

# **ADA10000**

Linear Amplifier MMIC

Data Sheet - Rev 2.3

#### **FEATURES**

• High Linearity: +15 dBm IIP3 (+8 V supply)

Low Distortion

• Low Noise Figure: 2.0 dB

• 15 dB Gain

• Single +4 V to +9 V Supply

• Wide Bandwidth: 50 MHz to 1 GHz

SOIC-16 and SOT-89 Package Options



## PRODUCT DESCIPTION

The ADA10000 is a monolithic IC intended for use in applications requiring high linearity, such as Cellular Telephone Base Station Driver Amplifiers, CATV Fiber Receiver and Distribution Amplifiers, and CATV Drop

Amplifiers. Offered in both a modified 16 lead SOIC package and SOT-89 package, it is well suited for use in amplifiers where small size, reduced component count, and high reliability are important.

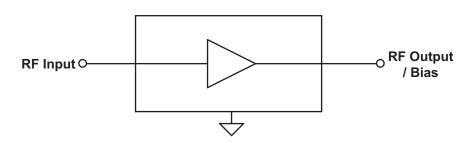



Figure 1: Block Diagram

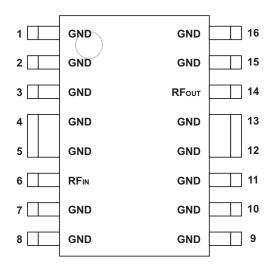



Figure 2: Pinout - S3 Package

Table 1: Pin Description - S3 Package

| PIN | NAME | DESCRIPTION | PIN | NAME          | DESCRIPTION      |
|-----|------|-------------|-----|---------------|------------------|
| 1   | GND  | Ground      | 16  | GND           | Ground           |
| 2   | GND  | Ground      | 15  | GND           | Ground           |
| 3   | GND  | Ground      | 14  | <b>RF</b> out | RF Output / Bias |
| 4   | GND  | Ground      | 13  | GND           | Ground           |
| 5   | GND  | Ground      | 12  | GND           | Ground           |
| 6   | RFℕ  | RF Input    | 11  | GND           | Ground           |
| 7   | GND  | Ground      | 10  | GND           | Ground           |
| 8   | GND  | Ground      | 9   | GND           | Ground           |

2

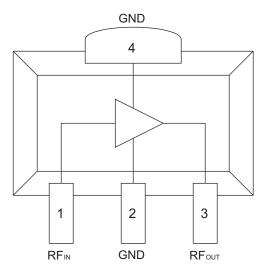



Figure 3: Pinout - S24 Package

Table 2: Pin Description - S24 Package

| PIN | NAME  | DESCRIPTION      |
|-----|-------|------------------|
| 1   | RFℕ   | RF Input         |
| 2   | GND   | Ground           |
| 3   | RFout | RF Output / Bias |
| 4   | GND   | Ground           |

## **ELECTRICAL CHARACTERISTICS**

**Table 3: Absolute Minimum and Maximum Ratings** 

| PARAMETER                                                        | MIN | MAX  | UNIT |
|------------------------------------------------------------------|-----|------|------|
| Supply<br>(S3 package: pin 14)<br>(S24 package: pin 3)           | 0   | +12  | VDC  |
| RF Power at Input<br>(S3 package: pin 6)<br>(S24 package: pin 1) | 1   | +10  | dBm  |
| Storage Temperature                                              | -65 | +150 | °C   |

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Notes

**Table 4: Operating Ranges** 

| PARAMETER                   | MIN | TYP | MAX     | UNIT |
|-----------------------------|-----|-----|---------|------|
| RF Input / Output Frequency | 50  | ı   | 1000    | MHz  |
| Supply Voltage (VDD)        | +4  | +8  | +9      | VDC  |
| Case Temperature            | -40 | -   | +85 (1) | °C   |

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Notes:

(1) Median time to failure will degrade above this temperature.

<sup>(1)</sup> RF input pin must be AC-coupled. No DC external bias should be applied.

