agere

Data Sheet July 1999

Optical Amplifier Platform, 1724-Type Erbium-Doped Fiber Amplifier (S and V Series)

Designed for use in single-channel or video applications, the standard 1724-Type EDFA incorporates a DB-25 connector and a microcontroller with TTL compatible alarm monitoring.

Features

- High saturation output power, >22 dBm
- Low power consumption, <12 W @ 45 °C</p>
- Low noise
- Single 5 V operation
- Wide input signal bandwidth
- Wide operating temperature range, 0 °C to 65 °C
- Optical input and output taps
- Isolated input and output
- Programmable input and output
- Connectorized single-mode fiber pigtail
- Standard serial communication channels

Applications

- Designed for a variety of applications:
 S Series: single channel
 - V Series: video
- Booster/power amplifier
- Line amplifier
- Preamplifier

Description

The 1724-Type Erbium-Doped Fiber Amplifier (EDFA) has been designed for use in a variety of applications and is available in application-specific versions:

- S Series for single-channel, preamplifier applications (see Table 4, page 6, for performance specifications)
 - High gain
 - Low noise figure
- V Series for video, analog, or booster applications (see Table 5, page 6, for performance specifications)
 - Supports a wide range of output powers
 - Low noise figure
 - Low power dissipation
 - Adjustable output power

Description (continued)

The versatile 1724-Type EDFA operates over a wide temperature range, exhibits extremely low power dissipation, and offers a variety of alarms and monitors. Optimum performance and system stability are supported through the use of optical isolation at the input and output. Optical input and output are through singlemode fiber pigtails terminated with optical connectors.

The EDFA incorporates optical input and output taps that are monitored via an integral microcontroller. Significant performance benefits are achieved with the microcontroller, which stabilizes the temperature of the pumps and maintains constant optical output power.

Contact your Agere Systems Inc. Account Manager to discuss electrical or optical connector options not listed in the Ordering Information section.

Standard Features

The standard 1724-Type EDFA incorporates the optical architecture illustrated in Figure 1. The standard features include:

- Exceptional performance benefits with the integral microcontroller, which precisely controls the output power and allows for changes to power settings as necessary.
- Single 5 V power supply eliminates the need for dual voltage source circuits.
- DB-25 electrical connector allows for easy electrical connectivity.
- Optical input tap enables input monitoring and control.
- Optical output tap enables precise output monitoring and control and, when used in conjunction with the microcontroller, typically provides 0.2 dB of output power stability over temperature and wavelength.
- SC/PC optical connector
- Low power dissipation
- Alarms:
 - Loss of input power alarm
 - Loss of output power alarm
 - Pump bias alarm (>95% of EOL value)
 - Pump temperature alarm (T_L > 35 °C)
 - EDFA temperature alarm (Tc > 60 °C)
- Advanced microprocessor design requires minimal engineering for a shelf-level product.
- Standard mechanical outline includes metric screws

and fiber outputs (using SC/PC optical connectors) at 180 degrees relative to a DB25 electrical connector. The standard product does not include a heat sink.

TTL-Compatible Alarm Outputs

Loss of Input Power Alarm

If the input power is more than 2 dBm below the minimum PIN, the loss of input power alarm (pin 19) will activate (TTL-logic 1).

Loss of Output Power Alarm

If the output power decreases by more than 2 dB from its beginning-of-life value, the loss of output power alarm (pin 8) will activate (TTL-logic 1).

Pumps Temperature Alarm

If the laser temperature for the pump(s) exceeds 35 $^\circ\text{C},$ the pump temperature alarm (pin 10) will activate (TTL-logic 1).

Pumps Bias Alarm

If the bias current for the pump(s) exceeds 95% of its EOL value, the pump bias alarm (pin 9) will activate (TTL-logic 1).

EDFA Temperature Alarm

If the case temperature exceeds 60 °C, then the EDFA temperature alarm (pin 7) will activate (TTL-logic 1).

