

TX4915 VHF/UHF TRANSMITTER

HiMARK Technology, Inc. reserves the right to change the product described in this datasheet. All information contained in this datasheet is subject to change without prior notice. HiMARK Technology, Inc. assumes no responsibility for the use of any circuits shown in this datasheet.

Description

The TX4915 is a monolithic integrated circuit intended for use as a low-cost AM/ASK transmitter. The chip can be used in applications in the north American and European VHF/UHF bands. The integrated VCO, phase detector, prescaler, and reference oscillator transistor require only the addition of an external crystal to provide a complete phase-locked loop. In addition to the standard power-down mode, the chip also includes an automatic lock-detect feature that disables the transmitter output when the PLL is out-of-lock.

Features

- ◆ Fully Integrated Frequency Synthesizer
- ◆ 2.2V to 5.5V Voltage Supply Range
- Low Current and Power Down Capability
- Integrated VCO and Reference Oscillator
- integeated 64/128 Dual Modulus Prescaler
- 100MHz to 960MHz frequency Range
- Out-of-Lock inhibit Circuit

Package and Pin Assignment

Pin Descriptions

Number	Name	Description
1	OSCIN	This pin is connected directly to the base of reference oscillator transistor. The intended reference oscillator configuration is a modifiled Colpitts.
2	OSCOUT	This pin is connected directly to the emitter of reference oscillator transistor.
3	TXEN	Enable control for all circuitry. When this pin is a logic "low" all circuits are turn off. When this pin is logic "high", all circuits are operating normally.
4	VSS	Ground connection for the PAOUT amp.
5	PAOUT	Transmitter output. This pin is an open collector and require a pull-up inductor for bias/matching and a tapped capacitor for matching.
6	VSS1	Ground connection for the PAOUT buffer amplifier.
7	VCC1	This pin is used to supply bias to the PA buffer amplifier.
8	MODIN	AM analog or ASK digital modulation can be imparted to the carrieer by an input to this pin. An external resistor is used to bias the output amplifiers through this pin.
9	VCC2	This pin is used to supply DC bias to the VCO, crystal oscillator, prescaler, PFD, and charge pump.
10	VSS2	Digital PLL ground connection.
11	VREFP	Bias voltage reference pin for bypassing the prescaler.
12	RESB	The RES pins are used to supply DC voltage to the VCO, as well as to tune the cen- ter frequency of the VCO.
13	RES	see pin 12
14	DO	Output of the charge pump. An RC network from this pin to ground is used to estab- lish the PLL bandwidth.
15	LD	This pin is used to set the threshold of the lock detect circuit. A shunt capacitor should be used to set an RC time constant with the on-chip series $1k\Omega$ resistor. This signal is used to clamp (enable or disable) the MODIN circuitry. The time constant should be approximately 15 times the reference period.
16	SW	Logic "High" input selects divide-by-64 prescaler. Logic "Low" input selects divide- by-128 prescsaler.

Block Diagram

Absolute Maximum Ratings

 $V_{SS} = 0 V$

Parameter	Rating	Unit
Supply voltage	-0.3 to $+7.0$	V _{DC}
Control Voltage	-0.3 to $+7.0$	V _{DC}
Input RF Level	+10	dBm
Output Load VSWR	-40 to +85	°C
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

Recommended Operating Conditions

 $V_{ss} = 0 V$

Paramatar	Symbol		Unit			
Faranieter	Symbol	min.	typ.	max.	Oillt	
Supply voltage range	V _{CC}	2.2	3.0	5.5	V	
Operating temperature	T _A	-40	+25	+85	°C	

Electrical Characteristics

 $(V_{DD1, DD2} = 2.2 \text{ to } 5 \text{ V}, V_{SS, SS1, SS2} = 0 \text{ V}, T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C} \text{ unless otherwise noted})$

				TX4915 Capability(Simulated)				
Parameter	Symbol	Condition		Value		Unit		
			min.	typ.	max.			
Power supply								
Supply Voltage	$V_{\rm CC1,}V_{\rm CC2}$		2.2	3	5	v		
Total dc Current (normal operation)	I_{DC}	TXEN=high , 50% Duty Cycle 10kHz data applied to the MODIN input.R _{MODIN} (R3)=3kΩ				mA		
Total dc Current (stand-by mode)	$\mathbf{I}_{\mathrm{standby}}$	TXEN = low			1	μΑ		
Overall								
Frequency Range			100		960	MHz		
Modulation				AM/ASK				
Modulation frequency						MHz		
Incidental FM						kHz _{P-P}		
Output Power		50Ω load				dBm		
ON/OFF Ratio						dB		
PLL and Prescaler								
Prescaler Divie Ratio				64/128				
VCO gain, K_{VCO}		Frequency and board layout depen- dent		20		MHz/V		
PLL Phase Noise		10KHz Offset, 50kHz loop band- width				dBc/Hz		
		100KHz Offset, 50kHz loop band- width				dBc/Hz		
Harmonics		with output tuning				dBc		
Reference Frequency					17	MHz		
crystal Frequency Spurs		50KHz PLL loop bandwidth				MHz		
Max crystal Rs		For a typ. 1ms turn-on time				Ω		
Max crystal Motional Inductance		For a typ. 1ms turn-on time				mH		
Charge pump current	I _{CP}	K_{PD} =100uA/2 Π		100		μΑ		
Power Down Control								
Power "ON"	V _{TXEN}		Vcc-0.3V			v		
Power "OFF"	V _{TXEN}				0.3	v		
Turn On Time				1	2	ms		
Turn Off Time				1	2	ms		

