MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Preliminary Information

Adjustable Dual Output Switching Power Supply

The 34710 is a dual-output power regulator IC that integrates a switching regulator, a linear regulator, supervisor circuitry, and a power supply sequencer. With a wide operating input voltage range of 12 V to 32 V and robust temperature limits, the 34710 is applicable in many commercial and industrial applications that use an MCU.

A user-selectable 5.0 V/3.3 V buck switching regulator is provided for board-level I/Os and user circuitry. The regulator is capable of delivering up to 1.0 A. The MCU core voltage is an adjustable 3.3 V/2.5 V/1.8 V/1.5 V linear voltage regulator that can supply up to 500 mA.

The switching and linear regulator output voltage are determined through three digital input mode terminals that can be controlled by an MCU.

Features

- High-Current Adjustable 5.0 V/3.3 V Switching Regulator
- Low Noise User-Selectable 3.3 V/2.5 V/1.8 V/1.5 V Linear Regulator
- · On-Chip Thermal Shutdown and Error Reset Circuitry
- Supervisory Functions (Power-ON Reset and Error Reset Circuitry)
- Sequenced I/O and Core Voltages
- Pb-Free Packaging Designated by Suffix Code EW

ORDERING INFORMATION

Device	Temperature Range (T _A)	Package
PC34710EW/R2	0°C to 85°C	32 SOICW-EP

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Figure 1. 34710 Simplified Internal Block Diagram

TERMINAL FUNCTION DESCRIPTION

Terminal	Terminal Name	Formal Name	Definition
1	RST	Reset	Reset input and output. This terminal is open drain.
2 3 4	MODE0 MODE1 MODE2	Mode Control	These input terminals control $V_{\text{I/O}_\text{OUT}}$ and V_{CORE} output voltages.
5–12, 14–22	NC	No Connects	No internal connection to this terminal.
13	GND	Ground	Ground.
23, 24	V _{CORE}	Core Voltage Regulator Output	Core regulator output voltage.
25	LINB+	Core Voltage Regulator Input	Core regulator input voltage.
26	V _{I/O_OUT}	V _{I/O} Switching Regulator Feedback	Feedback terminal for $V_{\text{I/O}}$ switching regulator and internal logic supply.
27	V _{SWITCH}	V _{I/O} Switching Regulator Switch Output	V _{I/O} switching regulator switching output.
28	B+	Power Supply Input	Regulator input voltage.
29	Vb	Boost Voltage	Boost voltage storage node.
30	CP2	Switching Capacitor 2	Charge pump capacitor connection 2.
31	CP1	Switching Capacitor 1	Charge pump capacitor connection 1.
32	Ct	Reset Delay Capacitor	Reset delay adjustment capacitor.

MAXIMUM RATINGS

All voltages are with respect to ground unless otherwise noted.

Rating	Symbol	Мах	Unit
GLOBAL ABSOLUTE MAXIMUM RATINGS			
Input Power Supply Voltage	V _{B+}		V
I _{B+} = 0 A		-0.3 to 36	
Terminal Soldering Temperature (Note 1)	T _{SOLDER}	260	°C
Power Dissipation (Note 2)	PD	3.0	W
ESD Standoff Voltage			V
Non-Operating, Unbiased, Human Body Model (Note 3)	V _{ESD1}	±2000	
Thermal Resistance			°C/W
Junction-to-Ambient (Note 4)	$R_{ extsf{ heta}JA}$	45	
Junction-to-Ambient (Note 2)	$R_{ extsf{ heta}JA}$	25	
Junction-to-Case	$R_{ ext{ heta}JC}$	2.0	
GLOBAL OPERATING RATINGS			
Operating Ambient Temperature	T _A	0 to 85	°C
Operating Device Junction Temperature	TJ	105	°C
Input Power Supply Voltage	V _{B+}		V
I _{B+} = 0 A to 3.0 A		12 to 32	
Quiescent Bias Current from B+ (Note 5)	I _{B+} (q)		mA
V _{B+} = 12 V to 32 V		7.5	
Operating Junction Temperature	TJ	-0 to 105	°C
VI/O SWITCHING REGULATOR (Note 6)			
Maximum Output Voltage Startup Overshoot (C_{OUT} = 330 µF)	V _{I/O} (STARTUP)		V
MODE0 = 0		5.4	
MODE0 = Open		3.6	
Maximum Output Current	I _{VI/O}		А
$T_A = 0^{\circ}C$ to $105^{\circ}C$		1.2	

1. Soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.

2. With 2.0 in² of copper headsink.

3. ESD1 testing is performed in accordance with the Human Body Model (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω).