Optional Features

Other feature and package options for the 1724-Type EDFA include:

- Alternative optical connectors
- Integral heat sink

Block Diagram

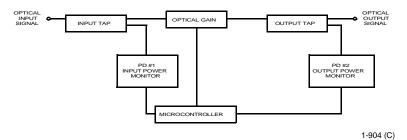


Figure 1. 1724-Type EDFA Block Diagram

Pin Information

Table 1. Pin Descriptions for a Microcontrolled (Full) Amp	lifier
--	--------

Pin	Description	Pin	Description
1	5.0 V (±0.25 V)	14	GND
2	5.0 V (±0.25 V)	15	GND
3	5.0 V (±0.25 V)	16	GND
4	5.0 V (±0.25 V)	17	GND
5	Reserved ¹	18	RS-232 OUT (TTL)
6	Reserved ¹	19	Loss of Input Power Alarm ⁶
7	EDFA Temperature Alarm	20	Reserved ¹
8	Loss of Output Power Alarm ²	21	Amplifier Disable Input ⁷
9	Pumps Bias Alarm ³	22	RS-232 IN (TTL)
10	Pumps Temperature Alarm ⁴	23	Reserved ¹
11	EDFA Shutdown Override ⁵	24	5.0 V (±0.25 V)
12	5.0 V (±0.25 V)	25	GND
13	GND	—	—

1. Do not connect to reserved pins.

2. Normal = TTL low, alarm = TTL high if the output power falls 2 dB below the minimum value.

3. Normal = TTL low, alarm = TTL high if pump bias exceeds 95% of its end-of-life value.

4. Normal = TTL low, alarm = TTL high if pump temperature exceeds 35 °C.

5. The EDFA is equipped with an optical transient suppression feature when this pin is tied to GND. The EDFA will turn all pumps off, if the input power is too low. Tying this pin to 5 V will disable this feature; however, damage to the optical connectors and components may occur if the amplifier is turned on without the presence of an optical signal.

6. Normal = TTL low, alarm = TTL high if input power is less than 2 dB below minimum PIN.

7. Amplifier enable (all pumps are on) = TTL low, amplifier disable (all pumps are off) = TTL high.

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Тур	Max	Unit
Storage Temperature	Tstg	-40	20	70	°C
Operating Case Temperature	Tc	0	35	65	٥C
Absolute Humidity	_		—	0.024	lbs. H ₂ O/lbs. dry air

Electrical Characteristics

Table 2. Power Supply

Parameter	Symbol	Min	Тур*	Мах	Unit
dc Power Supply Voltage	VPS1	4.75	5.0	5.25	V
Power Supply Current (beginning of life):					
ð19 dBm	IPS1	—	1.0	—	A
ð22 dBm	IPS1	—	2.4	—	A
Power Supply Current (end of life):					
ð19 dBm	IPS1	—	—	1.9	A
ð22 dBm	IPS1	—	—	3.8	A
Electrical Power Consumption (beginning of life):					
ð19 dBm	—	—	5.0	—	W
ð22 dBm	—	—	12.0	—	W
Electrical Power Consumption (end of life):					
ð19 dBm		—	—	10.0	W
ð22 dBm	—			20.0	W

* Typical operating characteristics: VPS1 = 5.0 V, Tc = 35 °C.

Electrical Characteristics (continued)

Table 3. TTL Inputs/Outputs

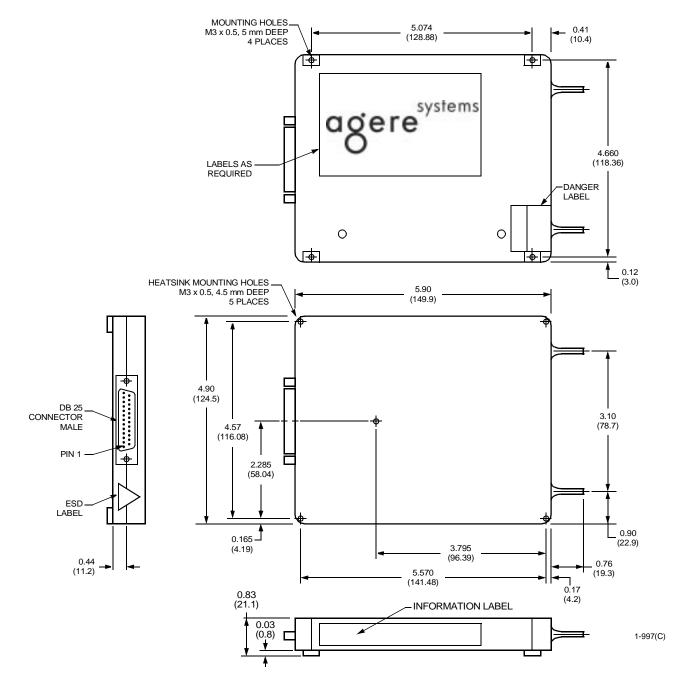
Under normal operating conditions, the various alarm outputs will be TTL level low. If the corresponding parameter is outside a predesignated range, the associated alarms will become TTL level high.

