August 2002 Revised March 2003

FAIRCHILD

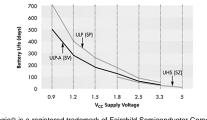
SEMICONDUCTOR

NC7SV38 TinyLogic® ULP-A 2-Input NAND Gate (Open Drain Output)

General Description

The NC7SV38 is a single 2-Input NAND Gate with open drain output stage from Fairchild's Ultra Low Power-A (ULP-A) series of TinyLogic®. ULP-A is ideal for applications that require extreme high speed, high drive and low power. This product is designed for a wide low voltage operating range (0.9V to 3.6V $V_{\rm CC}$) and applications that require more drive and speed than the TinyLogic ULP series, but still offer best in class low power operation.

The NC7SV38 is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

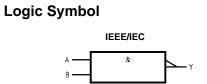

Features

- \blacksquare 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V
- Extremely High Speed t_{PD}
- 1.0 ns typ for 2.7V to 3.6V V_{CC}
- 1.2 ns typ for 2.3V to 2.7V V_{CC}
- 2.0 ns typ for 1.65V to 1.95V V_{CC}
- 3.2 ns typ for 1.4V to 1.6V V_{CC}
- 6.0 ns typ for 1.1V to 1.3V V_{CC}
- 13.0 ns typ for 0.9V V_{CC}
- Power-Off high impedance inputs and outputs
- High Static Drive (I_{OH}/I_{OL})
- ±24 mA @ 3.00V V_{CC}
- ± 18 mA $\,$ @ 2.30V $\rm V_{CC}$
- ±6 mA @ 1.65V V_{CC}
- ± 4 mA ~ @ 1.4V V_{CC}
- ± 2 mA ~ @ 1.1V V_{CC}
- $\pm 0.1 \text{ mA}$ @ 0.9V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Ultra small MicroPak[™] leadfree package
- Ultra low dynamic power

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SV38P5X	MAA05A	V38	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7SV38L6X	MAC06A	G9	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Battery Life vs. V_{CC} Supply Voltage


TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly. Battery Life = $(V_{battery}^* + b_{battery}^*)/(P_{device})/24hrs/day$

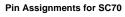
Where, $P_{device} = (I_{CC} * V_{CC}) + (C_{PD} + C_L) * V_{CC}^2 * f$

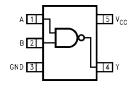
Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with C_L = 15 pF load

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ and Quiet Series™ are trademarks of Fairchild Semiconductor Corporation.

NC7SV38

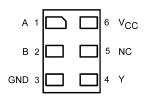
Pin Descriptions


Pin Names	Description
А, В	Input
Y	Output
NC	No Connect


Function Table

	$\mathbf{Y} = \overline{\mathbf{AB}}$	
Inp	out	Output
Α	В	Y
L	L	*H
L	Н	*H
н	L	*H
Н	Н	L

H = HIGH Logic Level L = LOW Logic Level *H = HIGH Impedance Output State (Open Drain)


Connection Diagrams

(Top View)

Pad Assignments for MicroPak

(Top Thru View)

Absolute	Maximum	Ratings(Note 1)
----------	---------	-----------------

Recommended Operating

NC7SV38

	0	•	0
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 3)	
DC Input Voltage (V _{IN})	-0.5V to +4.6V	Supply Voltage	0.9V to 3.6V
DC Output Voltage (V _{OUT})		Input Voltage (V _{IN})	0V to 3.6V
HIGH or LOW State (Note 2)	–0.5V to V_CC +0.5V	Output Voltage (V _{OUT})	
$V_{CC} = 0V$	-0.5V to +4.6V	$V_{CC} = 0.0V$	0V to 3.6V
DC Input Diode Current (I _{IK}) $V_{IN} < 0V$	±50 mA	HIGH or LOW State	0V to V_{CC}
DC Output Diode Current (I _{OK})		Output Current in I _{OH} /I _{OL}	
V _{OUT} < 0V	–50 mA	$V_{CC} = 3.0V$ to 3.6V	±24 mA
V _{OUT} > V _{CC}	+50 mA	$V_{CC} = 2.3V$ to 2.7V	±18 mA
DC Output Source/Sink Current (I _{OH} /I _{OL})	± 50 mA	V _{CC} = 1.65V to 1.95V	±6 mA
DC V_{CC} or Ground Current per		$V_{CC} = 1.4V$ to 1.6V	±4 mA
Supply Pin (I _{CC} or Ground)	± 50 mA	$V_{CC} = 1.1V$ to 1.3V	±2 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	$V_{CC} = 0.9V$	±0.1 mA
		Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$

