

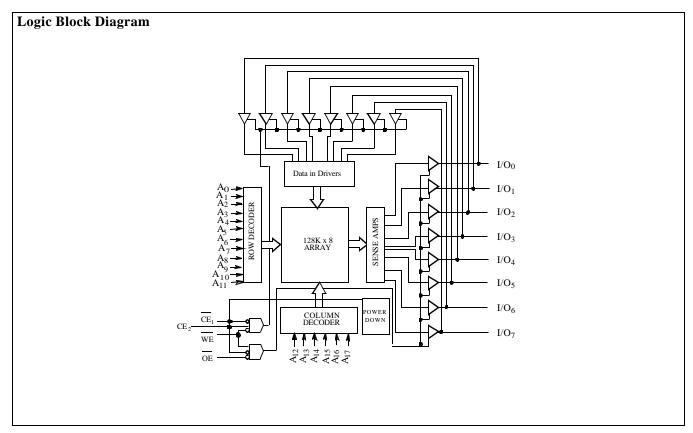
256K x 8 Static RAM

Features

- High Speed
 - 70ns availability
- Voltage range
 - -- 2.7V-3.3V
- Ultra low active power
 - Typical active current: 1 mA @ f = 1MHz
 - Typical active current: 7 mA @ f = f_{max} (70ns speed)
- · Low standby power
- Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 , and \overline{OE} features
- · Automatic power-down when deselected
- CMOS for optimum speed/power

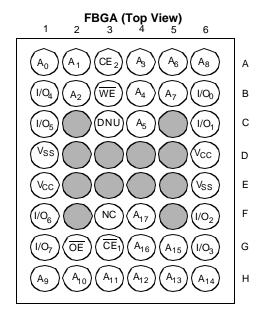
Functional Description

The WCMA2008U1B is a high-performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is device is ideal for portable applications. The device also has an automatic power-down feature that significantly


reduces power consumption by 80% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected ($\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enable (\overline{CE}_1) and Write Enable (WE) inputs LOW and Chip Enable 2 (\overline{CE}_2) HIGH. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A $_0$ through A $_{17}$).

Reading from the device is accomplished by taking Chip Enable (CE₁) and Output Enable (OE) LOW while forcing Write Enable (WE) and Chip Enable 2 (CE₂) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.


The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is de<u>selected</u> ($\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW), the <u>outputs</u> are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}_1$ LOW and $\overline{\text{CE}}_2$ HIGH and $\overline{\text{WE}}$ LOW).

The WCMA2008U1B is available in a 36-ball FBGA package.

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage to Ground Potential..... -0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State ^[1]	0.5V to V _{CC} + 0.5V
DC Input Voltage ^[1]	–0.5V to $V_{\rm CC}$ + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Product	Range	Ambient Temperature	V _{cc}
WCMA2008U1B	Industrial	–40°C to +85°C	2.7V to 3.3V

Product Portfolio

						Powe	r Dissipat	ion (Indus	strial)	
Product	V _{CC} Range		Speed		Operat	ing, I _{CC}				
Product				Speed	f = 1 MHz		Hz f = f _{max}		Standby (I _{SB2})	
	Min.	Typ. ^[2]	Max.		Typ. ^[2]	Max.	Typ. ^[2]	Max.	Typ. ^[2]	Max.
WCMA2008U1B	2.7V	3.0V	3.3V	70 ns	1.5 mA	3 mA	7 mA	15 mA	2 μΑ	10 μΑ

Notes:

- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

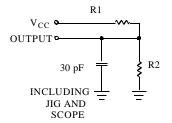
Electrical Characteristics Over the Operating Range

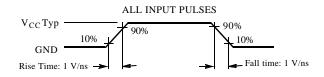
				WC	MA2008U1E	3-70	
Param- eter	Description	Test Co	nditions	Min.	Тур. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V			0.4	V
V _{IH}	Input HIGH Voltage			2.2		$V_{CC} + 0.3V$	V
V _{IL}	Input LOW Voltage			-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	$GND \le V_i \le V_{CC}$			+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled		-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.3V$		7	15	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3	
I _{SB1}	Automatic CE Power-Down Current — CMOS Inputs	$\overline{\text{CE}_1} \ge \text{V}_{\text{CC}} - 0.2 \text{V or CE}_2 \le 0.2 \text{V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{V or V}_{\text{IN}} \le 0.2 \text{V}$, $\text{f} = \text{f}_{\text{max}} (\underline{\text{Address and Data Only}})$, $\text{f} = 0 (\overline{\text{OE}}, \overline{\text{WE}})$			2	10	μА
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\overline{CE}_1 \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$ or $f = 0, V_{CC} = 3.3V$	f or $CE_2 \le 0.2V$ r $V_{IN} \le 0.2V$,				

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = Vcc_{(typ)}$	6	pF
C _{OUT}	Output Capacitance		8	pF

Thermal Resistance

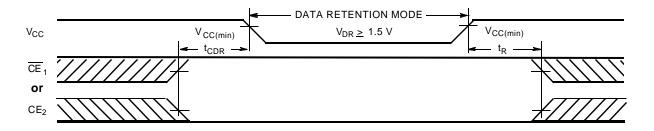

Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance ^[3] (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	$\Theta_{ m JA}$	55	°C/W
Thermal Resistance ^[3] (Junction to Case)		$\Theta_{ m JC}$	16	°C/W


Note:

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENINEQUIVALENT


Output 0
$$$\rm R_{TH}$$$

Parameters	3.3V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Тур. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.5		V _{ccmax}	V
I _{CCDR}	Data Retention Current			1	6	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[4]	Operation Recovery Time		t _{RC}			ns

