB} \end{gathered}$

Transmission Characteristics Unless otherwise noted, iinits printed in BOLD characters are guaranteed for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ by correlation with 100% electrical testing at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA $=0 \mathrm{~V}, \mathrm{f}=1.02$ $\mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm0}$, encode input amplifier connected for unity gain non-inverting. Typicals specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=$ $-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
SOS	Spurious Out-of-Band Signals	Loop Around Measurement, 0 dBm0,			-30	dB
	at the Channel Output	300 Hz to 3400 Hz Input Digital Code Applied				
		at D_{D}				-30
		$4600 \mathrm{~Hz}-7600 \mathrm{~Hz}$	dB			
		$7600 \mathrm{~Hz}-8400 \mathrm{~Hz}$			-30	dB
		$8400 \mathrm{~Hz}-100,000 \mathrm{~Hz}$			-30	dB

DISTORTION

$\begin{aligned} & \text { STD }_{E} \\ & \text { STD }_{D} \end{aligned}$	Signal to Total Distortion Encode or Decode Half-Channel	Sinusoidal Test Method (Note 3) $\begin{aligned} \text { Level } & =3.0 \mathrm{dBm0} \\ & =0 \mathrm{dBm0} \text { to }-30 \mathrm{dBm0} \\ & =-40 \mathrm{dBm0} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathbf{3 0} \\ & \mathbf{2 5} \end{aligned}$			$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
SFDE	Single Frequency Distortion, Encode				-41	dB
SFDD	Single Frequency Distortion, Decode				-41	dB
IMD	Intermodulation Distortion	Loop Around Measurement, $\mathrm{VF}_{\text {Encode }}+=-4 \mathrm{dBm0}$ to $-21 \mathrm{dBm0}$, Two Frequencies in the Range $300 \mathrm{~Hz}-3400 \mathrm{~Hz}$			-35	dB
CROSSTALK						
$C T_{E-D}$	Encode to Decode Crosstalk, 0 dBm0 Encode Level	$\begin{aligned} & \mathrm{f}=300 \mathrm{~Hz}-3400 \mathrm{~Hz} \\ & \mathrm{D}_{\mathrm{D}}=\text { Quiet Code } \end{aligned}$		-90	-70	dB
$C T_{\text {D-E }}$	Decode to Encode Crosstalk, $0 \mathrm{dBm0}$ Decode Level	$\begin{aligned} & \mathrm{f}=300 \mathrm{~Hz}-3400 \mathrm{~Hz}, \mathrm{VF}_{\mathrm{E}} \mathrm{I}=\text { Multitone } \\ & \text { (Note 2) } \end{aligned}$		-90	-70	dB

Format at D_{E} Output								
	TP5510 μ-Law							
$\mathrm{V}_{\text {IN }}\left(\right.$ at $\left.\mathrm{GS}_{\mathrm{E}}\right)=+$ Full-Scale	1	0	0	0	0	0	0	0
$\mathrm{V}_{\mathrm{IN}}\left(\right.$ at $\left.\mathrm{GS}_{\mathrm{E}}\right)=0 \mathrm{~V}$	$\left\{\begin{array}{l}1 \\ 0\end{array}\right.$	1 1	1 1	1 1	1	1 1	1 1	1
$\mathrm{V}_{\text {IN }}\left(\right.$ at $\left.\mathrm{GS}_{\mathrm{E}}\right)=-$ Full-Scale	0	0	0	0	0	0	0	0

Applications Information

POWER SUPPLIES
While the pins of the AFE are well protected against electrical misuse, it is recommended but not mandatory that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used.
All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This
minimizes the interaction of ground return currents flowing through a common bus impedance. $0.1 \mu \mathrm{~F}$ supply decoupling capacitors should be connected from this common ground point to $V_{C C}$ and $V_{B B}$, as close to the device as possible.
For best performance, if more than 1 AFE is on a card, the ground point of each AFE on a card should be connected to a common card ground in star formation, rather than via a ground bus.
This common ground point should be decoupled to V_{CC} and $V_{B B}$ with $10 \mu \mathrm{~F}$ capacitors.

Physical Dimensions inches (millimeters) unless otherwise noted

TP5510 Full Duplex Analog Front End (AFE) for Consumer Applications

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Dual-In-Line Package (N)
Order Number TP5510N NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Southeast Asia	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 180-530 8586	Fax: (852) 23763901	Tel: 81-3-5620-7561
Tel: 1(800) 272-9959	Email: europe.support@nsc.com	Email: sea.support@nsc.com	Fax: 81-3-5620-6179
Fax: 1(800) 737-7018	Deutsch Tel: +49 (0) 180-530 8585		
Email: support@nsc.com	English Tel: +49 (0) 180-532 7832		
Emar. supporonsc.com	Français Tel: +49 (0) 180-532 9358		
http://www.national.com	Italiano Tel: +49 (0) 180-534 1680		

[^0]: TRI-STATE® is a registered trademark of National Semiconductor Corporation.

