Dual Inverter

The NL27WZ04 is a high performance dual inverter operating from a 1.65 V to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance.

- Extremely High Speed: t_{PD} 2.0 ns (typical) at $V_{CC} = 5$ V
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- Over Voltage Tolerant Inputs and Outputs
- LVTTL Compatible Interface Capability With 5 V TTL Logic with V_{CC} = 3 V
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Replacement for NC7W04
- Chip Complexity: FET = 72; Equivalent Gate = 18

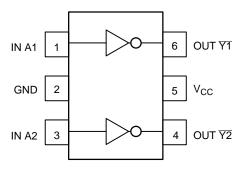


Figure 1. Pinout (Top View)

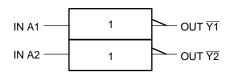
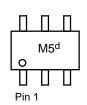


Figure 2. Logic Symbol

PIN ASSIGNMENT

1	IN A1
2	GND
3	IN A2
4	OUT Y2
5	V _{CC}
6	OUT \(\overline{Y1} \)

FUNCTION TABLE


▼ Output
Н
L

http://onsemi.com

MARKING DIAGRAMS

SC70-6/SC-88/SOT-363 DF SUFFIX CASE 419B

SOT23-6/TSOP-6/SC59-6

DT SUFFIX
CASE 318G

d = Date Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$	V
Vo	DC Output Voltage Output in HIGH or LOW State (Note 1)	$-0.5 \le V_{O} \le 7.0$	V
I _{IK}	DC Input Diode Current $V_I < GND$	-50	mA
I _{OK}	DC Output Diode Current V _O < GND	-50	mA
Io	DC Output Source/Sink Current	±50	mA
Icc	DC Supply Current Per Supply Pin	±100	mA
I _{GND}	DC Ground Current Per Ground Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
P _D	Power Dissipation in Still Air SC-88, TSOP-6 (Note 2)	200	mW
θ_{JA}	Thermal resistance SC–88, TSOP–6 (Note 2)	333	°C/W
TL	Lead temperature, 1 mm from case for 10 s	260	°C
TJ	Junction temperature under bias	+150	°C
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	> 2000 > 200 N/A	V

Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

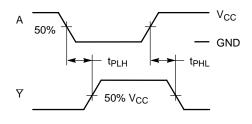
- 1. I_O absolute maximum rating must be observed.
- Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
 Tested to EIA/JESD22-A114-A
- 4. Tested to EIA/JESD22-A115-A
- 5. Tested to JESD22-C101-A

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Supply Voltage	Operating Data Retention Only	1.65 1.5	5.5 5.5	V
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	(HIGH or LOW State)	0	5.5	V
T _A	Operating Free–Air Temperature		-40	+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ $V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0 0	20 10 5	ns/V