Jbe ng I empe (I_A) Minimum Input Edge Rate ($\Delta t/\Delta V$)

 V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V 10 ns/V

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be oper-ated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_{O} Absolute Maximum Rating must be observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

Symbol	Parameter	V _{cc}	T _A = -	+25°C	$T_A = -40^{\circ}C$	C to +85°C	Units	Conditions
Symbol	Farameter	(V)	Min	Max	Min	Max	Units	Conditions
VIH	HIGH Level	0.90	0.65 x V _{CC}		$0.65 \times V_{CC}$			
	Input Voltage	$1.10 \leq V_{CC} \leq 1.30$	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$			
		$1.40 \leq V_{CC} \leq 1.60$	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		v	
		$1.65 \leq V_{CC} \leq 1.95$	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		v	
		$2.30 \leq V_{CC} < 2.70$	1.6		1.6			
		$2.70 \leq V_{CC} \leq 3.60$	2.0		2.0			
VIL	LOW Level	0.90		0.35 x V _{CC}		$0.35 \times V_{CC}$		
	Input Voltage	$1.10 \leq V_{CC} \leq 1.30$		$0.35 ext{ x V}_{CC}$		$0.35 \times V_{CC}$		
		$1.40 \leq V_{CC} \leq 1.60$		$0.35 ext{ x V}_{CC}$		$0.35 \times V_{CC}$	v	
		$1.65 \leq V_{CC} \leq 1.95$		$0.35 ext{ x V}_{CC}$		$0.35 \times V_{CC}$	v	
		$2.30 \leq V_{CC} < 2.70$		0.7		0.7		
		$2.70 \leq V_{CC} \leq 3.60$		0.8		0.8		
V _{OL}	LOW Level	0.90		0.1		0.1		
	Output Voltage	$1.10 \leq V_{CC} \leq 1.30$		0.1		0.1		
		$1.40 \leq V_{CC} \leq 1.60$		0.2		0.2		I _{OI} = 100 μA
		$1.65 \leq V_{CC} \leq 1.95$		0.2		0.2		$IOL = 100 \mu A$
		$2.30 \leq V_{CC} < 2.70$		0.2		0.2		
		$2.70 \leq V_{CC} \leq 3.60$		0.2		0.2		
		$1.10 \leq V_{CC} \leq 1.30$		$0.25 \times V_{CC}$		$0.25 \times V_{CC}$	v	$I_{OL} = 2 \text{ mA}$
		$1.40 \leq V_{CC} \leq 1.60$		$0.25 \times V_{CC}$		$0.25 \times V_{CC}$	v	$I_{OL} = 4 \text{ mA}$
		$1.65 \leq V_{CC} \leq 1.95$		0.3		0.3		$I_{OL} = 6 \text{ mA}$
		$2.30 \le V_{CC} < 2.70$		0.4		0.4		I _{OI} = 12 mA
		$2.70 \leq V_{CC} \leq 3.60$		0.4		0.4		10L - 12 IIIA
		$2.30 \leq V_{CC} < 2.70$		0.6		0.6		I _{OI} = 18 mA
		$2.70 \leq V_{CC} \leq 3.60$		0.4		0.4		
		$2.70 \leq V_{CC} \leq 3.60$		0.55		0.55		I _{OL} = 24 mA
I _{IN}	Input Leakage Current	0.90 to 3.60		±0.1		±0.9	μΑ	$0 \le V_1 \le 3.6V$

