512K-BIT [64K x 8] CMOS MULTIPLE-TIME-PROGRAMMABLE EPROM

FEATURES

- 64 K x 8 organization
- +5 V operating power supply
- +12.75V program/erase voltage
- Electric erase instead of UV light erase
- Fast access time: 70/90/100/120/150 ns
- Totally static operation
- Completely TTL compatible

GENERAL DESCRIPTION

The MX26C512A is a $12.75 \mathrm{~V} / 5 \mathrm{~V}$, 512 K -bit, MTP EPROM ${ }^{\text {TM }}$ (Multiple Time Programmable Read Only Memory). It is organized as 64 K words by 8 bits per word, operates from a +5 volt supply, has a static standby mode, and features fast single address location programming. It is designed to be reprogrammed and erased by an EPROM programmer or on-board. All programming/ erasing signals are TTL levels, requiring a single pulse.

PIN CONFIGURATIONS

PLCC

TSOP

- Operating current: 30 mA
- Standby current: 100uA
- 100 minimum erase/program cycles
- Package type:
- 28 pin plastic DIP
- 28 pin SOP
- 32 pin PLCC
- 28 pin TSOP(I)

The MX26C512A supports an intelligent quick pulse programming algorithm which can result in a programming time of less than 30 seconds.

This MTP EPROM ${ }^{\text {TM }}$ is packaged in industry standard 28 pin dual-in-line packages, 32 pin PLCC packages or 28 pin TSOP packages and 28 pin SOP packages.

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
A0~A15	Address Input
Q0~Q7	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
VPP	Program Supply Voltage
NC	No Internal Connection
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

FUNCTIONAL DESCRIPTION

When the MX26C512A is delivered, or it is erased, the chip has all 512 K bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX26C512 through the procedure of programming.

PROGRAMMING MODE PROGRAMMMING ALGORITHM

The MX26C512A is programmed by an EPROM programmer or on-board. The device is set up in the programming mode when the programming voltage OE/ $\mathrm{VPP}=12.75 \mathrm{~V}$ is applied, with VCC $=5 \mathrm{~V}$ (Algorithm shown in Figure 1). Programming is achieved by applying a single TTL low level 25 us pulse to the $\overline{\mathrm{CE}}$ input after addresses and data lines are stable. If the data is not verified, additional pulses are applied for a maximum of 20 pulses. After the data is verified, one 25 us pulse is applied to overprogram the byte so that program margin is assured. This process is repeated while sequencing through each address of the device. When programming is completed, the data at all the addresses are verified at $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$.

The VCC supply of the MXIC On-Board Programming Algorithm is designed to be $5 \mathrm{~V} \pm 10 \%$ particularly to facilitate the programming operation under the on-board application environment. But it can also be implemented in an industrial-standard EPROM programmer.

COMPATIBILITY WITH MX27C512 FAST PROGRAMMING ALGORITHM

Besides the On-Board Programming Algorithm, the Fast Programming Algorithm of MX27C512 also applies to MX26C512A. MXIC Fast Algorithm is the conventional EPROM programing algorithm and is available in industrial-standard EPROM programmers. A user of industrial-standard EPROM programmer can choose either of the algorithms base on his preference.

The device is set up in the fast programming mode when the programming voltage $\overline{\mathrm{OE}} / \mathrm{VPP}=12.75 \mathrm{~V}$ isapplied, with $\mathrm{VCC}=6.25 \mathrm{~V}$, (Algorithm is shown in Figure 2). The programming is achieved by appling a single TTL low level $25 \sim 100$ us pulse to the $\overline{\text { CE input after addresses and }}$ data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$.

ERASE MODE

The MX26C512A is erased by EPROM programmer or in-system. The device is set up in erase mode when $\mathrm{A} 9=\mathrm{OE} / \mathrm{VPP}=12.75 \mathrm{~V}$ are applied, with $\mathrm{VCC}=5 \mathrm{~V}$. (Algorithm is shown in Figure3). The erase time is around 1 sec . If the erase is not verified, an additional erase processes will be repeated for a maximum of 200 times.

PROGRAM INHIBIT MODE

Programming of multiple MX26C512A in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX26C512 may be common. A TTL low-level program pulse applied to an MX26C512A $\overline{\mathrm{CE}}$ input with $\overline{\mathrm{OE}} / \mathrm{VPP}=12.75 \pm 0.25 \mathrm{~V}$ will program that MX26C512A. A high-level CE input inhibits the other MX26C512A from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with OE/VPP and CE, at VIL. Data should be verified tDV after the falling edge of CE.

