SCES581 - JULY 2004

- Available in Texas Instruments NanoStar™ and NanoFree™ Packages
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- One Unbuffered Inverter (SN74LVC1GU04) and One Buffered Inverter (SN74LVC1G04)
- Suitable for Commonly Used Clock Frequencies:
 - 15 kHz, 3.58 MHz, 4.43 MHz, 13 MHz, 25 MHz, 26 MHz, 27 MHz, 28 MHz
- Max t_{pd} of 2.4 ns at 3.3 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22

 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

The SN74LVC1GX04 is designed for 1.65-V to 5.5-V V_{CC} operation. This device incorporates the SN74LVC1GU04 (inverter with unbuffered output) and the SN74LVC1G04 (inverter) functions into a single device. The LVC1GX04 is optimized for use in crystal oscillator applications.

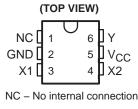
ORDERING INFORMATION

TA	PACKAGEŤ	ORDERABLE PART NUMBER	TOP-SIDE MARKING [‡]		
	NanoStar™ – WCSP (DSBGA) 0.23-mm Large Bump – YEP	Deal of 0000	SN74LVC1GX04YEPR		
	NanoFree™ – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb-free)	Reel of 3000	SN74LVC1GX04YZPR		
–40°C to 85°C		Reel of 3000	SN74LVC1GX04DBVR	014	
	SOT (SOT-23) – DBV	Reel of 250	SN74LVC1GX04DBVT	CX4_	
		Reel of 3000	SN74LVC1GX04DCKR	D2	
	SOT (SC-70) – DCK	Reel of 250	SN74LVC1GX04DCKT	D2_	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition $(1 = \text{SnPb}, \bullet = \text{Pb-free})$.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NanoStar and NanoFree are trademarks of Texas Instruments.

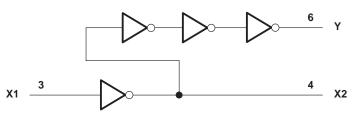
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2004, Texas Instruments Incorporated

DBV OR DCK PACKAGE

SCES581 - JULY 2004

description/ordering information (continued)


The X1 and X2 can be connected to a crystal or resonator in oscillator applications. The device provides an additional buffered inverter (Y) for signal conditioning (see Figure 3). The additional buffered inverter improves the signal quality of the crystal oscillator output by making it rail to rail.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off} (Y output only). The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1) Voltage range applied to Y output in the high-impedance or power-off state, V _O	
(see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, V _O	
(see Notes 1 and 2)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DBV package	165°C/W
DCK package	259°C/W
YEP/YZP package	123°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES581 - JULY 2004

recommended operating conditions (see Note 4)

			MIN	MAX	UNI
		Operating	1.65	5.5	
Vcc	Supply voltage	Data retention only	1.5		V
		Crystal oscillator use	2		
VIH	High-level input voltage	V _{CC} = 1.65 V to 5.5 V	$0.75 \times V_{CC}$		V
VIL	Low-level input voltage	$V_{CC} = 1.65 V \text{ to } 5.5 V$		$0.25 \times V_{CC}$	V
VI	Input voltage		0	5.5	V
.,		X2, Y	0	VCC	
VO Output voltage	Output voltage	Y output only, Power-down mode, $V_{CC} = 0 V$	0	5.5	V
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	1
ЮН	High-level output current			-16	mA
••••		$V_{CC} = 3 V$		-24	
		$V_{CC} = 4.5 V$		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
IOL	Low-level output current			16	mA
-		V _{CC} = 3 V		24	1
		V _{CC} = 4.5 V		32	1
		V_{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V		20	
Δt/Δv Ir	Input transition rise or fall rate	V _{CC} = 3.3 V ± 0.3 V		10	ns/\
		$V_{CC} = 5 V \pm 0.5 V$		10	1
Тд	Operating free-air temperature		-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES581 - JULY 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST C	TEST CONDITIONS		MIN	түр†	MAX	UNIT	
		I _{OH} = -100 μA		1.65 V to 5.5 V	V _{CC} – 0.1				
		$I_{OH} = -4 \text{ mA}$		1.65 V	1.2				
		$I_{OH} = -8 \text{ mA}$		2.3 V	1.9				
Vон		I _{OH} = -16 mA	V _I = 5.5 V or GND		2.4			V	
		I _{OH} = -24 mA		3 V	2.3				
		I _{OH} = -32 mA		4.5 V	3.8				
		I _{OL} = 100 μA		1.65 V to 5.5 V			0.1		
		$I_{OL} = 4 \text{ mA}$		1.65 V			0.45		
		I _{OL} = 8 mA		2.3 V			0.3		
VOL		I _{OL} = 16 mA	VI = 5.5 V or GND				0.4	V	
		I _{OL} = 24 mA		3 V			0.55		
		I _{OL} = 32 mA		4.5 V			0.55		
Ц	X1 input	V _I = 5.5 V or GND		0 to 5.5 V			±5	μΑ	
loff	X1, Y	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		0			±10	μA	
ICC		$V_I = 5.5 V \text{ or GND},$	IO = 0	1.65 V to 5.5 V			10	μΑ	
Ci		$V_I = V_{CC}$ or GND		3.3 V		7		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