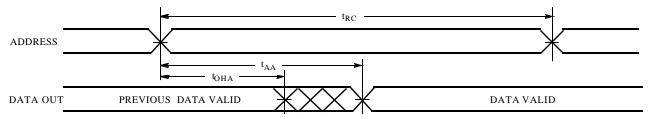
Data Retention Waveform

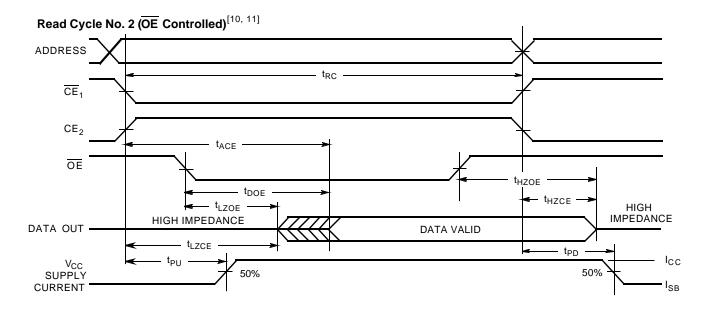
Note:

^{4.} Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100 \, \mu s$ or stable at $V_{CC(min.)} \ge 100 \, \mu s$.

Switching Characteristics Over the Operating Range^[5]

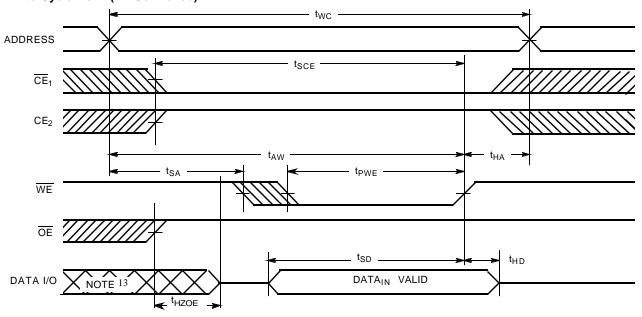
		WCMA20	08U1B-70	
Parameter	Description	Min.	Max.	Unit
READ CYCLE		•		
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[6]	10		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[6, 7]		25	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-Down		70	ns
WRITE CYCLE ^[8,]		•		
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t_{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns


Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{QL}/I_{OH} and 30 pF load capacitance.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.

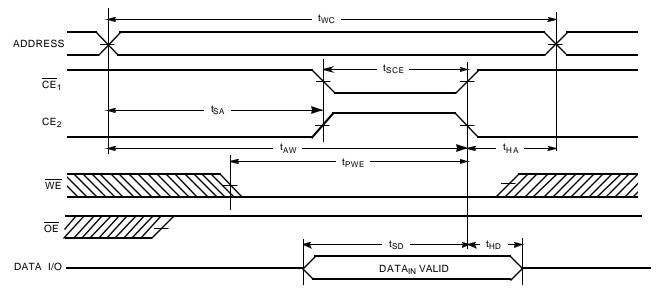

 ^{7.} t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
 8. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled) $^{[9,\ 10]}$



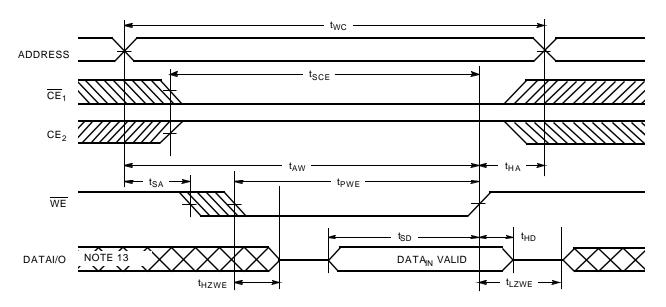
- Device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 $\overline{\text{(WE Controlled)}}^{[8,\,12,\,14]}$

Write Cycle No. 2 ($\overline{\text{CE}}_{1}$ or CE_{2} Controlled) [8, 12, 14]


Notes:

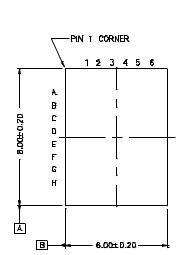
- 12. Data I/O is high impedance if OE = V_{IH}.
 13. During this period, the I/Os are in output state and input signals should not be applied.
 14. If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

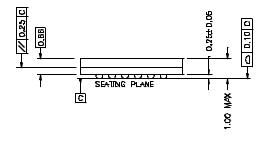
Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[14]}$

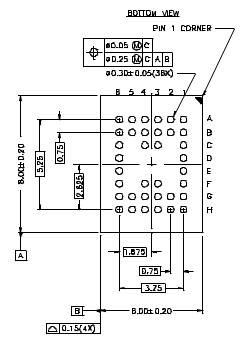
Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (I _{CC})



Ordering Information


•	Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
	70	WCMA2008U1B-FF70	FB36A	36-ball Fine Pitch BGA (6.0 mm x 8.0 mm x 1.0 mm)	Industrial


Package Diagrams

36-Lead VFBGA (6.0 mm x 8.0 mm x 1.0 mm) FB36A

TOP VIEW

51-85149-**

Document Title: WCMA2008U1B, 256K x 8 Static RAM								
REV.	Spec #	ECN#	Issue Date	Orig. of Change	Description of Change			
**	38-05321	117495	3/18/2002	CBD	New Data Sheet			