

LH0004 High Voltage Operational Amplifier

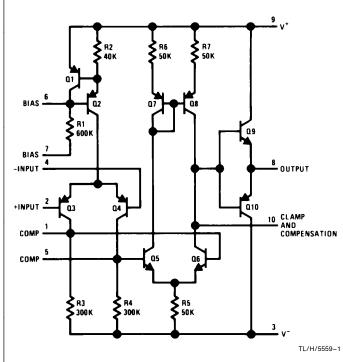
General Description

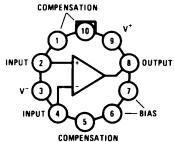
The LH0004 is a general purpose operational amplifier designed to operate from supply voltages up to $\pm40V.$ The device dissipates extremely low quiescent power, typically 8 mW at 25°C and V_S $=~\pm40V.$

The LH0004's high gain and wide range of operating voltages make it ideal for applications requiring large output swing and low power dissipation.

The LH0004 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LH0004C is specified for operation over the 0°C to $+85^{\circ}$ C temperature range.

Features


- Capable of operation over the range of $\pm 5V$ to $\pm 40V$
- Large output voltage typically ± 35 V for the LH0004 and ± 33 V for the LH0004C into a 2 k Ω load with ± 40 V supplies


- Low input offset voltage typically 0.3 mV
- Frequency compensation with 2 small capacitors
- \blacksquare Low power consumption 8 mW at $\pm 40 \text{V}$

Applications

- High voltage power supply
- Resolver excitation
- Wideband high voltage amplifier
- Transducer power supply

Schematic and Connection Diagrams

TL/H/5559-2

Note: Pin 7 must be grounded or connected to a voltage at least 5V more negative than the positive supply (Pin 9). Pin 7 may be connected to the negative supply; however, the standby current will be increased. A resistor may be inserted in series with Pin 7 to Pin 9. The value of the resistor should be a maximum of 100 $\rm k\Omega$ per volt of potential between Pin 3 and Pin 9.

Order Number LH0004H, LH0004H-MIL or LH0004CH See NS Package Number H10G

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2)

 Supply Voltage
 ± 45V

 Power Dissipation (see Curve)
 400 mW

 Differential Input Voltage
 ±7V

 Input Voltage
 Equal to Supply

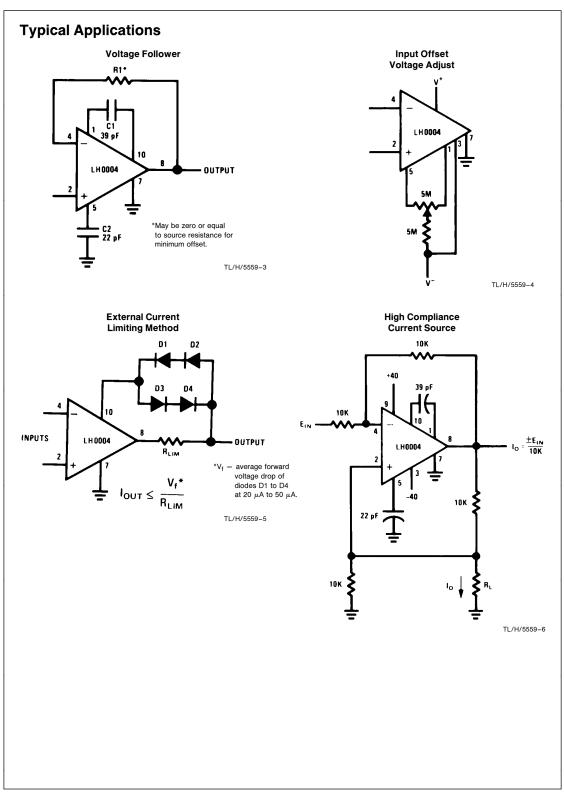
 Short Circuit Duration
 3 sec

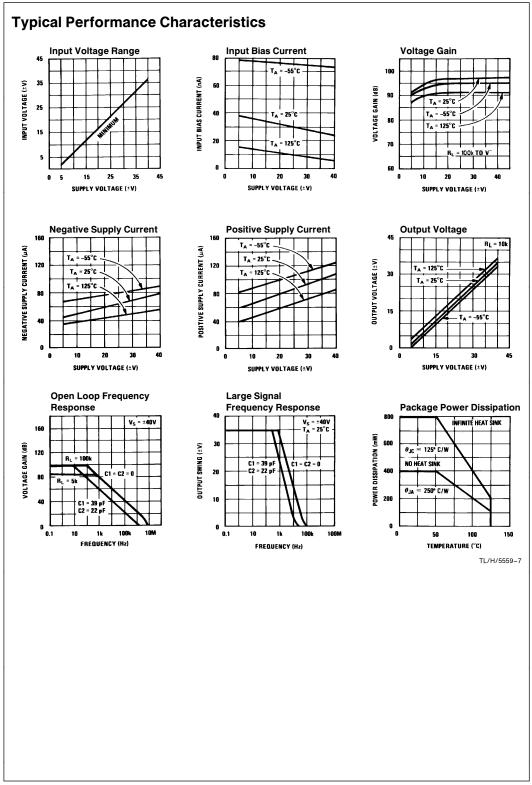
 Operating Temperature Range
 -55°C to +125°C