DC Electrical Characteristics

NC7SV38

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{cc}	T _A =	+25°C	T _A = -40°	C to +85°C	Units	Conditions
Gymbol	i arameter	(V)	Min	Max	Min	Max	onna	Conditions
I _{OFF}	Power Off Leakage Current	0		1		5	μΑ	$0 \le (V_I, V_O) \le 3.6V$
I _{CC}	Quiescent Supply Current	0.90 to 3.60		0.9		5	μA	$V_I = V_{CC}$ or GND
		0.90 to 3.60				±5	μ	$V_{CC} \le V_I \le 3.6V$

AC Electrical Characteristics

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PZL} t _{PLZ}	Propagation Delay	0.90		13					$C_L = 15 \text{ pF},$ $R_U = R_D = 1000\Omega$	
		$1.10 \leq V_{CC} \leq 1.30$	3.0	6.0	15.0	1.0	18.6		$C_L = 15 \text{ pF},$	1
		$1.40 \leq V_{CC} \leq 1.60$	1.0	3.2	8.7	1.0	9.7	ns	$R_U = R_D = 1000\Omega$	Figures 1, 2
		$1.65 \leq V_{CC} \leq 1.95$	1.0	2.0	6.0	1.0	6.8		$C_L = 30 \text{ pF},$., -
		$2.30 \leq V_{CC} < 2.70$	0.8	1.2	3.6	0.7	4.7		$R_U = R_D = 1000\Omega$	
		$2.70 \leq V_{CC} \leq 3.60$	0.7	1.0	3.3	0.6	4.0			
CIN	Input Capacitance	0		2.0				pF		
C _{OUT}	Output Capacitance	0		6.5				pF		
C _{PD}	Power Dissipation Capacitance	0.90 to 3.60		8				pF	$V_I = 0V \text{ or } V_{CC}$ f = 10 MHz	