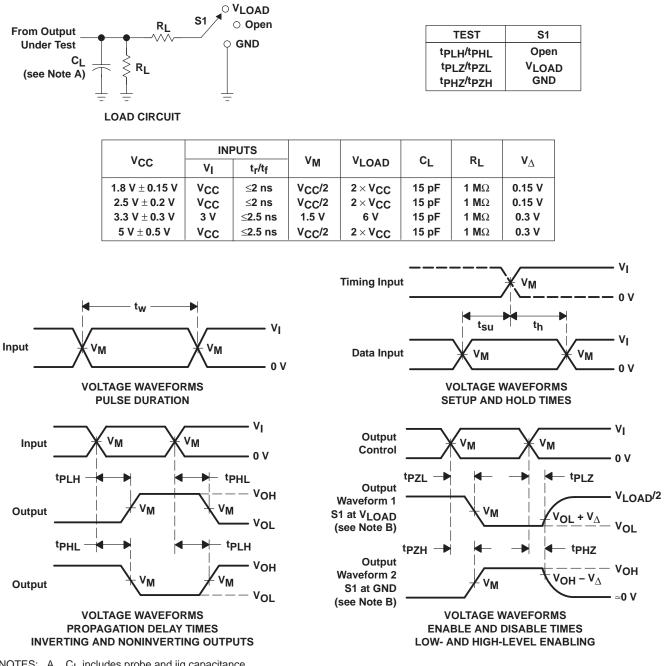
PARAMETER	FROM TO		V _{CC} = 1.8 V ± 0.15 V ±		V_{CC} = 2.5 V \pm 0.2 V		$\begin{array}{c} V_{CC} = 3.3 \ V \\ \pm \ 0.3 \ V \end{array}$		V _{CC} = 5 V ± 0.5 V		UNIT
	(INPUT)	(001901)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
• .	X1	X2	1	4	0.8	2.6	0.6	2.4	0.5	2	20
^t pd	~1	Y‡	3.5	10	2.2	6	2	5	1.5	3.5	ns

‡X2 – no external load

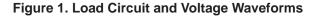
switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER	AMETER FROM TO		V _{CC} = 1.8 V ± 0.15 V		$\begin{array}{c} \text{V}_{\text{CC}} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
(INPUT)		(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f .	X1	X2	1.1	7	0.8	4	0.8	3.7	0.8	3	ns
^t pd		Y‡	3.8	18	2	7.4	2	7.8	2	5	ns

[‡]X2 – no external load

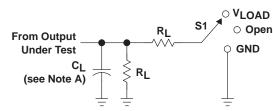

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	
PARAMETER		TEST CONDITIONS	TYP TYP		TYP	TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	22	22	24	35	pF

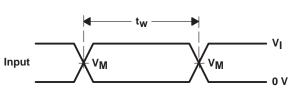

SCES581 - JULY 2004

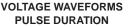
PARAMETER MEASUREMENT INFORMATION

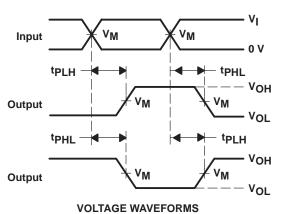
NOTES: A. Cl includes probe and jig capacitance.