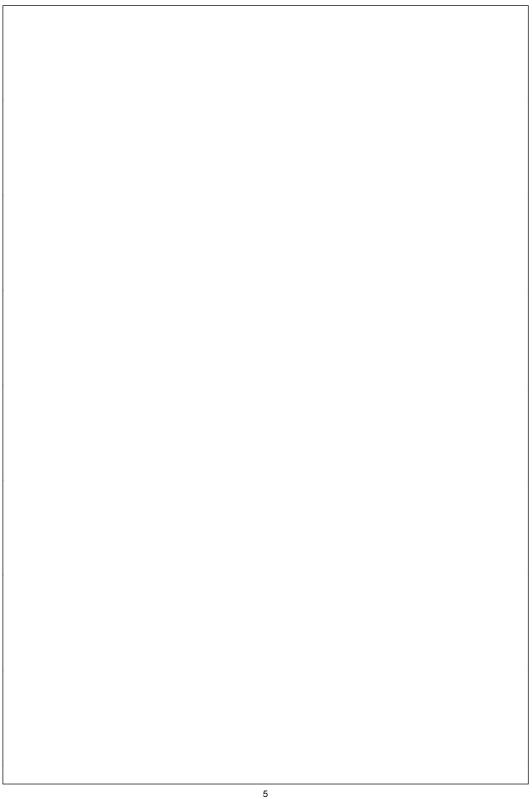
 LH0004
 0°C to +85°C

 Storage Temperature Range
 -65°C to +150°C

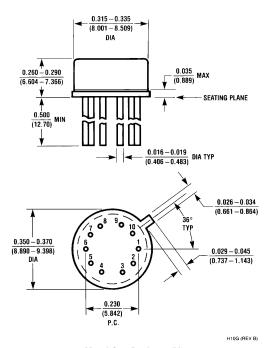
 Lead Temperature (Soldering, 10 sec.)
 260°C


 ESD rating to be determined.
 -65°C to +150°C


Electrical Characteristics (Note 1)


Parameter	Conditions	LH0004			LH0004C			Units
		Min	Тур	Max	Min	Тур	Max	Office
Input Offset Voltage	$R_{S} \leq 100\Omega, T_{A} = 25^{\circ}C$ $R_{S} \leq 100\Omega$		0.3	1.0 2.0		0.3	1.5 3.0	mV
Input Bias Current	T _A = 25°C		20	100 300		30	120 300	nA
Input Offset Current	T _A = 25°C		3	20 100		10	45 150	nA
Positive Supply Current	$V_S = \pm 40V, T_A = 25^{\circ}C$ $V_S = \pm 40V$		110	150 175		110	150 175	μΑ
Negative Supply Current	$V_S = \pm 40V, T_A = 25^{\circ}C$ $V_S = \pm 40V$		80	100 135		80	100 135	μΑ
Voltage Gain	$V_S = \pm 40V, R_L = 100k, T_A = 25^{\circ}C$ $V_{OUT} = \pm 30V$	30	60		30	60		V/mV
	$V_S = \pm 40V, R_L = 100k$ $V_{OUT} = \pm 30V$	10			10			V/mV
Output Voltage	$V_{S} = \pm 40V, R_{L} = 10k$		±35	±30		±33	±30	V
CMRR	$V_S = \pm 40V, R_S \le 5k$ $V_{IN} = \pm 33V$	70	90		70	90		dB
PSRR	$V_S = \pm 40V$, $R_S \le 5k$ $\Delta V = 20V$ to $40V$	70	90		70	90		dB
Average Temperature Coefficient Offset Voltage	$R_S \leq 100\Omega$		4.0			4.0		μV/°C
Average Temperature Coefficient of Offset Current			0.4			0.4		nA/°C
Equivalent Input Noise Voltage	$R_S = 100\Omega, V_S = \pm 40V$ f = 500 Hz to 5 kHz, $T_A = 25^{\circ}C$		3.0			3.0		μVrms

Note 1: These specifications apply for $\pm 5V \le V_S \le \pm 40V$, Pin 7 grounded, with capacitors C1 = 39 pF between Pin 1 and Pin 10, C2 = 22 pF between Pin 5 and ground, -55° C to $+125^{\circ}$ C for the LH0004, and 0° C to $+85^{\circ}$ C for the LH0004C unless otherwise specified.


Note 2: Refer to RETS0004X for LH0004H military specifications.

Physical Dimensions inches (millimeters)

Metal Can Package (H)
Order Number LH0004H, LH0004H-MIL or LH0004CH
NS Package Number H10G

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@texm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408