Functional Description

The TX4915 is a low-cost AM/ASK VHF/UHF transmitter designed for applications operating within the frequency range of 100MHz to 960MHz. In particular, it is intended for 315/433MHz band systems remote keyless entry systems, and 868/915MHz ISM Application. It can also be used as a local oscillator signal source. The integrated VCO, phase detector, prescaler, and reference oscillator require only the addition of an external crystal to provide a complete phase-locked loop. In addition to the standard power-on mode, the chip also includes an autonatic lock-detect feature that disables the transmitter output when the PLL is out-of-lock.

The TX4915 Functional Blocks

A PLL consists of a reference oscillator, a phase detector, a loop filter, a voltage control oscilator (VCO), and a programmable divider in the feedback path. The TX4915 includes all of these internally, except for the loop filter and the reference oscillator's crystal and two feedback capacitors.

Reference crystal oscillator

Pins 1 (OSCIN) and 2 (OSCOUT) provide connections to a transistor that is used as a Colpitts type oscillator. The Colpitts configuration is a low parts count topology with realiable performance and reasonable phase noise. Alternatively, an external signal could be injected into the Pins 1 (OSCIN). The drive level should, in either case, be around 500mVpp. This level prevents overdriving the device and keeps the phase noise and reference spurs to a minimum.

Voltage Controlled Oscillator

VCO is a tuned differential amplifier with the bases and collectors cross-coupled to provide positive feedback and a 360° phase shift. The tuned circuit is located in the collectors, and is comprised of internal varactors and external inductors. The designer selects the inductors for the desired frequency of operation. These inductor also provide DC bias for the VCO.

Prescaler

Using a series of flip-flops divide the VCO frequency by either 64 or 128, depending upon the logic level present at the SW pin. A high logic level will select the 64 divider. A low logic level will select the 128 dividor. This divided signal is then fed into the phase detector where it is compared with the reference frequency.

Phase dector and Charge pump

Phase dector is implemented using flip-flops in "digital tri-state comparator" topology. It compares the phase of the reference oscillator to the phase of the VCO. The charge pump consists of two transistors, one for charging the loop filter and the other for discharging the loop filter. When both inputs of the flip-flops are identical, the signals are both frequency and phase locked. If they are different, they will provide signals to the charge pump which will either charge or discharge the loop filter, or enter into a high impedance state.

Lock-detect Protection

The Lock-detect circuitry connect to the output of the phase dector ciruits and is used to disable the transmitter when the VCO is not phase-locked to the reference oscillator. This is necessary to avoid unwanted out-of-band transmission and to provide compliance with regulatory limits during an unlocked condition. Pin 15 (LD) is used to set the threshold of the lock-detect circuit. A shunt capacitor is used to set an RC time constant with an on-chip series $1K\Omega$ resistor. The time constant should be approximately 15 times the reference period.

Power Amplifier

A two-stage amplifier consisting of a driver and an open collector final stage. The PAOUT open collector output requires an external pull up coil to provide bias. The coil is part of the tuning and matching LC circuit to get best performance with the external loop antenna. To achieve the best power amplifier efficiency the high frequency voltage swing at the PAOUT pin should be two times the supply voltage. The power amplifier has its own ground pin (VSS,VSS1) in order to reduce the aount of coupling to the other circuits.

The device is an ASK/OOK transmitted, with the data provided at the MODIN pin. When the MODIN is a high logic level, the carrier is transmitted. When MODIN is a low logic level, then the carrier is not transmitted.

Power Mode

The IC provides three power modes, the POWER DOWN MODE, the PLL ENABLE MODE and the TRANSMIT MODE. How to get in this modes is described in the table below.

