SCES208F - APRIL 1999 - REVISED SEPTEMBER 2003 - **Available in the Texas Instruments** NanoStar™ and NanoFree™ Packages - Supports 5-V V_{CC} Operation - Inputs Accept Voltages to 5.5 V - Max tpd of 4.6 ns at 3.3 V - Low Power Consumption, 10-µA Max I_{CC} - ±24-mA Output Drive at 3.3 V - Typical V_{OI P} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$ - Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C - **Ioff Supports Partial-Power-Down Mode** Operation - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - **ESD Protection Exceeds JESD 22** - 2000-V Human-Body Model (A114-A) - 1000-V Charged-Device Model (C101) #### **DCT OR DCU PACKAGE** (TOP VIEW) #### YEA, YEP, YZA, OR YZP PACKAGE (BOTTOM VIEW) | GND | 04 | 50 | 2A | |-----------|-----|----|-----| | 2Y | 03 | 60 | 1Y | | 1A
1OE | 02 | 70 | 2OE | | 10E | O 1 | 80 | Vcc | #### description/ordering information This dual buffer/driver is designed for 1.65-V to 5.5-V V_{CC} operation. The SN74LVC2G240 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package. #### ORDERING INFORMATION | TA | PACKAGE [†] | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING‡ | | | |---------------|--|--------------------------|----------------------|------|--| | | NanoStar™ – WCSP (DSBGA)
0.17-mm Small Bump – YEA | | SN74LVC2G240YEAR | | | | –40°C to 85°C | NanoFree™ – WCSP (DSBGA)
0.17-mm Small Bump – YZA (Pb-free) | Tape and reel | SN74LVC2G240YZAR | 014 | | | | NanoStar™ – WCSP (DSBGA)
0.23-mm Large Bump – YEP | | SN74LVC2G240YEPR | CK_ | | | | NanoFree™ – WCSP (DSBGA)
0.23-mm Large Bump – YZP (Pb-free) | | SN74LVC2G240YZPR | | | | | SSOP - DCT | Tape and reel | SN74LVC2G240DCTR | C40 | | | | VSSOP - DCU | Tape and reel | SN74LVC2G240DCUR | C40_ | | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. DCT: The actual top-side marking has three additional characters that designate the year, month, and assembly/test site. DCU: The actual top-side marking has one additional character that designates the assembly/test site. YEA/YZA, YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition $(1 = SnPb, \bullet = Pb-free).$ Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoStar and NanoFree are trademarks of Texas Instruments. #### description/ordering information (continued) This device is organized as two 1-bit buffers/drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A input to the Y output. When \overline{OE} is high, the outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. FUNCTION TABLE (each buffer) | INP | JTS | OUTPUT | |-----|-----|--------| | OE | Α | Υ | | L | Н | L | | L | L | Н | | Н | Χ | Z | #### logic diagram (positive logic) SCES208F - APRIL 1999 - REVISED SEPTEMBER 2003 ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | | |---|---| | Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1) | –0.5 V to 6.5 V | | Voltage range applied to any output in the high or low state, VO | | | (see Notes 1 and 2) | \dots -0.5 V to V _{CC} + 0.5 V | | Input clamp current, I _{IK} (V _I < 0) | | | Output clamp current, I _{OK} (V _O < 0) | | | Continuous output current, I _O | | | Continuous current through V _{CC} or GND | | | Package thermal impedance, θ _{JA} (see Note 3): DCT package | | | DCU package | | | YEA/YZA package | | | YEP/YZP package | | | Storage temperature range, T _{stg} | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. - 2. The value of $V_{\hbox{\footnotesize{CC}}}$ is provided in the recommended operating conditions table. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. ### recommended operating conditions (see Note 4) | | | | MIN | MAX | UNIT | | | | |----------|---|--|------------------------|------------------------|------|--|--|--| | \ / | Our miles and the me | Operating | 1.65 | 5.5 | | | | | | VCC | Supply voltage | Data retention only | 1.5 | | V | | | | | | | V _{CC} = 1.65 V to 1.95 V | 0.65 × V _{CC} | | | | | | | ., | 18.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | V _{CC} = 2.3 V to 2.7 V | 1.7 | | ., | | | | | V_{IH} | High-level input voltage | V _{CC} = 3 V to 3.6 V | 2 | | V | | | | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | $0.7 \times V_{CC}$ | | | | | | | | | V _{CC} = 1.65 V to 1.95 V | | 0.35 × V _{CC} | | | | | | \ / | Lava lava Paradovalia na | V _{CC} = 2.3 V to 2.7 V | | 0.7 | ., | | | | | V_{IL} | Low-level input voltage | V _{CC} = 3 V to 3.6 V | | 0.8 | V | | | | | | | V _{CC} = 4.5 V to 5.5 V | | $0.3 \times V_{CC}$ | | | | | | VI | Input voltage | | 0 | 5.5 | V | | | | | ., | Output and to me | High or low state | 0 | Vcc | V | | | | | VO | Output voltage | 3-state | 0 | 5.5 | V | | | | | | | V _{CC} = 1.65 V | | -4 | | | | | | | | V _{CC} = 2.3 V | | -8 | | | | | | loh | High-level output current | | | -16 | mA | | | | | | | VCC = 3 V | | -24 | | | | | | | | V _{CC} = 4.5 V | | -32 | | | | | | | | V _{CC} = 1.65 V | | 4 | | | | | | | | V _{CC} = 2.3 V | | 8 | | | | | | loL | Low-level output current | | | 16 | mA | | | | | | | VCC = 3 V | | 24 | | | | | | | | V _{CC} = 4.5 V | | 32 | | | | | | | | $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$ | | 20 | | | | | | Δt/Δν | Input transition rise or fall rate | V _{CC} = 3.3 V ± 0.3 V | | | | | | | | | | V _{CC} = 5 V ± 0.5 V | | 5 | 1 | | | | | TA | Operating free-air temperature | | -40 | 85 | °C | | | | NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. #### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | VCC | MIN | TYP† | MAX | UNIT | |-------------------------------|--|-----------------|----------------------|------|------|------| | | $I_{OH} = -100 \mu\text{A}$ | 1.65 V to 5.5 V | V _{CC} -0.1 | | | | | | $I_{OH} = -4 \text{ mA}$ | 1.65 V | 1.2 | | | | | | $I_{OH} = -8 \text{ mA}$ | 2.3 V | 1.9 | | | | | VOH | I _{OH} = -16 mA | | 2.4 | | | V | | | I _{OH} = -24 mA | 3 V | 2.3 | | | | | | I _{OH} = -32 mA | 4.5 V | 3.8 | | | | | | I _{OL} = 100 μA | 1.65 V to 5.5 V | | | 0.1 | | | | I _{OL} = 4 mA | 1.65 V | | | 0.45 | | | | I _{OL} = 8 mA | 2.3 V | | | 0.3 | | | VOL | I _{OL} = 16 mA | | | | 0.4 | V | | | I _{OL} = 24 mA | 3 V | | | 0.55 | | | | I _{OL} = 32 mA | 4.5 V | | | 0.55 | | | I _I A or OE inputs | V _I = 5.5 V or GND | 0 to 5.5 V | | | ±5 | μΑ | | loff | V_I or $V_O = 5.5 V$ | 0 | | | ±10 | μΑ | | loz | V _O = 0 to 5.5 V | 3.6 V | | | 10 | μΑ | | Icc | $V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$ | 1.65 V to 5.5 V | | | 10 | μΑ | | ΔlCC | One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND | 3 V to 5.5 V | | | 500 | μΑ | | C _i | V _I = V _{CC} or GND | 3.3 V | | 4 | | pF | | Co | $V_O = V_{CC}$ or GND | 3.3 V | | 6 | | pF | $^{^{\}dagger}$ All typical values are at VCC = 3.3 V, TA = 25°C. # switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | | PARAMETER FROM | | PARAMETER FROM TO (INPUT) (OUTPUT) | | | = 1.8 V V _{CC} = 2.5 V
.15 V ± 0.2 V | | V _{CC} = 3.3 V
± 0.3 V | | V _{CC} = 5 V