4. With no additional heatsinking.

5. Maximum quiescent power dissipation is 0.25 W.

6. 12 V \leq V $_{B+}$ \leq 32 V and -20°C \leq T $_{J}$ \leq 145°C unless otherwise noted.

MAXIMUM RATINGS (continued)

All voltages are with respect to ground unless otherwise noted.

Rating	Symbol	Мах	Unit
V _{CORE} LINEAR REGULATOR (Note 7)			
Maximum Output Voltage Startup Overshoot (C_{OUT} = 10 µF) (Note 8)	V _{CORE} (STARTUP)		V
MODE[2:0] = [0,x,0]		3.6	
MODE[2:0] = [0,x,Open]		2.7	
MODE[2:0] = [Open, x, 0]		2.0	
MODE[2:0] = [Open, x, Open]		1.65	
Maximum Output Current	IVCORE		mA
T_J = 0°C to 105°C, $V_{LINB+} \leq V_{CORE}(NOM)$ + 0.8 V (Note 9)		500	

Notes

7. 12 V \leq V $_{B^+} \leq$ 32 V and -20°C \leq T $_J \leq$ 145°C unless otherwise noted.

8. Refer to <u>Table 1</u>, page 10.

9. Pulse testing with low duty cycle used.

STATIC ELECTRICAL CHARACTERISTICS

Characteristics noted under conditions 4.75 V \leq V_{IO} \leq 5.25 V, 12 V \leq V_{B+} \leq 32 V, and 0°C \leq T_J \leq 105°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit	
V _{I/O} SWITCHING REGULATOR						
Logic Supply Voltage (I _{VI/O} = 25 mA to 1.0 A) MODE0 = 0 MODE0 = Open	V _{I/O}	4.8 3.15	-	5.2 3.45	V	
Logic Supply Current V _{I/O} = Nominal, Power Dissipation in Switching Regulator = 0.45 W	I _{VI/O}	0.025	Ι	1.0	A	
Output On Resistance V _{B+} = 12 V to 32 V	R _{DS(ON)}	0.5	TBD	2.0	Ω	
Soft Start Threshold Voltage MODE0 = X	V _{I/O} (SOFT)	_	-	2.5	V	
Current Limit Threshold (T _J = 25°C to 100°C) Normal Operation Soft Start, $V_{I/O} \le 2.5 V$	I _{LIMIT} (OP) I _{LIMIT} (SOFT)	2.1 1.3	-	3.2 1.8	A	
Minimum Voltage Allowable on V _{SWITCH} Terminal T _J = 25°C to 100°C	V _{VSWITCH} (MIN)	-0.5	_	_	V	
V _{CORE} LINEAR REGULATOR						
Supply Voltage (I _{VCORE} = 5.0 mA to 500 mA) (Note 10) MODE[2:0] = [0,x,0] MODE[2:0] = [0,x,0pen] MODE[2:0] = [Open,x,0] MODE[2:0] = [Open,x,Open]	V _{CORE} (NOM)	3.15 2.35 1.71 1.425	- - -	3.45 2.65 1.89 1.575	V	
Supply Current V _{CORE} = V _{CORE} (NOM)	IVCORE	1.0	-	500	mA	
V _{CORE} Dropout Voltage V _{CORE} = V _{CORE} (NOM), I _{VCORE} = 0.5 A	I _{VCORE} (DROPOUT)	0.8	_	_	V	
Regulator Input Voltage V _{CORE} = V _{CORE} (NOM), I _{VCORE} = 0.5 A	V _{LINB+}	V _{CORE} (NOM) + 1.0	-	10	V	
Normal Current Limit Threshold $T_J = 25^{\circ}C$ to 100°C, $V_{LINB+} = V_{CORE}(NOM) + 1.0 V$	ILIMIT	800	_	1000	mA	

Notes

10. Refer to <u>Table 1</u>, page 10.

STATIC ELECTRICAL CHARACTERISTICS (continued)