TXEN	MODIN	
L	Х	POWER DOWN MODE
Н	L	PLL ENABLE MODE
Н	Н	TRANSMIT MODE

Application Circuit

Bill of Materials

Component		Frequency F	Band (MHz)	Unit	Specification		
Component	315 434 868		868	916.5	Om	Specification	
XTAL	4.92188	6.78125	6.78125	7.16016	MHz		
C1 ¹	68	68	68	68	pF	0603, +/-5 %	
C2 ¹	33	33	33	33	pF	0603, +/-5 %	
C3 ²				4.7	pF	0603, +/-5 %	
C4 ²				4.7	pF	0603, +/-5 %	
C5				3.3	pF	0603, +/-5 %	
C6	100	100	100	100	pF	0603, +/-5 %	
C7	68	68	22	22	pF	0603, +/-5 %	
C8	10	10	10	10	nF	0603, +/-5 %	
С9	68	68	22	22	pF	0603, +/-5 %	
C10	10	10	10	10	nF	0603, +/-5 %	
C11	10	10	10	10	nF	0603, +/-5 %	
C12	68	68	22	22	pF	0603, +/-5 %	
C13	10	10	10	10	nF	0603, +/-5 %	
C14	1000	1000	470	470	pF	0603, +/-5 %	
C15	100	100	47	47	pF	0603, +/-5 %	
C16	18	18	18	18	nF	0603, +/-5 %	
R2	10	10	10	10	Ω	0603, +/-5 %	
R3	10	10	10	10	Ω	0603, +/-5 %	
R4	11	11	22	22	kΩ	0603, +/-5 %	
L1 ²					nH	DELTA, 0805CS	

HIMARK

TX4915

Component		Frequency E	Band (MHz)	Unit	Specification		
	315	434	868	916.5	Oint	Specification	
L2 ²					nH	DELTA, 0805CS	
L3	18	18	8	8	nH	DELTA, 0805CS	
L4	18	18	8	8	nH	DELTA, 0805CS	

1 Dependent on the crystal.

2 Dependent on the antenna and the PCB layout.

Test Circuit

Transmitter power

(1)315MHz

$v_{\rm cc}$	Mod IN Res. Value (R1)	I _{CC} (mA)	PAOUT (dBm)	V _{cc}	Mod IN Res. Value(R1)	I _{CC} (mA)	PAOUT (dBm)	V _{cc}	Mod IN Res. Value(R1)	I _{CC} (mA)	PAOUT (dBm)
	1K				1K				1K		
	3K				3K				3K		
	5.1K				5.1K				5.1K		
	6.8K				6.8K				6.8K		
2.41	9.1K			21/	9.1K			261	9.1K		
2.4 V	11K			31	11K			5.0 \	11K		
	13K				13K				13K		
	15K				15K				15K		
	18K				18K				18K		
	22K				22K				22K		

HIMARK the wireless IC company

TX4915

PAOUT (dBm)

PAOUT (dBm)

I_{CC} (mA)

(2)434MHz

V _{cc}	Mod IN Res. Value (R1)	I _{CC} (mA)	PAOUT (dBm)
	1K		
	3K		
	5.1K		
	6.8K		
2 41	9.1K		
2.4 V	11K		
	13K		
	15K		
	18K		
	22K		

V _{cc}	Mod IN Res. Value(R1)	I _{CC} (mA)	PAOUT (dBm)
	1K		
	3K		
	5.1K		
	6.8K		
21/	9.1K		
31	11K		
	13K		
	15K		
	18K		
	22K		

V _{cc}	Mod IN Res. Value(R1)	I _{CC} (mA)	PAOUT (dBm)
	1K		
	3K		
	5.1K		
	6.8K		
261	9.1K		
5.0 V	11K		
	13K		
	15K		
	18K		
	22K		

(3)868MHz

V _{cc}	Mod IN Res. Value (R1)	I _{CC} (mA)	PAOUT (dBm)		V _{cc}	Mod IN Res. Value(R1)	I _{CC} (mA)	PAOUT (dBm)		V _{cc}	Mod IN Res. Value(R1)
	1K			1		1K					1K
	3K				-	3К					3K
	5.1K					5.1K					5.1K
	6.8K					6.8K				3.6V	6.8K
2.41	9.1K				21/	9.1K					9.1K
2.4 v	11K				3V	11K					11K
	13K					13K					13K
	15K					15K					15K
	18K			Ī		18K					18K
	22K			Ī		22K					22K

(4)916.5MHz

V _{cc}	Mod IN Res. Value (R1)	I _{CC} (mA)	PAOUT (dBm)		V _{cc}	Mod IN Res. Value(R1)	I _{CC} (mA)	PAOUT (dBm)		V _{cc}	Mod IN Res. Value(R1)	I _{CC} (mA)
2.4V	1K			3V		1K					1K	
	3K					3K				3.6V	3K	
	5.1K					5.1K					5.1K	
	6.8K					6.8K					6.8K	
	9.1K				3V	9.1K					9.1K	
	11K					11K					11K	
	13K					13K					13K	
	15K					15K					15K	
	18K				18K					18K		
	22K					22K					22K	