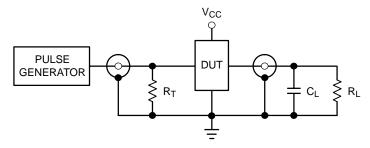
DC ELECTRICAL CHARACTERISTICS

					A = 25°C	:	-40 °C ≤ T_A ≤ 85 °C		
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		1.65 – 1.95	0.75 V _{CC}			0.75 V _{CC}		V
			2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		
V _{IL}	Low-Level Input Voltage		1.65 – 1.95			0.25 V _{CC}		0.25 V _{CC}	V
			2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	
V _{OH}	High-Level Output Voltage	I _{OH} = -100 μA	1.65 to 5.5	V _{CC} - 0.1	V _{CC}		V _{CC} - 0.1		V
	$V_{IN} = V_{IL}$	$I_{OH} = -3 \text{ mA}$	1.65	1.29	1.52		1.29		
		I _{OH} = -8 mA	2.3	1.9	2.1		1.9		
		I _{OH} = -12 mA	2.7	2.2	2.4		2.2		1
		I _{OH} = -16 mA	3.0	2.4	2.7		2.4		
		I _{OH} = -24 mA	3.0	2.3	2.5		2.3		
		I _{OH} = -32 mA	4.5	3.8	4.0		3.8		1
V _{OL}	Low-Level Output Voltage	I _{OL} = 100 μA	1.65 to 5.5			0.1		0.1	V
	$V_{IN} = V_{IH}$	I _{OL} = 3 mA	1.65		0.08	0.24		0.24	1
		I _{OL} = 8 mA	2.3		0.20	0.3		0.3	
		I _{OL} = 12 mA	2.7		0.22	0.4		0.4	1
		I _{OL} = 16 mA	3.0		0.28	0.4		0.4	1
		I _{OL} = 24 mA	3.0		0.38	0.55		0.55	1
		I _{OL} = 32 mA	4.5		0.42	0.55		0.55	
I _{IN}	Input Leakage Current	$V_{IN} = V_{CC}$ or GND	0 to 5.5			±0.1		±1.0	μΑ
I _{OFF}	Power Off–Output Leakage Current	V _{OUT} = 5.5 V	0			1		10	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	1.65 to 5.5			1		10	μΑ


AC ELECTRICAL CHARACTERISTICS $t_R=t_F=2.5~\text{ns};~C_L=50~\text{pF};~R_L=500~\Omega$

				T _A = 25°C		$-40^{\circ}C \leq T_{A} \leq 85^{\circ}C$			
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH}	Propagation Delay	$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	1.65	1.8	2.3	9.2	1.8	11.0	ns
^t PHL	t _{PHL} (Figure 3 and 4)	$R_L = 1 M\Omega$, $C_L = 15 pF$	1.8	1.8	4.4	7.6	1.8	8.4	
		$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	2.5 ± 0.2	1.2	3.0	5.1	1.2	5.6	
		$R_L = 1 M\Omega, C_L = 15 pF$	3.3 ± 0.3	0.8	2.2	3.4	0.8	3.8	
		$R_L = 500 \Omega, C_L = 50 pF$		1.2	2.9	4.5	1.2	5.0	
		$R_L = 1 M\Omega, C_L = 15 pF$	5.0 ± 0.5	0.5	18	2.8	0.5	3.1	
		$R_L = 500 \ \Omega, C_L = 50 \ pF$		0.8	2.3	3.6	0.8	4.0	

CAPACITIVE CHARACTERISTICS


Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	$V_{CC} = 5.5 \text{ V}, V_I = 0 \text{ V or } V_{CC}$	2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 6)	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} 10 MHz, V_{CC} = 5.5 V, V_{I} = 0 V or V_{CC}	9 11	pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

 $\begin{aligned} & \textbf{PROPAGATION DELAYS} \\ & t_R = t_F = 2.5 \text{ ns, } 10\% \text{ to } 90\%; f = 1 \text{ MHz; } t_W = 500 \text{ ns} \end{aligned}$

Figure 3. Switching Waveforms

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

DEVICE ORDERING INFORMATION

		Device Nomenclature							
Device Order Number	Logic Circuit Indicator	No. of Gates per Package	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type (Name/SOT#/ Common Name)	Tape and Reel Size
NL27WZ04DFT2	NL	2	7	WZ	04	DF	T2	SC70-6/SC-88 /SOT-363	178 mm (7") 3000 Unit
NL27WZ04DTT1	NL	2	7	WZ	04	DT	T1	SOT23-6/TSOP-6 /SC59-6	178 mm (7") 3000 Unit

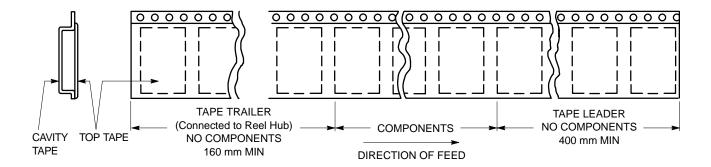


Figure 5. Tape Ends for Finished Goods

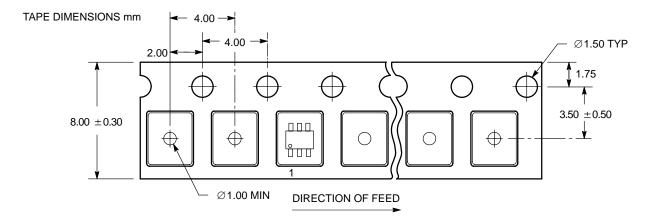


Figure 6. SC70-6/SC-88/SOT-363 DFT2 and SOT23-6/TSOP-6/SC59-6 DTT1 Reel Configuration/Orientation