# Table 5: Electrical Specifications (T<sub>A</sub> = +25 °C, $V_{DD}$ = +8 VDC, 75 $\Omega$ system, see Figures 4 and 5)

| PARAMETER                                  | MIN     | TYP | MAX      | UNIT | COMMENT                   |
|--------------------------------------------|---------|-----|----------|------|---------------------------|
| CSO (1) / CSO (2)                          | 60 / 62 | -   | -        | dBc  |                           |
| CTB (1) /CTB (2)                           | 65 / 74 | -   | -        | dBc  |                           |
| Gain                                       | 14      | 15  | -        | dB   |                           |
| Noise Figure                               | -       | 2.0 | 3.5      | dB   |                           |
| 2nd Order Input Intercept Point (IIP2) (3) | +29     | +34 | -        | dBm  |                           |
| 3rd Order Input Intercept Point (IIP3) (3) | +13     | +15 | -        | dBm  |                           |
| Thermal Resistance                         | -       | -   | 35<br>20 | °C/W | S3 package<br>S24 package |
| Current Consumption (4)                    | 50      | -   | 150      | mA   |                           |

#### Notes:

- (1) 160 channels, +17 dBmV per channel (measured at output), 6 MHz channel spacing.
- (2) 80 channels, +19 dBmV per channel (measured at output), 6 MHz channel spacing.
- (3) Two tones, -10 dBm per tone at input.
- (4) The device can be operated at V<sub>DD</sub> = +6 VDC for lower power dissipation. Refer to Figures 7, 8, 13, and 16 for performance variation with supply voltage.



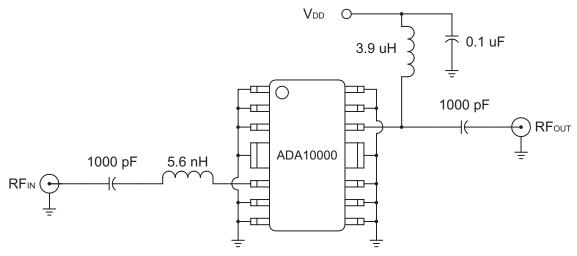



Figure 4: Test Circuit - S3 Packaged Device (75 Ω terminations)

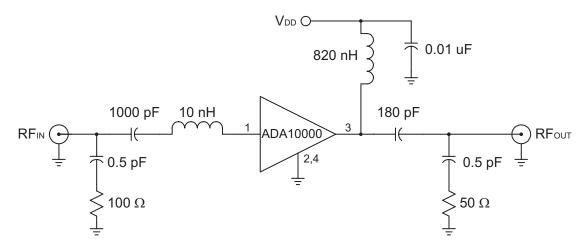



Figure 5: Test Circuit - S24 Packaged Device (75  $\Omega$  terminations)

## **PERFORMANCE DATA**

As measured in test circuits shown in Figures 4 and 5.

Figure 6: Gain and Noise Figure vs. Frequency - S3 Packaged Device

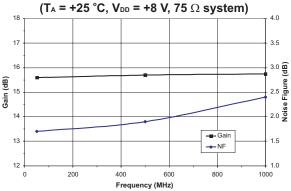



Figure 7: Gain and Noise Figure vs. Supply Voltage - S3 Packaged Device

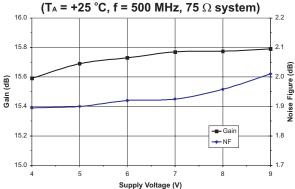
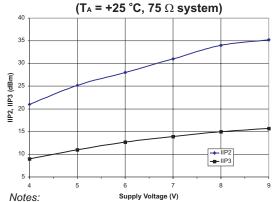




Figure 8: IIP2 and IIP3 vs. Supply Voltage - S3 Packaged Device



1. IIP2 measured at 986.5 MHz; Input = two tones at 55.25 MHz and 931.25 MHz at -10 dBm.

2. IIP3 measured with two tones at the input: 986.5 MHz and 992.5 MHz at -10 dBm.

Figure 10: Unmatched Device Input Impedance S3 Packaged Device

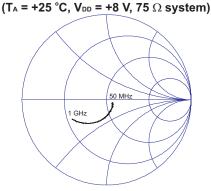



Figure 9: Output Power vs. Input Power S3 Packaged Device

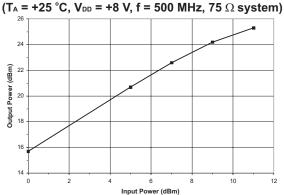
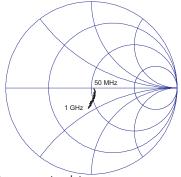




Figure 11: Unmatched Device Output Impedance S3 Packaged Device

 $(T_A = +25 \,^{\circ}C, V_{DD} = +8 \, V, 75 \,\Omega \text{ system})$ 



Refer to the ANADIGICS web site for full 2-port s-parameter data.