Characteristics noted under conditions 4.75 V \leq V_{IO} \leq 5.25 V, 12 V \leq V_{B+} \leq 32 V, and 0°C \leq T_J \leq 105°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit	
MODE TERMINALS OPERATING VOLTAGES	MODE TERMINALS OPERATING VOLTAGES					
MODE Control Terminals Low Voltage $T_J = 0^{\circ}C$ to TBD°C, V _{B+} = 12 V to 32 V	V _{IL} (MODEn)	_	_	0.825	V	
MODE Control Terminals High Voltage $T_J = 0^{\circ}C$ to TBD°C, $V_{B+} = 12 V$ to 32 V	V _{IH} (MODEn)	2.6	_	_	V	
MODE Control Terminals Voltage with Input Floating $T_J = 0^{\circ}C$ to TBD ^o C, V _{B+} = 12 V to 14 V $T_J = 0^{\circ}C$ to TBD ^o C, V _{B+} = 14 V to 32 V	V _{MODE} (FLOAT)	7.0 8.0		12 13.2	V	
SUPERVISOR CIRCUITRY						
Minimum Function V_{B^+} for Charge Pump and Oscillator Running	V _{B+} (MIN)	9.0	-	-	V	
Minimum V_{B+} for \overline{RST} Assertion, V_{B+} Rising	V _{B+} (ASSERT)	2.0	-	-	V	
$\overline{\text{RST}}$ Low Voltage V _{B+} = 2.0 V, I _{RST} \leq 5.0 mA	V _{OL}	_	_	0.4	V	
RST V _{I/O} Threshold V _{I/O} Rising V _{I/O} Falling	V _{I/Ot+} V _{I/Ot-}	– V _{I/O} (NOM) - 225 mV	-	V _{I/O} (NOM) - 80 mV -	V	
RST Hysteresis for V _{I/O}	V _{HYSVI/O}	10	_	100	mV	
RST V _{CORE} Threshold V _{CORE} Rising V _{CORE} Falling	V _{COREt+} V _{COREt} -	– V _{CORE} (NOM) - 225 mV	-	V _{CORE} (NOM) - 80 mV -	V	
$\overline{\text{RST}} \text{ Hysteresis for V}_{\overline{\text{CORE}}}$ $V_{\text{B+}} = 12 \text{ V to } 32 \text{ V}$	V _{HYS CORE}	10	-	100	mV	
V_{CORE} - $V_{I/O}$ for V_{CORE} Shutdown V_{B+} = 12 V to 32 V	V _{CORE} (SHUTDOWN)	_	_	TBD	V	
Thermal Shutdown Temperature T _J Rising	T _J (TSD)	170	_	_	°C	
Overtemperature Hysteresis	T _J (HYSTERESIS)	20	-	TBD	°C	

V_b CHARGE PUMP

Boost Voltage (Note 11)	Vb				V
V_{B+} = 12 V to 32 V, I_{Vb} = 0.5 mA		V _{B+} +10 V	-	V _{B+} +12 V	

Notes

11. Bulk capacitor ESR \leq 10 Ω .

DYNAMIC ELECTRICAL CHARACTERISTICS

Characteristics noted under conditions 4.75 V \leq V_{IO} \leq 5.25 V, 12 V \leq V_{B+} \leq 32 V, and 0°C \leq T_J \leq 105°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted

Characteristic	Symbol	Min	Тур	Max	Unit
VI/O SWITCHING REGULATOR					
Duty Cycle	D	45	-	55	%
Switching Rise and Fall Time Load Resistance = 100 Ω , V _{B+} = 30 V	t _r , t _f	25	_	_	ns
Switching Rise and Fall Time Load Resistance = 100 Ω , V _{B+} = 30 V	t _r + t _f	_	_	50	ns
SUPERVISOR CIRCUITRY					
RST Delay C _{delay} = 0.1 μF	t _{delay}	48	_	82	ms
RST Filter Time V _{B+} = 9.0 V	t _{filter}	1.0	_	6.0	μS
RST Fall Time C _L = 100 pF, R _{PULLUP} = 4.7 kΩ, 90% to 10%	t _f	_	_	125	ns
External Low (Note 12) V _{1/O} = 5.0 V	t _{slpl} (Note 13)	30	_	_	ns
$\overline{\text{RST}}$ Recovery Time Before Next $\overline{\text{RST}}$ Input (Note 12) V _{1/O} = 5.0 V	t _{phsl}	_	_	10	μS
INTERNAL OSCILLATOR					
Charge Pump and V _{I/O} Switching Regulator Operating Frequency V _{B+} = 9.0 V to 32 V	f _{OP}	140	-	260	kHz

Notes

12. See Figure 2, RST Timing, page 9.

13. t_{slpl} is an input.

Timing Diagram

Figure 2. RST Timing

SYSTEM/APPLICATION INFORMATION

INTRODUCTION

VI/O Switching Regulator

The V_{I/O} switching regulator output voltage is determined by the MODE digital input terminals. The 34710's MODE[2:0] select the output voltage (Table 1). For example, if MODE[2:0] = 0, 0, 0, then V_{I/O} = 5.0 V; if MODE[2:0] = Open, Open, Open, then V_{I/O} = 3.3 V. The MODE0 terminal controls the output voltage of both regulators.

