SCES331A - APRIL 2000 - REVISED APRIL 2002 - State-of-the-Art Advanced BiCMOS Technology (ABT) Widebus™ Design for 2.5-V and 3.3-V Operation and Low Static-Power Dissipation - Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC}) - Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C - High Drive - A Port = -12/12 mA at 3.3-V V_{CC} - B port = -32/64 mA at 3.3-V V_{CC} - I_{off} and Power-Up 3-State Support Hot Insertion - Use Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating - A-Port Outputs Have Equivalent 30-Ω Series Resistors, So No External Resistors Are Required - Flow-Through Architecture Facilitates Printed Circuit Board Layout - Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ### SN54ALVTH162245 . . . WD PACKAGE SN74ALVTH162245 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW) ### description The 'ALVTH162245 devices are 16-bit (dual-octal) noninverting 3-state transceivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as two 8-bit transceivers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. The A-port outputs, which are designed to source or sink up to 12 mA, include equivalent $30-\Omega$ series resistors to reduce overshoot and undershoot. These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments. SCES331A - APRIL 2000 - REVISED APRIL 2002 ### description (continued) When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. ## SN74ALVTH162245 . . . GQL PACKAGE (TOP VIEW) ### terminal assignments | | 1 | 2 | 3 | 4 | 5 | 6 | |---|------|-----|-----|-----|-----|-------------------| | Α | 1DIR | NC | NC | NC | NC | 1OE | | В | 1B2 | 1B1 | GND | GND | 1A1 | 1A2 | | С | 1B4 | 1B3 | Vcc | Vcc | 1A3 | 1A4 | | D | 1B6 | 1B5 | GND | GND | 1A5 | 1A6 | | Е | 1B8 | 1B7 | | | 1A7 | 1A8 | | F | 2B1 | 2B2 | | | 2A2 | 2A1 | | G | 2B3 | 2B4 | GND | GND | 2A4 | 2A3 | | Н | 2B5 | 2B6 | VCC | VCC | 2A6 | 2A5 | | J | 2B7 | 2B8 | GND | GND | 2A8 | 2A7 | | K | 2DIR | NC | NC | NC | NC | 2 <mark>OE</mark> | NC - No internal connection #### ORDERING INFORMATION | TA | T _A PACKAGE [†] | | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |----------------|-------------------------------------|---------------|--------------------------|---------------------| | | SSOP – DL | Tape and reel | SN74ALVTH162245LR | ALVTH162245 | | –40°C to 85°C | TSSOP – DGG | Tape and reel | SN74ALVTH162245GR | ALVTH162245 | | -40 C to 65 C | TVSOP – DGV | Tape and reel | SN74ALVTH162245VR | VT2245 | | | VFBGA – GQL | Tape and reel | SN74ALVTH162245QR | | | –55°C to 125°C | CFP – WD Tube | | SNJ54ALVTH162245WD | SNJ54ALVTH162245WD | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ## FUNCTION TABLE (each 8-bit section) | INP | UTS | OPERATION | | | | |-----|-----|-----------------|--|--|--| | OE | DIR | OPERATION | | | | | L | L | B data to A bus | | | | | L | Н | A data to B bus | | | | | Н | Χ | Isolation | | | | SCES331A - APRIL 2000 - REVISED APRIL 2002 ### logic diagram (positive logic) Pin numbers shown are for the DGG, DGV, DL, and WD packages. ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | . −0.5 V to 4.6 V | |-------------------| | –0.5 V to 7 V | | | | –0.5 V to 7 V | | –0.5 V to 7 V | | 96 mA | | 128 mA | | –48 mA | | –64 mA | | ±100 mA | | –50 mA | | –50 mA | | 70°C/W | | 58°C/W | | 63°C/W | | 42°C/W | | –65°C to 150°C | | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. ^{2.