Figure 12: Gain and Noise Figure vs. Frequency - S24 Packaged Device

 $(T_A = +25 \, ^{\circ}C, V_{DD} = +8 \, V, 75 \, \Omega \, \text{system})$ 18 4.0 17 3.5 3.0 **(qp)** 2.5 **Noise Ligare** Gain (dB) - Gain 13 1.5 - NF 12 1.0 200 1000 0 800 Frequency (MHz)

Figure 13: Gain and Noise Figure vs. Supply Voltage - S24 Packaged Device ( $T_A = +25$  °C, f = 500 MHz,  $75 \Omega$  system)

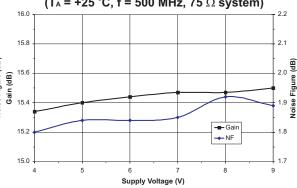



Figure 14: Input Return Loss vs. Frequency - S24 Packaged Device ( $T_A = +25 \,^{\circ}\text{C}$ ,  $V_{DD} = +8 \,\text{V}$ ,  $75 \,\Omega$  system)

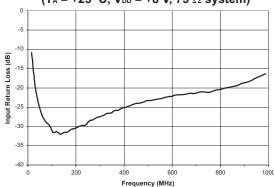



Figure 15: Output Return Loss vs. Frequency - S24 Packaged Device

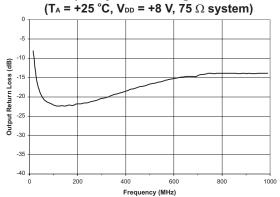



Figure 16: IIP2 and IIP3 vs.Supply Voltage - S24 Packaged Device (T<sub>A</sub> = +25 °C, 75 Ω system)

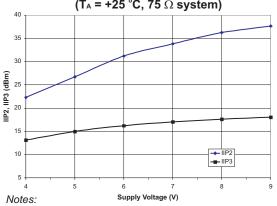
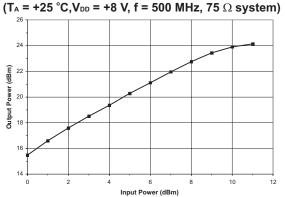




Figure 17: Output Power vs. Input Power S24 Packaged Device



- IIP2 measured at 986.5 MHz; Input = two tones at 55.25 MHz and 931.25 MHz at -10 dBm.
- 2. IIP3 measured with two tones at the input: 986.5 MHz and 992.5 MHz at -10 dBm.

Figure 18: Unmatched Device Input Impedance S24 Packaged Device

 $(T_A = +25 \,^{\circ}C, V_{DD} = +8 \, V, 75 \,\Omega \text{ system})$ 

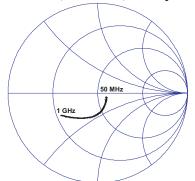
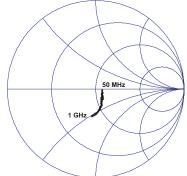
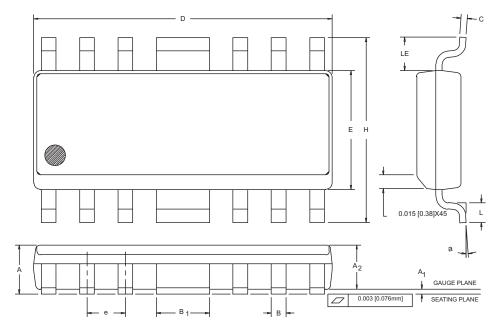




Figure 19: Unmatched Device Output Impedance S24 Packaged Device

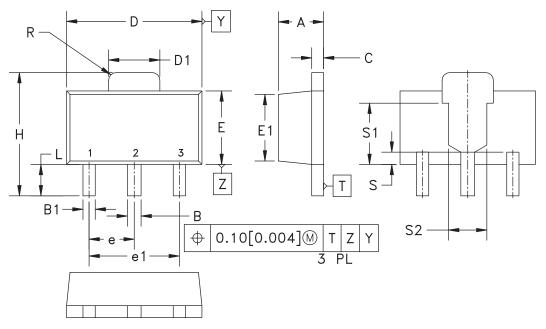

 $(T_A = +25 \,^{\circ}C, V_{DD} = +8 \, V, 75 \,\Omega \text{ system})$ 



Refer to the ANADIGICS web site for full 2-port s-parameter data.