The topology of the regulator is a bang-bang buck regulator operating from the internal ~200 kHz oscillator.

V_{CORE} Linear Regulator

The V_{CORE} linear regulator can produce a +3.3 V, 2.5 V, 1.8 V, or 1.5 V output voltage at 500 mA. The input to the V_{CORE} regulator is a terminal that may be connected to the V_{I/} _O regulator output. The minimum input voltage must be V_{CORE}(NOM) + 0.8 V.

The MODE[2:0] terminals select the output voltage as depicted in <u>Table 1</u>.

Table 1. VI/O and VCORE(NOM) Regulator

Output Voltage Selection						
MODE2	DE2 MODE1 MODE0 V _{1/O} (V)		V _{CORE} (NOM) (V)			
0	0	0	5.0	3.3		
0	0	Open	3.3	2.5		
0	Open	0	5.0	1.8		
0	Open	Open	3.3	1.8		
Open	0	0	5.0	2.5		
Open	0	Open	3.3	2.5		
Open	Open	0	5.0	1.5		
Open	Open	Open	3.3	1.5		

Open indicates terminal is not connected externally.

SUPERVISORY AND MISCELLANEOUS FUNCTIONS

Introduction

The supervisor circuitry provides control of the $\overline{\text{RST}}$ line, an open drain signal, based on system operating conditions monitored by the 34710. V_{I/O}, V_{CORE}, V_{B+}, and thermal shutdown (TSD) detectors in various parts of the chip are monitored for error conditions. Because other devices in the system may trigger a reset, the $\overline{\text{RST}}$ line itself is also monitored, but the supervisor circuitry controls all reset timing, including externally generated resets. Driving the $\overline{\text{RST}}$ line low causes the system to be held in the reset state. V_{I/O}, V_{CORE}, V_{B+}, and thermal shutdown have both positive- and negative-going thresholds.

The supervisor circuitry also ensures that the power supplies sequence properly. Specifically, that V_{I/O} is never less than TBD V below V_{CORE}. This means that V_{CORE} - V_{I/O} will be clamped at 0.5 V, and that the V_{CORE} regulator operation will be suppressed during startup and shutdown to ensure that V_{CORE} - V_{I/O} = TBD V.

Static Operating Specifications

The RST output is an I/O device with an open drain output driver with a pullup and a CMOS digital input gate (Figure 3). This I/O structure allows wired OR connection to the MCU's RST I/O terminal, as well as allowing the MCU to initiate a reset cycle by driving its RST terminal low. When responding to a MCU request for a reset cycle, the 34710 must respond rapidly enough to prevent a glitch. Figure 2, page 9, shows the timing

parameters for responding to an externally applied $\overline{\text{RST}}$ signal. The rise time may be relatively slow, depending on the load capacitance, and the internal $\overline{\text{RST}}$ input gate must operate reliably (no oscillations during the transition) under these conditions, i.e., the $\overline{\text{RST}}$ input can be inhibited for up to $t_{phsl}(\text{MAX})$. Error conditions must be present for a minimum time, t_{filter} , before the 34710 responds to them. Once all error conditions are cleared, $\overline{\text{RST}}$ is held low for an additional time of t_{delay} . If any monitored item falls below its negative-going threshold for t_{filter} , 1.0 μ s to 6.0 μ s, the t_{delay} will be restarted when system operating conditions are met. The trigger for the t_{delay} retriggerable one shot should be ([V_{I/O}(LOW) + V_{CORE}(LOW) + V_{B+}(LOW) + T_J(TSD)] & t_{filter}), where t_{filter} is the 1.0 μ s to 6.0 μ s delay.

V_b Charge Pump

The high-side MOSFETs in the H-Bridge motor drivers and voltage regulators switch require a gate voltage in excess of V_{B+}, which is provided by the V_b supply. The V_b regulator is a charge pump, switching directly off the V_{B+} supply, and uses an internal oscillator operating at 200 kHz.

Internal Oscillator

The internal oscillator provides timing for the charge pump and switching regulators.

APPLICATIONS

Power Dissipation

The power budget is described in <u>Table 2</u>. The maximum dissipation for this device is 1.0 W continuous.

Table	2.	Power	Budget
-------	----	-------	--------

Functional Block	Watt
Bias	0.00
Charge Pump	0.15
Switching Regulator	0.45
Linear Regulator	0.35
Total	0.95

PACKAGE DIMENSIONS

NOTES

NOTES

NOTES

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners.

© Motorola, Inc. 2004

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center 3-20-1 Minami-Azabu. Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

HOME PAGE: http://motorola.com/semiconductors