ERASE VERIFY MODE

Verification should be performed on the erased chip to determine that whole chip(all bits) was correctly erased. Verification should be performed with OE/VPP and CE at VIL and VCC $=5 \mathrm{~V}$.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from a MTP that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX26C512A.

To activate this mode, the programming equipment must force 12.75 V on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All
other address lines must be held at VIL during auto identify mode.

Byte 0 ($\mathrm{A} 0=\mathrm{VIL}$) represents the manufacturer code, and byte $1(\mathrm{AO}=\mathrm{VIH})$, the device identifier code. For the MX26C512A, these two identifier bytes are given in the Mode Select Table. All identifiers for the manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX26C512A has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t} A \mathrm{CC}$) is equal to the delay from CE to output (tCE). Data is available at the outputs tOE after the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The MX26C512A has a CMOS standby mode which reduces the maximum VCC current to 100 uA . It is placed in CMOS standby when CE is at VCC $\pm 0.3 \mathrm{~V}$. The MX26C512A also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTL-standby when $\overline{\text { CE }}$ is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular
memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 uF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 uF bulk electrolytic capacitor should be used between VCC and GND for each of the eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

	PINS				
MODE	$\overline{\text { CE }}$	$\overline{\text { OE/VPP }}$	A0	A9	OUTPUTS
Read	VIL	VIL	X	X	DOUT
Output Disable	VIL	VIH	X	X	High Z
Standby (TTL)	VIH	X	X	X	High Z
Standby (CMOS)	VCC	X	X	X	High Z
Program	VIL	VPP	X	X	DIN
Program Verify	VIL	VIL	X	X	DOUT
Erase	VIL	VPP	X	VPP	HIGH Z
Erase Verify	VIL	VIL	X	X	DOUT
Program Inhibit	VIH	X	X	X	High Z
Manufacturer Code	VIL	VIL	VIL	VH	C2H
Device Code(26C512)	VIL	VIL	VIH	VH	D1H

NOTES: 1. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $\mathrm{X}=$ Either VIH or VIL(For auto select)

FIGURE 1. PROGRAMMING FLOW CHART

FIGURE 2. COMPATIBILITY WITH MX27C512 FAST PROGRAMMING FLOW CHART

FIGURE 3. ERASING MODE FLOW CHART

SWITCHING TEST CIRCUITS

$C L=100 \mathrm{pF}$ including jig capacitance(30pF for 70 ns parts)

SWITCHING TEST WAVEFORMS

AC TESTING: (1) Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic " 0 ". Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.
(2) For MX26C512A

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
A9 \& Vpp	-0.5 V to 13.5 V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH $=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	IOL $=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	uA	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	uA	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	uA	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current		1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	VCC Active Current	30	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$	

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	8	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	VOUT $=0 \mathrm{~V}$
CVPP	VPP Capacitance	18	25	pF	VPP $=0 \mathrm{~V}$

AC CHARACTERISTICS $\quad \mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	$\begin{gathered} \text { 26C512A } \\ -70 \end{gathered}$		$\begin{gathered} \text { 26C512A } \\ -90 \end{gathered}$		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		70		90	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		70		90	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		35		40	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or $\overline{\mathrm{CE}}$ High to Output Float	0	20	0	25	ns	
tOH	Output Hold from Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ which ever occurred firs	0		0		ns	

		$\begin{gathered} \text { 26C512A } \\ -10 \end{gathered}$		$\begin{gathered} \text { 26C512A } \\ -12 \end{gathered}$		$\begin{gathered} \text { 26C512A } \\ -15 \end{gathered}$		UNIT	CONDITIONS
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		100		120		150	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		100		120		150	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		45		50		65	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or $\overline{\mathrm{CE}}$ High to Output Float	0	30	0	35	0	50	ns	
tOH	Output Hold from Address, $\overline{\mathrm{CE}}$ or OE which ever occurred first	0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.40 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	uA	$\mathrm{VIN}=0$ to 5.5 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program/Erase \& Verify)		50	mA	
IPP2	VPP Supply Current(Program)/Erase		50	mA	$\overline{\mathrm{CE}}=\mathrm{PGM}=\mathrm{VIL}$,
					$\overline{\mathrm{OE}}=\mathrm{VIH}$
VCC2	Programming \& Erase Supply Voltage	4.5	6.5	V	
VPP2	Programming \& Erase Voltage	12.5	13.0	V	
IPP A9	A9 Auto Select Current /Erase		1	mA	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{PGM}=\mathrm{VIL}, \\ & \overline{\mathrm{OE}}=\mathrm{VIH} \end{aligned}$