} The package thermal impedance is calculated in accordance with JESD 51-7. SCES331A - APRIL 2000 - REVISED APRIL 2002 ## recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3) | | | | SN54 | ALVTH1 | 62245 | SN74 | ALVTH1 | 62245 | UNIT | |---------------------|--|-----------------|------|--------|-------|------|--------|-------|------| | | | | MIN | TYP | MAX | MIN | TYP | MAX | UNII | | VCC | Supply voltage | | 2.3 | | 2.7 | 2.3 | | 2.7 | V | | VIH | High-level input voltage | | 1.7 | | | 1.7 | | | V | | V _{IL} | Low-level input voltage | | | | 0.7 | | | 0.7 | V | | VI | Input voltage | | 0 | VCC | 5.5 | 0 | VCC | 5.5 | V | | lau | High-level output current (A port) | | | À | -6 | | | -8 | mΑ | | ЮН | High-level output current (B port) | | | 200 | -6 | | | -8 | IIIA | | | Low-level output current (A port) | | | 6 | 6 | | | 12 | | | lou | Low-level output current (B port) | | | 3 | 6 | | | 8 | mA | | IOL | Low-level output current; current duty cycle \leq 50%; f \geq 1 kHz (B port) | | PA |) · | 18 | | | 24 | ША | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | | | 10 | | | 10 | ns/V | | Δt/ΔV _{CC} | Power-up ramp rate | | 200 | | | 200 | | | μs/V | | TA | Operating free-air temperature | | -55 | | 125 | -40 | | 85 | °C | NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ## recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3) | | | | SN54 | ALVTH1 | 62245 | SN74/ | ALVTH1 | 62245 | UNIT | |---------------------|--|-----------------|------|--------|-------|-------|--------|-------|------| | | | | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | VCC | Supply voltage | | 3 | | 3.6 | 3 | | 3.6 | V | | VIH | High-level input voltage | | 2 | | | 2 | | | V | | V _{IL} | Low-level input voltage | | | | 0.8 | | | 0.8 | V | | VI | Input voltage | | 0 | Vcc | 5.5 | 0 | Vcc | 5.5 | V | | 1 | High-level output current (A port) | | | 7/2 | -8 | | | -12 | mA | | ЮН | High-level output current (B port) | | | 72 | -24 | | | -32 | IIIA | | | Low-level output current (A port) | | | 5 | 8 | | | 12 | | | lou | Low-level output current (B port) | | | 2 | 24 | | | 32 | mA | | lOL | Low-level output current; current duty cycle \leq 50%; f \geq 1 kHz (B port) | | PA |) · | 48 | | | 64 | ША | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | | | 10 | | | 10 | ns/V | | Δt/ΔV _{CC} | Power-up ramp rate | | 200 | | | 200 | | | μs/V | | T _A | Operating free-air temperature | | -55 | | 125 | -40 | | 85 | °C | NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SCES331A - APRIL 2000 - REVISED APRIL 2002 ## electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) | D/ | ARAMETER | TEST CONDITIONS | | SN54 | ALVTH1 | 62245 | SN74ALVTH162245 | | UNIT | | |--------------------|---------------------------------------|---|--------------------------------------|---------------------|------------------|--------------|-----------------|------------------|------------|------| | P# | ARAWETER | 1551 C | UNDITIONS | MIN | TYP [†] | MAX | MIN | TYP [†] | MAX | UNII | | ٧ıK | | $V_{CC} = 2.3 \text{ V},$ | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | I _{OH} = -100 μA | V _{CC} -0. | 2 | | VCC-0 | .2 | | | | | A port | V _{CC} = 2.3 V | $I_{OH} = -6 \text{ mA}$ | 1.7 | | | | | | | | \/a | | vCC = 2.3 v | $I_{OH} = -8 \text{ mA}$ | | | | 1.7 | | | V | | VOH | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | $I_{OH} = -100 \mu A$ | V _{CC} -0. | 2 | | VCC-0 | .2 | | V | | | B port | V _{CC} = 2.3 V | $I_{OH} = -6 \text{ mA}$ | 1.7 | | | | | | | | | | V(C = 2.3 V | $I_{OH} = -8 \text{ mA}$ | | | | 1.7 | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | I _{OL} = 100 μA | | | 0.2 | | | 0.2 | | | | A port | V _{CC} = 2.3 V | $I_{OL} = 6 \text{ mA}$ | | | 0.4 | | | | | | | | V(C = 2.3 V | $I_{OL} = 12 \text{ mA}$ | | | | | | 0.4 | V | | VOL | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | I _{OL} = 100 μA | | | ≥ 0.2 | | | 0.2 | | | VOL | | | $I_{OL} = 6 \text{ mA}$ | | Š | 0.4 | | | | V | | | B port | V _{CC} = 2.3 V | $I_{OL} = 8 \text{ mA}$ | | <u></u> | | 0.4 | | | | | | | V(C = 2.5 V | $I_{OL} = 18 \text{ mA}$ | | 1 | 0.5 | | | | | | | | | $I_{OL} = 24 \text{ mA}$ | | 3 | | | | 0.5 | | | | Control inputs | $V_{CC} = 2.7 \text{ V},$ | $V_I = GND$ | | 5 | ±1 | | | ±1 | | | | Control inputs | $V_{CC} = 0 \text{ or } 2.7 \text{ V},$ | V _I = 5.5 V | Q | | 10 | | | 10 | | | lį | A or B ports $V_{CC} = 2.7 \text{ V}$ | | V _I = 5.5 V | | | 20 | | | 20 | μΑ | | | | $V_{CC} = 2.7 \text{ V}$ | $V_I = V_{CC}$ | | | 1 | | | 1 | | | | | | V _I = 0 | | | - 5 | | | - 5 | | | l _{off} | | $V_{CC} = 0$, | V_I or $V_O = 0$ to 4.5 V | | | | | | ±100 | μΑ | | I _{BHL} ‡ | | $V_{CC} = 2.3 \text{ V},$ | V _I = 0.7 V | | 115 | | | 115 | | μΑ | | I _{BHH} § | | $V_{CC} = 2.3 \text{ V},$ | V _I = 1.7 V | | -10 | | | -10 | | μΑ | | IBHLO | | $V_{CC} = 2.7 \text{ V},$ | $V_I = 0$ to V_{CC} | 300 | | | 300 | | | μΑ | | Івннс |) [#] | $V_{CC} = 2.7 \text{ V},$ | $V_I = 0$ to V_{CC} | -300 | | | -300 | | | μΑ | | ΙΕΧ | | $V_{CC} = 2.3 \text{ V},$ | $V_0 = 5.5 \text{ V}$ | | | 125 | | | 125 | μΑ | | IOZ(PI | J/PD) ^ጵ | $V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{\text{OE}} \text{ V}$
V _I = GND or V _{CC} , $\overline{\text{OE}}$ = | / to V _{CC} ,
don't care | | | ±100 | | | ±100 | μΑ | | | | V _{CC} = 2.7 V, | Outputs high | | 0.04 | 0.1 | | 0.04 | 0.1 | | | ICC | | $I_{O} = 0$, | Outputs low | | 2.3 | 4.5 | | 2.3 | 4.5 | mA | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | 0.04 | 0.1 | | 0.04 | 0.1 | | | Ci | | V _{CC} = 2.5 V, | V _I = 2.5 V or 0 | | 3.5 | | | 3.5 | | pF | | C _{io} | | $V_{CC} = 2.5 \text{ V},$ | V _O = 2.5 V or 0 | | 8 | | | 8 | | pF | [†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. [§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min. $[\]P$ An external driver must source at least IBHLO to switch this node from low to high. [#]An external driver must sink at least IBHHO to switch this node from high to low. Current into an output in the high state when VO > VCC ^{*}High-impedance state during power up or power down SCES331A - APRIL 2000 - REVISED APRIL 2002 ## electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) | DA | DAMETED | TEST OF | TEST CONDITIONS | | ALVTH1 | 62245 | SN74ALVTH162245 | | UNIT | | |--------------------------------|--------------------|---|--------------------------------------|--------------------|------------------|------------|-----------------|------------------|------------|--------| | PAI | RAMETER | lesi co | DNDITIONS | MIN | TYP [†] | MAX | MIN | TYP [†] | MAX | UNII | | ٧ıK | | V _{CC} = 3 V, | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ | I _{OH} = -100 μA | V _{CC} -0 | .2 | | VCC-0 | .2 | | | | | A port | V _{CC} = 3 V | $I_{OH} = -8 \text{ mA}$ | 2 | | | | | | | | \/a | | ACC = 2 A | $I_{OH} = -12 \text{ mA}$ | | | | 2 | | | V | | VOH | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ | I _{OH} = -100 μA | V _{CC} -0 | .2 | | VCC-0 | .2 | | V | | | B port | VCC = 3 V | $I_{OH} = -24 \text{ mA}$ | 2 | | | | | | | | | | VCC = 3 V | $I_{OH} = -32 \text{ mA}$ | | | | 2 | | | | | | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ | $I_{OL} = 100 \mu A$ | | | 0.2 | | | 0.2 | | | | A port | VCC = 3 V | $I_{OL} = 8 \text{ mA}$ | | | ? | | | | | | | VCC = 3 V | $I_{OL} = 12 \text{ mA}$ | | | | | | 8.0 | | | | VOL | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ | I _{OL} = 100 μA | | | 0.2 | | | 0.2 | V | | VOL | | | $I_{OL} = 24 \text{ mA}$ | | | 0.5 | | | | V | | | B port | V _{CC} = 3 V | $I_{OL} = 32 \text{ mA}$ | | | 3 | | | 0.5 | | | | | VCC = 3 V | $I_{OL} = 48 \text{ mA}$ | 0.55 | | | | | | | | | | | $I_{OL} = 64 \text{ mA}$ | | Q. | | | | 0.55 | | | | Control inputs | $V_{CC} = 3.6 \text{ V},$ | $V_I = V_{CC}$ or GND | | 6 | ±1 | | | ±1 | μА | | | Control inputs | $V_{CC} = 0 \text{ or } 3.6 \text{ V},$ | V _I = 5.5 V | | 20 | 10 | | | 10 | | | lį | | | V _I = 5.5 V | 8 | , | 20 | | | 20 | | | | A or B ports | ports $V_{CC} = 3.6 \text{ V}$ | $V_I = V_{CC}$ | 4 | | 1 | | | 1 | | | | | | V _I = 0 | | | - 5 | | | – 5 | | | I _{off} | | $V_{CC} = 0$, | V_I or $V_O = 0$ to 4.5 V | | | | | | ±100 | μΑ | | I _{BHL} ‡ | | $V_{CC} = 3 V$, | V _I = 0.8 V | 75 | | | 75 | | | μΑ | | I _{BHH} § | | $V_{CC} = 3 V$, | V _I = 2 V | -75 | | | -75 | | | μΑ | | IBHLO | | $V_{CC} = 3.6 \text{ V},$ | $V_I = 0$ to V_{CC} | 500 | | | 500 | | | μΑ | | ^І внно [‡] | # | $V_{CC} = 3.6 \text{ V},$ | $V_I = 0$ to V_{CC} | -500 | | | -500 | | | μΑ | | _{IEX} | | $V_{CC} = 3 V$, | $V_0 = 5.5 \text{ V}$ | | | 125 | | | 125 | μΑ | | IOZ(PU | /PD) [*] | $V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{\text{OE}} \text{ V}$
V _I = GND or V _{CC} , $\overline{\text{OE}}$ = | ' to V _{CC} ,
don't care | | | ±100 | | | ±100 | μА | | | | V _{CC} = 3.6 V, | Outputs high | | 0.07 | 0.1 | | 0.07 | 0.1 | \Box | | ICC | | $I_{O} = 0$, | Outputs low | | 3.2 | 5 | | 3.2 | 5 | mA | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | 0.07 | 0.1 | | 0.07 | 0.1 | | | ΔICC | - | V _{CC} = 3 V to 3.6 V, One