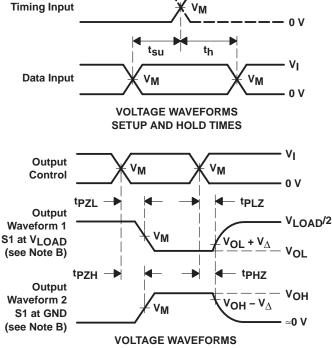

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

SCES581 - JULY 2004


PARAMETER MEASUREMENT INFORMATION



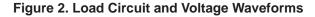

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	VLOAD
^t PHZ ^{/t} PZH	GND


LOAD CIRCUIT

	INPUTS				•		
Vcc	VI	t _r /t _f	Vм	VLOAD	CL	RL	v_Δ
1.8 V \pm 0.15 V	Vcc	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	Vcc	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	500 Ω	0.15 V
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V \pm 0.5 V	Vcc	≤2.5 ns	V _{CC} /2	2 × V _{CC}	50 pF	500 Ω	0.3 V

٧ı

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING


NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 $\Omega.$
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

PROPAGATION DELAY TIMES

INVERTING AND NONINVERTING OUTPUTS

- F. tpzL and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SCES581 - JULY 2004

APPLICATION INFORMATION

Figure 3 shows a typical application of the SN74LVC1X04 in a Pierce oscillator circuit. The buffered inverter (SN74LVC1G04 portion) produces a rail-to-rail voltage waveform. The recommended load for the crystal shown in this example is 16 pF. The value of the recommended load (C_L) can be found in the crystal manufacturer's data sheet.

Values of C₁ and C₂ are chosen so that $C_L = \frac{C_1 C_2}{C_1 + C_2}$ and $C_1 \cong C_2$. R_s is the current-limiting resistor and the value

depends on the maximum power dissipation of the crystal. Generally, the recommended value of R_s is specified in the crystal manufacturer's data sheet and, usually, this value is approximately equal to the reactance of C_2 at resonance frequency, i.e., $R_s = X_{C_2}$. R_F is the feedback resistor that is used to bias the inverter in the linear region of aparetian. Levelue is approximately equal to the reactance of C_2 at resonance frequency, i.e., $R_s = X_{C_2}$. R_F is the feedback resistor that is used to bias the inverter in the linear region of aparetian.

of operation. Usually, the value is chosen to be within 1 M Ω to 10 M Ω .

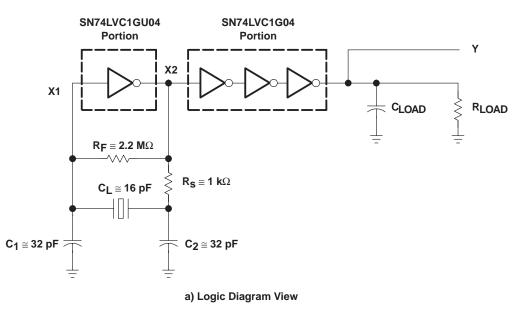
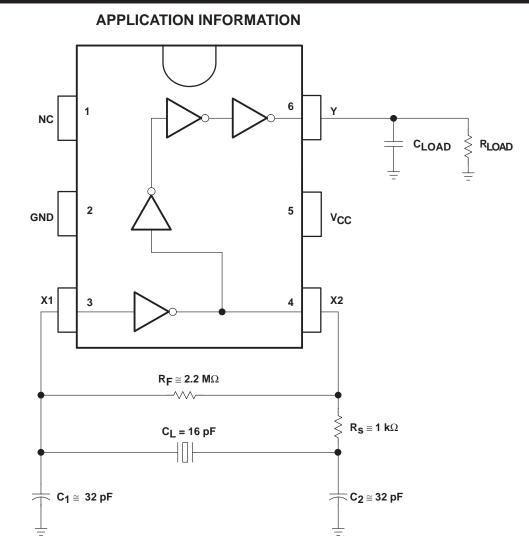



Figure 3. Oscillator Circuit

SCES581 - JULY 2004

b) Oscillator Circuit in DBV or DCK Pinout

Figure 3. Oscillator Circuit (Continued)