M×26C512A

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time	2.0		us	
tOES	$\overline{\text { OE Setup Time }}$	2.0		us	
tDS	Data Setup Time	2.0		us	
tAH	Address Hold Time	0		us	
tDH	Data Hold Time	2.0		us	
tDFP	$\overline{\mathrm{CE}}$ to Output Float Delay	0	130	ns	
tVPS	VPP Setup Time	2.0		us	
tPW	Program Pulse Width	20	105	us	
tVCS	VCC Setup Time	2.0		us	
tDV	$\overline{\text { Data }}$ Valid from $\overline{\mathrm{CE}}$		250	ns	
tCES	CE Setup Time	2.0		us	
tOE	Data valid from $\overline{\mathrm{OE}}$		150	ns	
tER	Erase Recovery Time	0.5		S	
tEW	Erase Pulse Width	0.5		S	
tEV	Erase Verify Time		200	ns	
tPV	Program Verify Time		200	ns	
tA9S	A9 Setup Time	2.0		us	
tPVS	Program Verify Setup	2		us	
tEVS	Erase Verify Setup	0.5		S	

WAVEFORMS
READ CYCLE

M×26C512A

PROGRAMMING WAVEFORMS

ERASE WAVEFORMS

MX26C512A

ORDERING INFORMATION

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(uA)	PACKAGE
MX26C512APC-70	70	30	100	28 Pin DIP
MX26C512AMC-70	70	30	100	28 Pin SOP
MX26C512AQC-70	70	30	100	32 Pin PLCC
MX26C512ATC-70	70	30	100	28 Pin TSOP(I)
MX26C512APC-90	90	30	100	28 Pin DIP
MX26C512AMC-90	90	30	100	28 Pin SOP
MX26C512AQC-90	90	30	100	32 Pin PLCC
MX26C512ATC-90	90	30	100	28 Pin TSOP(I)
MX26C512APC-10	100	30	100	28 Pin DIP
MX26C512AMC-10	100	30	100	28 Pin SOP
MX26C512AQC-10	100	30	100	32 Pin PLCC
MX26C512ATC-10	100	30	100	28 Pin TSOP(I)
MX26C512APC-12	120	30	100	28 Pin DIP
MX26C512AMC-12	120	30	100	28 Pin SOP
MX26C512AQC-12	120	30	100	32 Pin PLCC
MX26C512ATC-12	120	30	100	28 Pin TSOP(I)
MX26C512APC-15	150	30	100	28 Pin DIP
MX26C512AMC-15	150	30	100	28 Pin SOP
MX26C512AQC-15	150	30	100	32 Pin PLCC
MX26C512AC-15	150	30	100	28 Pin TSOP(1)

MX26C512A

PACKAGE INFORMATION

28-PIN PLASTIC DIP (600 mil)

ITEM	MILLIMETERS	INCHES
A	37.34 max	1.470 max
B	2.03 [REF]	. 080 [REF]
C	2.54 [TP]	. 100 [TP]
D	. 46 [Typ.]	. 018 [Typ.]
E	32.99	1.300
F	1.52 [Typ.]	. 060 [Typ.]
G	$3.30 \pm .25$. $130 \pm .010$
H	. 51 [REF]	. 020 [REF]
1	$3.94 \pm .25$	$.155 \pm .010$
J	5.33 max.	. 210 max.
K	$15.22 \pm .25$	$.600 \pm .010$
L	$13.84 \pm .25$. $545 \pm .010$
M	. 25 [Typ.]	. 010 [Typ.]

NOTE: Each lead centerline is located within . 25 $\mathrm{mm}[.01 \mathrm{inch}]$ of its true position [TP] at maximum material condition.