Other inputs at V _{CC} or C | | | _ | 0.2 | | _ | 0.2 | mA | | C _i | | V _{CC} = 3.3 V, | V _I = 3.3 V or 0 | | 3.5 | | | 3.5 | | pF | | C _{io} | | V _{CC} = 3.3 V, | V _O = 3.3 V or 0 | | 8 | | | 8 | | pF | | | al valuas are at \ | /cc = 3.3 V. T _A = 25°C. | | • | | | • | - | | | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [☐] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND. [‡]The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. [§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min. $[\]P$ An external driver must source at least IBHLO to switch this node from low to high. [#]An external driver must sink at least I_{BHHO} to switch this node from high to low. Current into an output in the high state when VO > VCC ^{*}High-impedance state during power up or power down SCES331A - APRIL 2000 - REVISED APRIL 2002 # switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1) | PARAMETER | FROM | то | SN54ALV | TH162245 | SN74ALV | TH162245 | UNIT | | |------------------|---------|----------|---------|----------|---------|----------|------|--| | PARAMETER | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | UNII | | | t _{PLH} | А | В | 0.3 | 3.6 | 0.3 | 3.6 | no | | | t _{PHL} | Α | Ь | 0.5 | 3.5 | 0.5 | 3.5 | ns | | | t _{PLH} | В | Α | 1.1 | 4.3 | 1.1 | 4.3 | 20 | | | t _{PHL} | Ь | A | 1.1 | 3.8 | 1.1 | 3.8 | ns | | | ^t PZH | ŌĒ | Α | 2 | 5.6 | 2 | 5.6 | 20 | | | ^t PZL | OE | A | 1.8 | 4.4 | 1.8 | 4.4 | ns | | | ^t PZH | ŌĒ | В | 1.5 | 5.1 | 1.5 | 5.1 | ne | | | ^t PZL | OE | Ь | 1.5 | 4.1 | 1.5 | 4.1 | ns | | | ^t PHZ | ŌĒ | А | 1.9 | 4.9 | 1.9 | 4.9 | ns | | | t _{PLZ} | OE | ^ | 1.5 | 4.3 | 1.5 | 4.3 | 115 | | | t _{PHZ} | ŌĒ | В | 1.9 | 4.8 | 1.9 | 4.8 | ns | | | t _{PLZ} | OE . | | 1.5 | 4.1 | 1.5 | 4.1 | 115 | | # switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2) | PARAMETER | FROM | то | SN54ALV | TH162245 | SN74ALV | TH162245 | LINUT | |------------------|---------|----------|---------|----------|---------|----------|-------| | PARAMETER | (INPUT) | (OUTPUT) | MIN | MIN MAX | | MAX | UNIT | | ^t PLH | A | В | 0.5 | 3.1 | 0.5 | 3.1 | ne | | ^t PHL | | Б | 0.5 | 3 | 0.5 | 3 | ns | | ^t PLH | В | А | 1 | 3.7 | 1 | 3.7 | nc | | ^t PHL |] | A | 1 | 3.4 | 1 | 3.4 | ns | | ^t PZH | ŌĒ | А | 1.4 | 4.7 | 1.4 | 4.7 | no | | ^t PZL |] UE | ^ | 1.4 | 3.9 | 1.4 | 3.9 | ns | | ^t PZH | - OE | В | 1,5 | 3.8 | 1 | 3.8 | ns | | ^t PZL | | В | 0.7 | 3.4 | 0.7 | 3.4 | 115 | | ^t PHZ | ŌĒ | А | 2.4 | 5 | 2.4 | 5 | ns | | ^t PLZ |] | | 2.6 | 4.9 | 2.6 | 4.9 | 113 | | ^t PHZ | ŌĒ | В | 2.4 | 4.7 | 2.4 | 4.7 | ne | | ^t PLZ |] | В | 2.3 | 4.8 | 2.3 | 4.8 | ns | #### PARAMETER MEASUREMENT INFORMATION | TEST | S1 | |-----------|-------------------| | tPLH/tPHL | Open | | tPLZ/tPZL | 2×V _{CC} | | tPHZ/tPZH | GND | | VCC | CL | RL | $v_{\scriptscriptstyle\Delta}$ | |--------------|-------|-------|--------------------------------| | 2.5 V ±0.2 V | 30 pF | 500 Ω | 0.15 V | | 3.3 V ±0.3 V | 50 pF | 500 Ω | 0.3 V | NOTES: A. C_I includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. $t_f \leq 2$ ns. - D. The outputs are measured one at a time with one transition per measurement. - E. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms ### DGV (R-PDSO-G**) ### 24 PINS SHOWN ### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 ### DL (R-PDSO-G**) ### **48 PINS SHOWN** ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). D. Falls within JEDEC MO-118 ### DGG (R-PDSO-G**) ### PLASTIC SMALL-OUTLINE PACKAGE #### **48 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2002, Texas Instruments Incorporated