

•

N-Channel 12-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm qd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71024 www.vishay.com 20-May-02 **1**

SPICE Device Model Si7858DP

Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.91		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5V$, $V_{GS} = 4.5V$	1265		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 4.5V, I _D = 25A	0.0019	0.0024	Ω
		$V_{GS} = 2.5V, I_D = 20A$	0.0031	0.0031	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 6V, I_{D} = 25A$	142	130	S
Diode Forward Voltage ^a	V_{SD}	$I_{\rm S}$ = 2.9A, $V_{\rm GS}$ = 0V	0.76	0.75	V
Dynamic ^b					
Total Gate Charge	Qg	V_{DS} = 6V, V_{GS} = 4.5V, I_{D} = 25A	42	40	nC
Gate-Source Charge	Q_{gs}		6.7	6.7	
Gate-Drain Charge	Q_{gd}		9.2	9.2	
Turn-On Delay Time	t _{d(on)}	$V_{DD}=6V,R_L=6\Omega$ $I_D\cong 1A,V_{GEN}=4.5V,R_G=6\Omega$ $I_F=2.9A,di/dt=100A/\mu s$	41	40	ns
Rise Time	t _r		58	40	
Turn-Off Delay Time	t _{d(off)}		66	140	
Fall Time	t _f		118	70	
Source-Drain Reverse Recovery Time	t _{rr}		39	50	

www.vishay.com Document Number: 71024 20-May-02

a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2%.
b. Guaranteed by design, not subject to production testing.

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

VISHAY

Note: Dots and squares represent measured data.