## **PACKAGE OUTLINE**




| S <sub>YMB</sub> OL | INC       | HES   | MILLIM | NOTE     |   |
|---------------------|-----------|-------|--------|----------|---|
| O <sub>L</sub>      | MIN.      | MAX.  | MIN.   | MAX.     | 1 |
| Α                   | 0.058     | 0.068 | 1.47   | 1.73     |   |
| A <sub>1</sub>      | 0.004     | 0.010 | 0.10   | 0.25     |   |
| A <sub>2</sub>      | 0.055     | 0.065 | 1.40   | 1.65     |   |
| В                   | 0.013     | 0.020 | 0.33   | 0.50     |   |
| В <sub>1</sub>      | 0.062     | 0.070 | 1.58   | 1.78     |   |
| С                   | 0.008     | 0.010 | 0.20   | 0.25     | 4 |
| D                   | 0.380     | 0.400 | 9.66   | 10.16    | 2 |
| Е                   | 0.150     | 0.160 | 3.81   | 4.06     | 3 |
| е                   | 0.050 BSC |       | 1.27   | 1.27 BSC |   |
| Н                   | 0.226     | 0.244 | 5.74   | 6.20     |   |
| L                   | 0.016     | 0.040 | 0.41   | 1.02     |   |
| LE                  | 0.030     | _     | 0.76   | _        |   |
| а                   | 0         | 8     | 0      | 8        |   |

#### NOTES:

- 1. CONTROLLING DIMENSION: INCHES
- DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 [0.15mm] PER SIDE.
- DIMENSION "E" DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.010 [0.25mm] PER SIDE.
- 4. LEAD THICKNESS AFTER PLATING TO BE 0.013 [0.33mm] MAXIMUM.

Figure 20: S3 Package Outline - Modified 16 Pin SOIC



| S <sub>YMBOL</sub> | MILLIM    | ETERS | INCI      | NOTE  |   |
|--------------------|-----------|-------|-----------|-------|---|
| -O <sub>L</sub>    | MIN.      | MAX.  | MIN.      | MAX.  |   |
| Α                  | 1.40      | 1.60  | 0.055     | 0.063 | _ |
| В                  | 0.44      | 0.56  | 0.017     | 0.022 | _ |
| Вı                 | 0.36      | 0.48  | 0.014     | 0.019 | 3 |
| С                  | 0.35      | 0.44  | 0.014     | 0.017 | _ |
| D                  | 4.40      | 4.60  | 0.173     | 0.181 | _ |
| D1                 | 1.62      | 1.83  | 0.064     | 0.072 | _ |
| Е                  | 2.29      | 2.60  | 0.090     | 0.102 | _ |
| Εı                 | 2.13      | 2.29  | 0.084     | 0.090 | 4 |
| е                  | 1.50 BSC  |       | 0.059 BSC |       | _ |
| e 1                | 3.00 BSC  |       | 0.118 BSC |       | _ |
| Н                  | 3.94      | 4.25  | 0.155     | 0.167 | _ |
| L                  | 0.89      | 1.20  | 0.035     | 0.047 | _ |
| R                  | -         | 0.25  | _         | 0.010 | - |
| S                  | 0.40 NOM. |       | 0.016     | NOM.  | 4 |
| S1                 | 2.03      | NOM.  | 0.080     | NOM.  | 4 |
| S <sub>2</sub>     | 1.27      | NOM.  | 0.050     | NOM.  | 4 |
|                    |           |       |           |       |   |

## NOTES:

- 1. CONTROLLING DIMENSIONS: MILLIMETERS.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH OR MATERIAL PROTRUSIONS.
- 3. DIMENSION B1, 2 PLACES.
- 4. DIMENSIONS E1, S, S1 & S2 REFERENCE ONLY.
- 5. REFERENCE JEDEC TO-243 (AA).

Figure 21: S24 Package Outline - SOT-89

#### ADA10000

## ORDERING INFORMATION

| ORDER NUMBER TEMPERATURE RANGE |                  | PACKAGE<br>DESCRIPTION | COMPONENT PACKAGING                |
|--------------------------------|------------------|------------------------|------------------------------------|
| ADA10000S3CTR                  | -40 °C to +85 °C | Modified 16 Pin SOIC   | 3,500 piece Tape and Reel          |
| ADA10000S3C                    | -40 °C to +85 °C | Modified 16 Pin SOIC   | Plastic tubes (50 pieces per tube) |
| ADA10000S24Q1                  | -40 °C to +85 °C | SOT-89 Package         | 1,000 piece Tape and Reel          |



# ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

# **IMPORTANT NOTICE**

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

#### WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