32-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

ITEM	MILLIMETERS	INCHES
A	$12.44 \pm .13$	$.490 \pm .005$
B	$11.50 \pm .13$	$.453 \pm .005$
C	$14.04 \pm .13$	$.553 \pm .005$
D	$14.98 \pm .13$	$.590 \pm .005$
E	1.93	.076
F	$3.30 \pm .25$	$.130 \pm .010$
G	$2.03 \pm .13$	$.080 \pm .005$
H	$.51 \pm .13$	$.020 \pm .005$
I	$1.27[$ Typ. $]$	$.050[$ Typ.]
J	$.71[R E F]$	$.028[R E F]$
K	$.46[R E F]$.018 [REF]
L	$10.40 / 12.94$	$.410 / .510$
	(W) (L)	(W) (L)
M	.89 R	.035 R
N	.25 (TYP.)	.010 (TYP.)

NOTE: Each lead centerline is located within 25 $\mathrm{mm}[.01$ inch] of its true position [TP] at maximum material condition.

ITEM	MILLIMETERS
A	$13.4 \pm .2$
B	$11.8 \pm .1$
C	$8.0 \pm .1$
D	$.15 \pm .01$
F	$.2 \pm .03$
H	$.55[$ Typ.]
I	$.425[$ Typ. $]$
J	$.05[$ Min. $]$
K	$1.00 \pm .05$
L	$1.25[$ Max.]
M	$.05 \pm .20$
N	$0^{\circ} \sim 5^{\circ}$

NOTE: Each lead centerline is located within .25 mm of its true position [TP] at maximum material condition.

28-PIN PLASTIC SOP(330 mil)

ITEM	MILLIMETERS	INCHES
A	18.62 max.	.733 max.
B	1.194 max	.047 max
C	1.27 [TP]	.050 [TP]
D	.41 [Typ.]	.016 [Typ.]
E	.10 min.	.004 min.
F	2.85 max.	.110 max.
G	$2.49 \pm .13$	$.098 \pm .005$
H	$11.81 \pm .31$	$.465 \pm .012$
I	$8.41 \pm .13$	$.331 \pm .005$
J	$1.70 \pm .20$	$.067 \pm .008$
K	$.25[$ Typ.]	$.010[$ Typ. $]$
L	$.91 \pm .20$	$.036 \pm .008$

NOTE: Each lead centerline is located within 25 $\mathrm{mm}[.01$ inch] of its true position [TP] at maximum material condition.
$28 \quad 15$

Revision History		
Revision\#	Description	Date
1.2	Add 28 pin TSOP and SOP packages.	3/28/1997
1.3	Erasing mode flow chart: Chip erase (5s)----> (1s). Programming waveforms: $\overline{C E}$ changed.	4/10/1997
1.4	MTP ROM--->MTP EPROM	5/30/1997
	Chip erase(1s)--->0.5s. $\mathrm{X}=60$?--->200?	
	Switching Test Waveforms revise.	
	tEW Erase Pulse Width $1 \mathrm{sec}--->0.5 \mathrm{sec}$.	
	Programming/erase waveforms modifiction.	
	VPP:from 12.0~13V to 12.5V ~13V.	
1.5	Erase Verify Time: 60 ---->200.	7/25/1997
1.6	Change Part Name: 26C512 ---> 26C512A	11/05/1997
1.7	Change tPW:Min. 95us -->Min. 20us.	2/10/1998
	Programming flow chart revised.	
	Mode Select Table, Erase Mode A9=VH-->A9=Vpp.	
	Erase flow chart revised.	
1.8	Delete IPP in DC CHARACTERISTICS	7/13/1998

[^0]
[^0]: Macronix International Co., Ltd.
 HEADQUARTERS:
 TEL:+886-3-578-8888
 FAX:+886-3-578-8887
 EUROPE OFFICE:
 TEL:+32-2-456-8020
 FAX:+32-2-456-8021
 JAPAN OFFICE:
 TEL:+81-44-246-9100
 FAX:+81-44-246-9105

 SINGAPORE OFFICE:
 TEL:+65-747-2309
 FAX:+65-748-4090
 TAIPEI OFFICE:
 TEL:+886-3-509-3300
 FAX:+886-3-509-2200
 Macronix America, Inc.
 TEL:+1-408-453-8088
 FAX:+1-408-453-8488
 CHICAGO OFFICE:
 TEL:+1-847-963-1900
 FAX:+1-847-963-1909