AC Loading and Waveforms

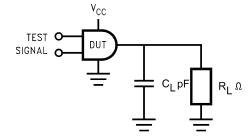
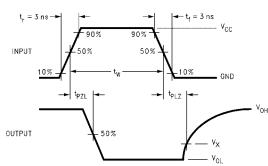
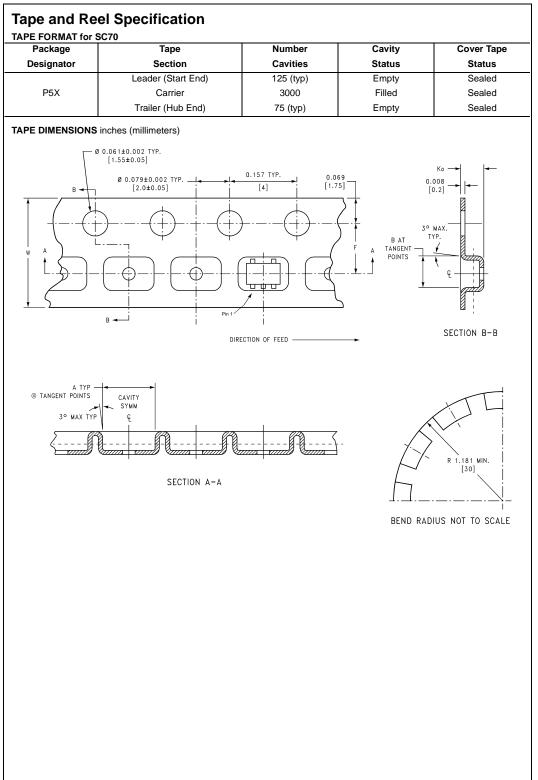
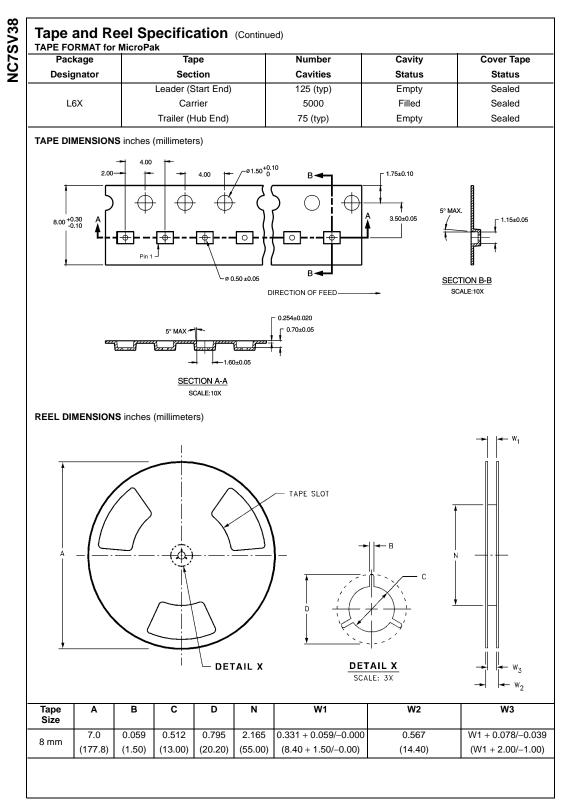
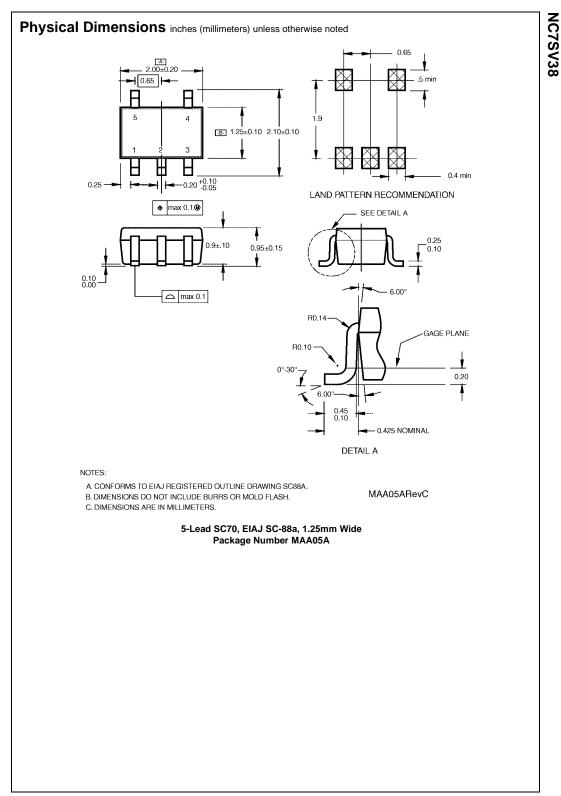
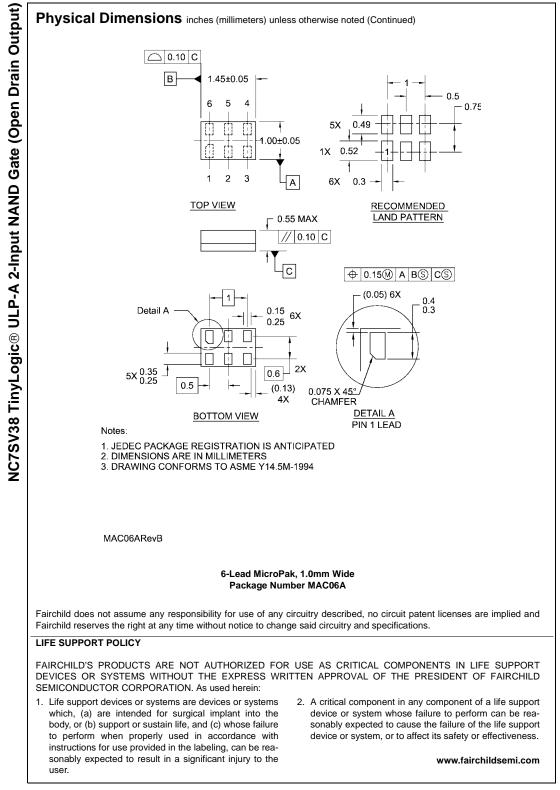




FIGURE 1. AC Test Circuit




FIGURE 2. Waveform for Inverting and Non-Inverting Functions


Symbol	V _{cc}								
Gymbol	$\textbf{3.3V} \pm \textbf{0.3V}$	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$	$\textbf{1.5V} \pm \textbf{0.10V}$	$\textbf{1.2V} \pm \textbf{0.10V}$	0.9V			
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2			
V _X	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.1V	V _{OL} + 0.1V	V _{OL} + 0.1V			

NC7SV38