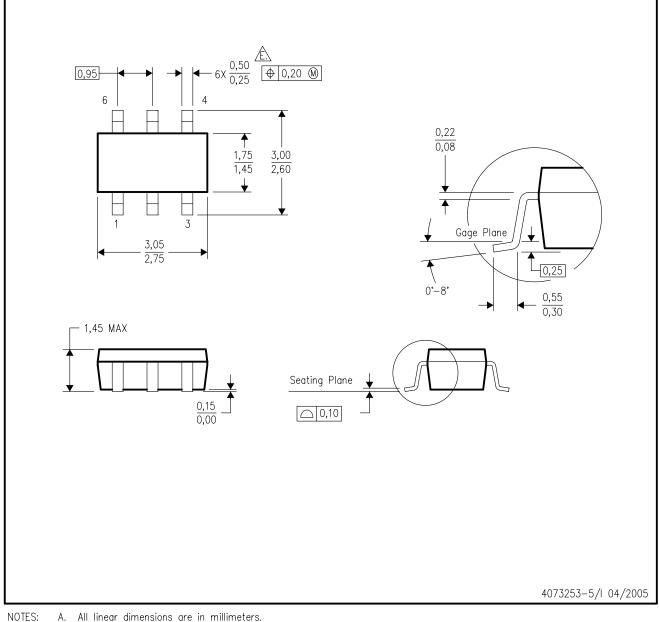
practical design tips

- The open-loop gain of the unbuffered inverter decreases as power-supply voltage decreases. This
 decreases the closed-loop gain of the oscillator circuit. The value of R_s can be decreased to increase the
 closed-loop gain, while maintaining the power dissipation of the crystal within the maximum limit.
- R_s and C₂ form a low-pass filter and reduce spurious oscillations. Component values can be adjusted, based on the desired cutoff frequency.
- C₂ can be increased over C₁ to increase the phase shift and help in start-up of the oscillator. Increasing C₂ may affect the duty cycle of the output voltage.
- At high frequency, phase shift due to R_s becomes significant. In this case, R_s can be replaced by a capacitor to reduce the phase shift.

SCES581 - JULY 2004

APPLICATION INFORMATION

testing

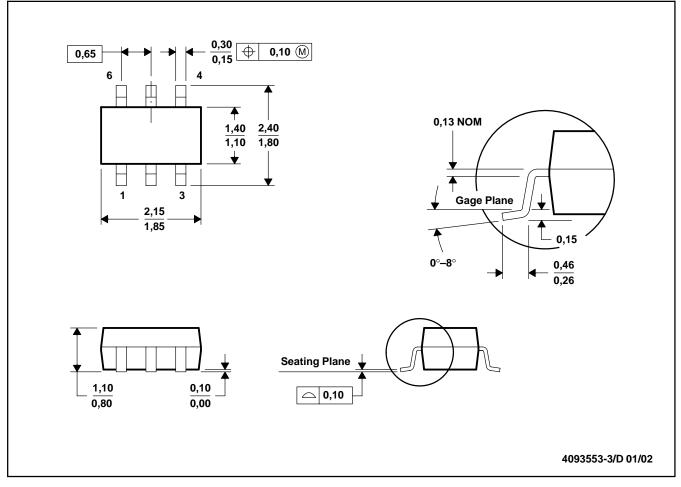

After the selection of proper component values, the oscillator circuit should be tested using these components. To ensure that the oscillator circuit performs within the recommended operating conditions, follow these steps:

- 1. Without a crystal, the oscillator circuit should not oscillate. To check this, the crystal can be replaced by its equivalent parallel-resonant resistance.
- 2. When the power-supply voltage drops, the closed-loop gain of the oscillator circuit reduces. Ensure that the circuit oscillates at the appropriate frequency at the lowest V_{CC} and highest V_{CC}.
- 3. Ensure that the duty cycle, start-up time, and frequency drift over time is within the system requirements.

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

- All linear dimensions are in millimeters. Β. This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion.
- C. D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- E Falls within JEDEC MO-178 Variation AB, except minimum lead width.

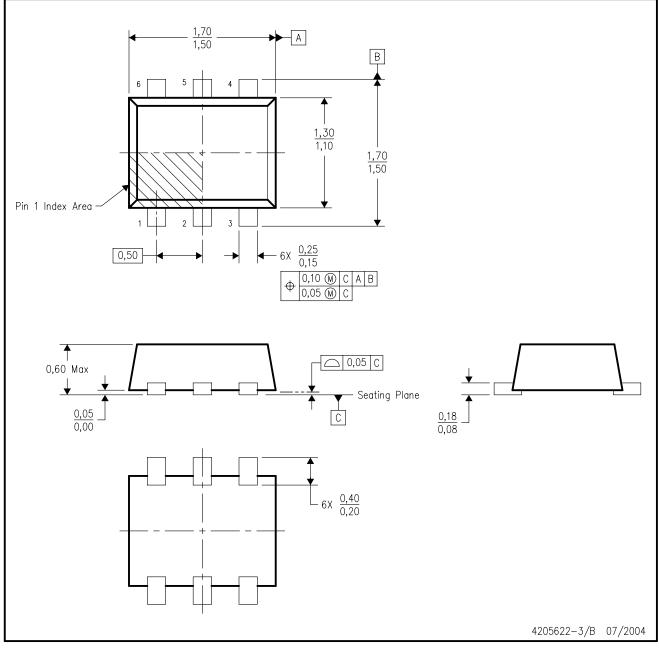


MECHANICAL DATA

MPDS114 - FEBRUARY 2002

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-203

DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. JEDEC package registration is pending.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated