Order Number	Package Number	Package Description
100370PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100370QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100370 QI	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
Devices also available in Tape and Reel. Specify by appending the suffix letter " K^{\prime} to the ordering code.		

Connection Diagrams

Logic Symbols

Pin Descriptions

Pin Names	Description
$\mathrm{A}_{\mathrm{na}}, \mathrm{A}_{\mathrm{nb}}$	Address Inputs
$\overline{\mathrm{E}}_{\mathrm{na}}, \overline{\mathrm{E}}_{\mathrm{nb}}$	Enable Inputs
M	Mode Control Input
H_{a}	$\mathrm{Z}_{0}-\mathrm{Z}_{3}\left(\bar{Z}_{0}-\bar{Z}_{3 \mathrm{a}}\right)$ Polarity Select Input
H_{b}	$\mathrm{Z}_{4}-\mathrm{Z}_{7}\left(\bar{Z}_{0 \mathrm{~b}}-\bar{Z}_{3 \mathrm{~b}}\right)$ Polarity Select Input
H_{c}	Common Polarity Select Input
$\mathrm{Z}_{0}-Z_{7}$	Single 1-of-8 Data Outputs
$\mathrm{Z}_{\mathrm{na}}, \mathrm{Z}_{\mathrm{nb}}$	Dual 1-of-4 Data Outputs

Truth Tables

Absolute Maximum Ratings $($ Note 2$)$	
Storage Temperature $\left(T_{\text {STG }}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{\mathrm{J}}\right)$	$+150^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EE }}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Output Current (DC Output HIGH)	-50 mA
ESD (Note 3)	$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})	
Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (V_{EE})	-5.7 V to -4.2 V
Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.	
ote 3: ESD testing conform	3015.

Commercial Version

DC Electrical Characteristics (Note 4)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	Loading with
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or $\mathrm{V}_{\text {IL }}$ (Min)	50Ω to -2.0 V
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min})$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV	or $\mathrm{V}_{\text {IL }}$ (Max)	50Ω to -2.0 V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIG	All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LO	All Inputs
I_{IL}	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
IIH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-95		-50	mA	Inputs OPEN	

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are cho sen to guarantee operation under "worst case" conditions

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \overline{t_{\text {PLH }}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}_{\text {na }}, \overline{\mathrm{E}}_{\mathrm{nb}}$ to Output	0.75	1.85	0.75	1.85	0.85	2.05	ns	Figures 1, 2
$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{A}_{\text {na }}, \mathrm{A}_{\mathrm{nb}}$ to Output	0.75	2.20	0.75	2.20	0.75	2.30	ns	
$\begin{aligned} & \hline \begin{array}{l} \text { tPLH } \\ t_{\text {PHL }} \end{array} \end{aligned}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	0.75	2.20	0.75	2.20	0.75	2.20	ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{LLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay M to Output	1.10	2.70	1.10	2.70	1.10	3.00	ns	
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{TLL}}} \\ & \mathrm{t}_{\mathrm{T} H L} \end{aligned}$	$\begin{array}{l\|} \hline \text { Transition Time } \\ 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{array}$	0.40	1.30	0.40	1.30	0.40	1.30	ns	

Commercial Version (Continued) PLCC AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$											
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Max	Min	Max				
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\bar{E}_{n \mathrm{n}}, \bar{E}_{\mathrm{nb}}$ to Output	0.75	1.65	0.75	1.65	0.85	1.85	ns			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay $A_{\text {na }}, A_{n b}$ to Output	0.75	2.00	0.75	2.00	0.75	2.10	ns			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	0.75	2.00	0.75	2.00	0.75	2.00	ns	Figures 1, 2		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay M to Output	1.10	2.50	1.10	2.50	1.10	2.80	ns			
${ }^{t_{\text {TLL }}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.20	0.40	1.20	0.40	1.20	ns			
Industrial Version											
PLCC DC Electrical CharacteristicS (Note 5)$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$											
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions				
		Min	Typ	Min	Max						
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}(\text { Max }) \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$		Loading with		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1575	-1830	-1620	mV			50Ω to -2.0 V		
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\text { Min }) \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$		Loading with		
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV			50Ω to -2.0 V		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs				
V_{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs				
${ }_{\text {IL }}$	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IV }}=\mathrm{V}_{\text {IL }}($ Min $)$				
I_{H}	Input HIGH Current		300		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max $)$				
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-95	-50	-95	-50	mA	Inputs OPEN				
Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.											
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Max	Min	Max				
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}_{\text {na }}, \overline{\mathrm{E}}_{\text {nb }}$ to Output	0.75	1.65	0.75	1.65	0.85	1.85	ns	Figures 1, 2		
$\overline{t_{\text {PLH }}}$ tphL	Propagation Delay $\mathrm{A}_{\text {na }}, \mathrm{A}_{\text {nb }}$ to Output	0.65	2.00	0.75	2.00	0.75	2.10	ns			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output	0.70	2.00	0.75	2.00	0.75	2.00	ns			
$\begin{aligned} & \hline \mathrm{t} P \mathrm{H} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay M to Output	1.10	2.50	1.10	2.50	1.10	2.80	ns			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.30	0.40	1.20	0.40	1.20	ns			

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit
Switching Waveforms

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life suppor device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