± 0.5 V | | UNIT | |--|------------------|---------|------------------------------------|-----|------|--|-----|------------------------------------|-----|----------------------------------|-----|------| | | | (INPUT) | (001P01) | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | | ^t pd | Α | Υ | 2 | 11.3 | 1.4 | 5.5 | 1.1 | 4.6 | 1 | 4 | ns | | | t _{en} | ŌE | Υ | 2.7 | 11.7 | 1.9 | 6.6 | 1.4 | 5.4 | 1.1 | 5 | ns | | | ^t dis | ŌĒ | Υ | 1.7 | 12.8 | 0.8 | 5.7 | 1.2 | 5.5 | 0.5 | 4.2 | ns | ### operating characteristics, $T_A = 25^{\circ}C$ | | PARAMETER | | TEST
CONDITIONS | V _{CC} = 1.8 V
TYP | V _{CC} = 2.5 V
TYP | V _{CC} = 3.3 V
TYP | V _{CC} = 5 V
TYP | UNIT | |-----------------|----------------------------------|------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|------| | <u> </u> | Power dissipation | Outputs enabled | (40 MH- | | | 15 | 17 | ~F | | C _{pd} | capacitance
per buffer/driver | Outputs disabled | f = 10 MHz | 1 | 1 | 2 | 3 | pF | #### PARAMETER MEASUREMENT INFORMATION | TEST | S1 | |-----------|-------| | tPLH/tPHL | Open | | tPLZ/tPZL | VLOAD | | tPHZ/tPZH | GND | **LOAD CIRCUIT** | ., | INPUTS | | ., | V | • | D. | ., | |--------------------|----------------|--------------------------------|--------------------|-------------------|-------|--------------|----------------------------------| | VCC | ٧ _I | t _r /t _f | VM | VLOAD | CL | RL | $v_{\!\scriptscriptstyle\Delta}$ | | 1.8 V \pm 0.15 V | VCC | ≤ 2 ns | V _{CC} /2 | 2×V _{CC} | 30 pF | 1 k Ω | 0.15 V | | 2.5 V \pm 0.2 V | VCC | ≤ 2 ns | V _{CC} /2 | 2×VCC | 30 pF | 500 Ω | 0.15 V | | 3.3 V \pm 0.3 V | 3 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | 5 V \pm 0.5 V | VCC | ≤2.5 ns | V _{CC} /2 | 2×V _{CC} | 50 pF | 500 Ω | 0.3 V | - NOTES: A. C_I includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Ω = 50 Ω. - D. The outputs are measured one at a time with one transition per measurement. - E. tpLZ and tpHZ are the same as tdis. - F. tpzL and tpzH are the same as ten. - G. tpLH and tpHL are the same as tpd. - H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms #### DCT (R-PDSO-G8) #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion - D. Falls within JEDEC MO-187 variation DA. ## DCU (R-PDSO-G8) ## PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN) NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. - D. Falls within JEDEC MO-187 variation CA. ## YEA (R-XBGA-N8) ### DIE-SIZE BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. NanoStar \mathbf{M} package configuration. - D. Package complies to JEDEC MO-211 variation EB. - E. This package is tin-lead (SnPb). Refer to the 8 YZA package (drawing 4204151) for lead-free. NanoStar is a trademark of Texas Instruments. ## YZA (R-XBGA-N8) ### DIE-SIZE BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. NanoFree™ package configuration. - D. Package complies to JEDEC MO-211 variation EB. - E. This package is lead-free. Refer to the 8 YEA package (drawing 4203167) for tin-lead (SnPb). NanoFree is a trademark of Texas Instruments. ## YZP (R-XBGA-N8) ### DIE-SIZE BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. NanoFree $^{\text{TM}}$ package configuration. - D. This package is lead-free. Refer to the 8 YEP package (drawing 4204725) for tin-lead (SnPb). NanoFree is a trademark of Texas Instruments. ## YEP (R-XBGA-N8) ### DIE-SIZE BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. NanoStar \mathbf{M} package configuration. - D. This package is tin-lead (SnPb). Refer to the 8 YZP package (drawing 4204741) for lead-free. NanoStar is a trademark of Texas Instruments. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2003, Texas Instruments Incorporated