EMI FILTER

A.S.D. ${ }^{\text {M }}$
 INCLUDING ESD PROTECTION

MAIN APPLICATIONS

Where EMI filtering in ESD sensitive equipment is required:

- Computers and printers
- Communication systems
- Mobile phones
- MCU Boards

DESCRIPTION

The EMIF10-1K010F1 is a highly integrated device designed to suppress EMI / RFI noise in all systems subjected to electromagnetic interferences. The EMIF10 flip-chip packaging means the package size is equal to the die size. That's why EMIF10-1K010F1 is a very small device.
Additionally, this filter includes an ESD protection circuitry which prevents the protected device from destruction when subjected to ESD surges up to 15 kV .

BENEFITS

- EMI symetrical (I/O) low-pass filter
- High efficiency in EMI filtering
- Very low PCB space consuming: $2.6 \times 2.6 \mathrm{~mm}^{2}$
- Very thin package: 0.65 mm
- High efficiency in ESD suppression on both input \& output PINS (IEC61000-4-2 level 4).
- High reliability offered by monolithic integration
- High reducing of parasitic elements through integration \& wafer level packaging.

BASIC CELL CONFIGURATION

TM : ASD is a trademark of STMicroelectronics.
July 2002 - Ed: 3C

Flip Chip package

PIN CONFIGURATION (Ball Side)

	A	B	C	D	E
1		11	12	01	02
2	13	15	14	03	04
3	GND	GND	16	05	06
4	GND	GND	18	07	08
5	17	19	110	09	010

EMIF10-1K010F1

COMPLIES WITH FOLLOWING STANDARD:

IEC61000-4-2 level 415 KV 8 kV
(air discharge)
(contact discharge)
on input \& output pins
MIL STD 883C - Method 3015-6 Class 3

Filtering Behavior

ESD response to IEC61000-4-2 (16kV Air Discharge)

Capacitance versus reverse applied voltage.

ABSOLUTE MAXIMUM RATINGS (Tamb $=25^{\circ} \mathrm{C}$)

Symbol	Parameter and test conditions	Value	Unit
V_{PP}	ESD discharge IEC61000-4-2, air discharge	15	kV
	ESD discharge IEC61000-4-2, contact discharge	8	
	MIL STD 883C Method 3015-6	25	
$\mathrm{~T}_{\mathrm{j}}$	Junction temperature	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Symbol	Parameters
V_{BR}	Breakdown voltage
I_{RM}	Leakage current @ V_{RM}
V_{RM}	Stand-off voltage
V_{CL}	Clamping voltage
R_{d}	Dynamic impedance
I_{PP}	Peak pulse current
$\mathrm{R}_{/ / O}$	 Output
$\mathrm{C}_{\text {in }}$	Input capacitance per line

Symbol	Test conditions	Min	Typ	Max	Unit
V_{BR}	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	6	8	10	V
I_{RM}	$\mathrm{V}_{\mathrm{RM}}=3 \mathrm{~V}$ per line			500	nA
R_{d}	$\mathrm{I}_{\mathrm{PP}}=10 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=2.5 \mu \mathrm{~s}($ see note 1)		1		Ω
$\mathrm{R}_{/ / O}$		900	1000	1100	Ω
Cline	At OV bias	80	100	120	pF

Note 1: To calculate the ESD residual voltage, please refer to the paragraph "ESD PROTECTION" on page 5.

TECHNICAL INFORMATION

FREQUENCY BEHAVIOR

The EMIF10-1K010F1 is firstly designed as an EMI / RFI filter. This low-pass filter is characterized by the following parameters:

- Cut-off frequency
- Insertion loss
- High frequency

Figure A1 gives these parameters, in particular the signal rejection at the GSM frequency:

$$
\begin{aligned}
& -25 \mathrm{~dB} @ \text { 900Mhz } \\
& \text {-14dB @ 1800Mhz }
\end{aligned}
$$

Fig. A1: Frequency response curve

Fig. A2: Measurements conditions

ESD PROTECTION

In addition with the filtering the EMIF10-1K010F1 is particularly optimized to perform ESD protection. ESD protection is based on the use of device which clamps at:

$$
V_{c l}=V_{b r}+R_{d} \cdot l_{p p}
$$

This protection function is splitted in 2 stages. As shown in Figure A3, the ESD strikes are clamped by the first stage S 1 and then its remaining overvoltage is applied to the second stage through the resistor R. Such a configuration makes the output voltage very low at the Vout level.

Fig. A3: ESD clamping behavior

To have a good approximation of the remaining voltages at both Vin and Vout stages, we give the typical dynamic resistance value Rd. By taking into account these following hypothesis: R>>Rd, Rg>>Rd and Rload>>Rd, it gives these formulas:

$$
\begin{aligned}
& \text { Vinpout }=\frac{R_{g} \cdot V_{b r}+R_{d} \cdot V_{g}}{R_{g}} \\
& \text { Voutput }=\frac{R \cdot V_{b r}+R_{d} \cdot V_{i n}}{R}
\end{aligned}
$$

The results of the calculation done for an IEC 1000-4-2 Level 4 Contact Discharge surge (Vg=8kV, $\mathrm{Rg}=330 \Omega$) and $\mathrm{Vbr}=7 \mathrm{~V}$ (typ.) give:

$$
\begin{aligned}
& \text { Vinput }=31.24 \mathrm{~V} \\
& \text { Voutput }=7.03 \mathrm{~V}
\end{aligned}
$$

This confirms the very low remaining voltage across the device to be protected. It is also important to note that in this approximation the parasitic inductance effect was not taken into account. This could be few tenths of volts during few ns at the Vin side. This parasitic effect is not present at the Vout side due the low current involved after the series resistance R.