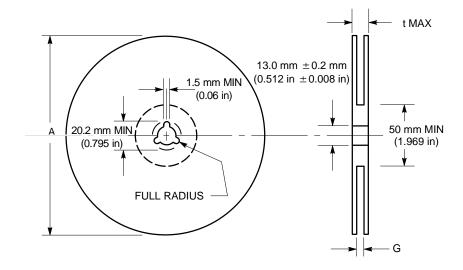
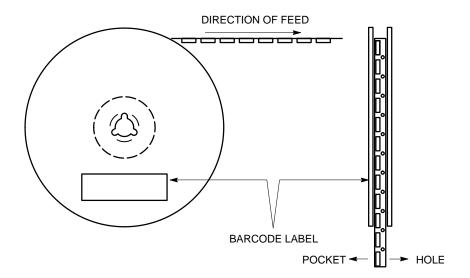
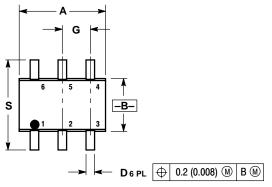
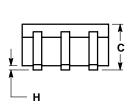



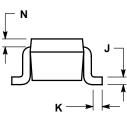
Figure 7. Reel Dimensions

REEL DIMENSIONS

Tape Size	T and R Suffix	A Max	G	t Max
8 mm	T1, T2	178 mm (7 in)	8.4 mm, + 1.5 mm, -0.0 (0.33 in + 0.059 in, -0.00)	14.4 mm (0.56 in)

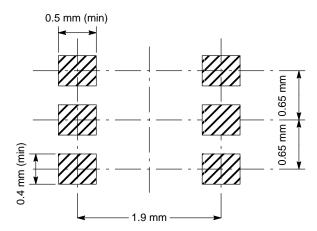



Figure 8. Reel Winding Direction

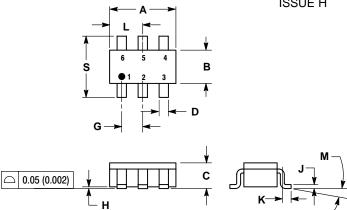

PACKAGE DIMENSIONS

SC70-6/SC-88/SOT-363 **DF SUFFIX**

CASE 419B-02 ISSUE K

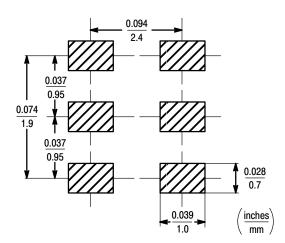


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.


	INC	HES	MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

PACKAGE DIMENSIONS

SOT23-6/TSOP-6/SC59-6 **DT SUFFIX**


CASE 318G-02 **ISSUE H**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 114.30M, 1902.
 CONTROLLING DIMENSION: MILLIMETER.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD
 FINISH THICKNESS. MINIMUM LEAD THICKNESS
 IS THE MINIMUM THICKNESS OF BASE

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.1142	0.1220
В	1.30	1.70	0.0512	0.0669
С	0.90	1.10	0.0354	0.0433
D	0.25	0.50	0.0098	0.0197
G	0.85	1.05	0.0335	0.0413
Н	0.013	0.100	0.0005	0.0040
J	0.10	0.26	0.0040	0.0102
K	0.20	0.60	0.0079	0.0236
L	1.25	1.55	0.0493	0.0610
M	0 °	10°	0 °	10°
S	2.50	3.00	0.0985	0.1181

ON Semiconductor and War registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.