EMIF10-1K010F1

LATCH-UP PHENOMENA

The early ageing and destruction of IC's is often due to latch-up phenomena which mainly induced by $\mathrm{dV} / \mathrm{dt}$. Thanks to its RC structure, the EMIF10-1K010F1 provides a high immunity to latch-up by integration of fast edges. (Please refer to the response of the EMIF10-1K010F1 to a 3 ns edge on Fig. A9)
The measurements done here after show very clearly (Fig. A5a \& A5b) the high efficiency of the ESD protection :

- almost no influence of the parasitic inductances on Vout stage
- Vout clamping voltage very close to Vbr for positive surge and close to ground for negative one

Fig. A4: Measurement conditions

Fig.A5: Remaining voltage at both stages S 1 (Vin1) and S 2 (Vout1) during ESD surge

Please note that the EMIF10-1K010F1 is not only acting for positive ESD surges but also for negative ones. For negatives surges, it clamps close to ground voltage as shown in Fig. A5b.

Note: Dynamic resistance measurement
Fig. A6: Rd measurement current wave

As the value of the dynamic resistance remains stable for a surge duration lower than $20 \mu \mathrm{~s}$, the $2.5 \mu \mathrm{~s}$ rectangular surge is well adapted. In addition both rise and fall times are optimized to avoid any parasitic phenomenon during the measurement of Rd

CROSSTALK BEHAVIOR

1 - Crosstalk phenomena

Fig. A7: Crosstalk phenomena

The crosstalk phenomena are due to the coupling between 2 lines. The coupling factor (β_{12} or β_{21}) increases when the gap across lines decreases, particularly in silicon dice.
In the example above the expected signal on load $R_{L 2}$ is $\alpha_{2} V_{G 2}$, in fact the actual voltage at this point has got an extra value $\beta_{21} V_{\mathrm{G} 1}$. This part of the $\mathrm{V}_{\mathrm{G} 1}$ signal represents the effect of the crosstalk phenomenon of the line 1 on the line 2.
This phenomenon has to be taken into account when the drivers impose fast digital data or high frequency analog signals in the disturbing line. The perturbed line will be more affected if it works with low voltage signal or high load impedance (few kW). The following chapters give the value of both digital and analog crosstalk.

2 - Digital Crosstalk

Fig. A8: Digital crosstalk measurement

Figure A8 shows the measurement circuit used to quantify the crosstalk effect in a classical digital application.
Figure A9 shows that in such a condition signal from 0 to 5 V and rise time of few ns, the impact on the disturbed line is less than 40 mV peak to peak. No data disturbance was noted on the concerned line.
The measurements performed with falling edges gives an impact within the same range.

Fig. A9: Digital crosstalk results

3 - Analog Crosstalk

Fig. A10: Analog crosstalk measurement

Fig. A11: Typical analog crosstalk results

Figure A10 gives the measurement circuit for the analog application. In Figure A11, the curve shows the effect of cell $11 / \mathrm{O} 1$ on cell $\mathrm{I} / 2 / \mathrm{O}$. In usual frequency range of analog signals (up to 100 MHz) the effect on disturbed line is less than -47 dB .

4 - Spice model

Fig. A12: Spice model of one EMIF01 cell

Note: this model is available for an ambient temperature of $27^{\circ} \mathrm{C}$.

Fig. A13: Diodes Spice parameters

	DZ
BV	7
Cjo	50 p
IBV	1 m
IKF	1000
IS	$10 \mathrm{E}-15$
ISR	100 p
N	1
M	0.3333
RS	1
VJ	0.6
TT	100 n

Fig. A14: Spice simulation: IEC 1000-4-2 Level 4 Contact Discharge response

Fig. A15: Comparison between PSpice simulation and measured frequency response.

5 - Aplac model

Fig. A16: Aplac model of one EMIF10 cell.

Fig. A17: Aplac model of bump connections.

Fig. A18: Aplac model of ground connections.

Fig. A19: Aplac model parameters.

aplacvar Cz 57pF	Demif10 diodes model
aplacvar Rseries 960	$\mathrm{BV}=7$
aplacvar cap_line 0.8 pF	$\mathrm{IBV}=1 \mathrm{~m}$
aplacvar Ls 0.6 nH	$\mathrm{CJO}=\mathrm{Cz}$
aplacvar Rbump 50 m	$\mathrm{M}=0.3333$
aplacvar Lbump 50pH	$\mathrm{RS}=1$
aplacvar Rs 0.15	$\mathrm{VJ}=0.6$
aplacvar Csubump 1.5pF	$\mathrm{TT}=100 \mathrm{n}$
aplacvar Rsubump 0.15	
aplacvar Rsub 0.1 aplacvar Ihole 1.2 nH opt aplacvar Rhole 0.15 aplacvar cap_hole 0.15 pF aplacvar Rgnd 0.25 aplacvar Ignd 0.4 nH	

Fig. A20: Comparison between Aplac simulation and measured frequency response.

ORDERING CODE

PACKAGE MECHANICAL DATA

DIE SIZE

MARKING

All dimensions in $\mu \mathrm{m}$

- Die size: $(2570 \pm 50) \times(2570 \pm 50)$
- Die height (including bumps): 650 ± 65
- Bump diameter: 315 ± 50
- Pitch: 500 ± 50
- Weight: 9.2 mg
- Bottom side (balls view): Pin A1 missing for die orientation
- Top side (balls underneath): see the marking on the left.
- YWW: Date code

PACKING:

EMIF10-1K010F1 is delivered in Tape \& Reel (7 inches reel); one Tape \& Reel contains 5000 dice.
Note: More packing information are available in the application note AN1235: "Filp-Chip package description and recommandations for use"

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