Parameter	Symbol	Min	Тур	Мах	Unit
Input Voltage:					
High	Vін	2	—		V
Low	VIL	—	—	0.8	V
Output Voltage:					
High	Vон	2.4	—	_	V
Low	Vol	0	0.1	0.4	V
Input Current:					
High	Іін	—	—	-1	μA
Low	lіL	—	—	1	μA
Output Current:					
High	Іон	—	—	-4	mA
Low	Iol	—	—	20	μA

Optical Characteristics

Table 4. Performance Specifications for S Series

Parameter	Symbol	Min	Тур	Max	Unit
Signal Wavelength Range	λL	1530	—	1560	nm
Measurement Wavelength	λм	—	1550		nm
Input Signal Power:					
Preamp—S1724A-Type	Pı∟	-30	—	—	dBm
Booster/In Line—S1724B/C/D-Types	Pı∟	-6.0	—	—	dBm
Gain (Pı∟ = −30 dBm):					
Preamp—S1724A-Type	G	30	—	—	dB
Peak Output Power (Tc = 35 °C; over λм):					
Booster/In Line—S1724B-Type	Po	13	—	—	dBm
—S1724С-Туре	Po	16	—	—	dBm
—S1724D-Type	Po	19	—	—	dBm
Noise Figure:					
Preamp—S1724А-Type (Pι∟ = −30 dBm; λм)	NF	—	—	5.0	dB
Booster/In Line—S1724B/C/D-Types (Pı∟ =	NF	—	—	5.5	dB
—6.0 dBm; λм)					
Return Loss	RL	_	_	-40	dB
Output Power Stability (over temperature, at a constant input power)	ΔΡο		±0.2	±0.5	dB

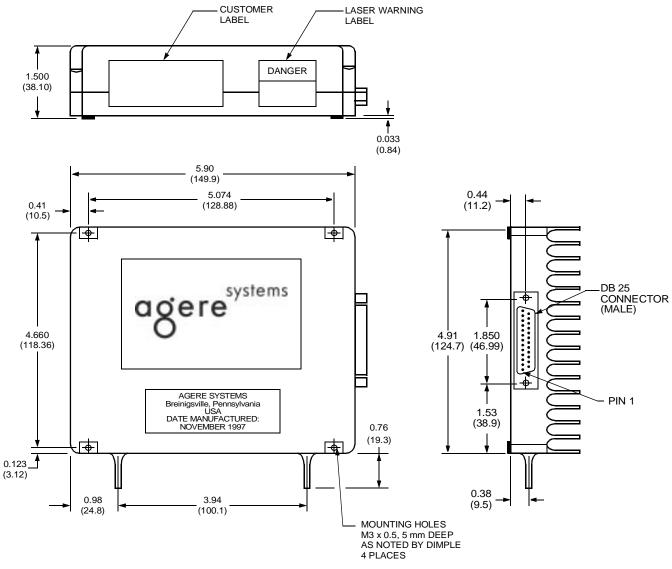

Table 5. Performance Specifications for V Series

Parameter	Symbol	Min	Тур	Max	Unit
Signal Wavelength Range	λl	1540		1560	nm
Measurement Wavelength	λм	_	1550	_	nm
Input Signal Power	Pı∟	0	_	10	dBm
Peak Output Power (at λм and Tc = 35 °C):					
V1724B-Type	Po	13	—	—	dBm
V1724C-Type	Po	16	—	—	dBm
V1724D-Type	Po	19	—	—	dBm
V1724E-Type	Po	22	—	—	dBm
Noise Figure (Pı∟ = 0 dBm, λм)	NF	_	4.75	5.5	dB
Return Loss	RL	_	_	-40	dB
Composite Second Order	CSO	_	<-70	_	dBc
Composite Third Beat	СТВ	_	<-70	_	dBc
Output Power Stability (over temperature and input power variations)	ΔΡο	—	±0.2	±0.5	dB

Outline Drawings

1724-Type EDFA Package^{*}

Dimensions are in inches and (millimeters).



* B version shown; see coding scheme in Table 6, Ordering Information.

Outline Drawings (continued)

Optional Package Configuration: 1724-Type EDFA Package with Integral Heat Sink*

Dimensions are in inches and (millimeters).

* F version shown; see coding scheme in Table 6, Ordering Information.

1-998(C)

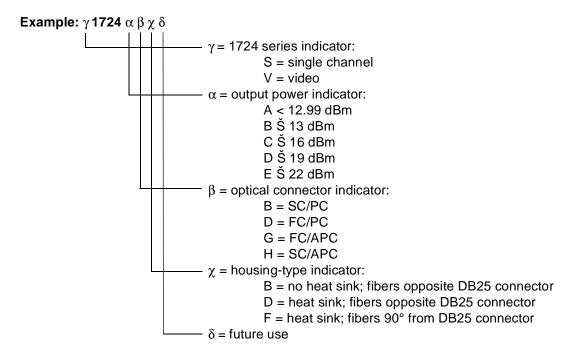

Ordering Information

Table 6. Ordering Information*

Device Code	Ро	Connector	Heat Sink	Comcode
S1724BBBA	13.0 dBm	SC/PC	No	108321472
S1724BDBA	13.0 dBm	FC/PC	No	108313719
S1724CBBA	16.0 dBm	SC/PC	No	108331539
S1724CDBA	16.0 dBm	FC/PC	No	108313727
S1724DDBA	19.0 dBm	FC/PC	No	108319088
V1724BBBA	13.0 dBm	SC/PC	No	108331547
V1724BHBA	13.0 dBm	SC/APC	No	108468398
V1724CBBA	16.0 dBm	SC/PC	No	108331554
V1724CGDA	16.0 dBm	FC/APC	Yes	108363680
V1724CHBA	16.0 dBm	SC/APC	No	108468406
V1724DBBA	19.0 dBm	SC/PC	No	108331562
V1724DHBA	19.0 dBm	SC/APC	No	108351842
V1724EBBA	22.0 dBm	SC/PC	No	108331984
V1724EHBA	22.0 dBm	SC/APC	No	108351859

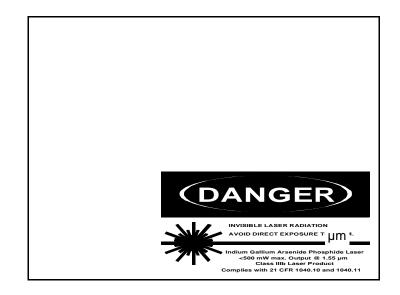
* Contact your Account Manager to discuss your requirements. (If you do not know your Account Manager, please call Agere Systems, Optoelectronics unit directly at (610) 391-2520.)

Coding Scheme

Related Product Information

Table 7. Related Product Information

Description	Part Number	Document Number
High-Speed Lightwave Receiver	1319-Type	DS97-106LWP
Lithium Niobate Modulator	—	DS98-110LWP
Electroabsorption Modulated Isolated Laser Module	E2500-Type	DS98-368LWP
1.5 µm Isolated DFB Laser Module	D2500-Type	DS98-339LWP
1.3 µm Isolated DFB Laser Module	D2300-Type	DS97-122LWP
0.98 µm Pump Laser Module	263-Type	DS99-199LWP
Long-Wavelength PIN Photodetectors	131-Type	DS98-206LWP
Interfacing the 1724-Type Microprocessor-Controlled Erbium-Doped Fiber Amplifier via a Serial Communication Port	1724-Type EDFA	AP99-020LWP


Laser Safety Information

Class IIIb Laser Product

This product complies with 21 CFR 1040.10 and 1040.11. Single-mode connector Wavelength = $1.55 \,\mu$ m Maximum power <500 mW

Product is not shipped with power supply.

CAUTION: Use of controls, adjustments, and procedures other than those specified herein may result in hazardous laser radiation exposure.

DANGER INVISIBLE RADIATION IS EMITTED FROM THE END OF THE FIBER OR CONNECTOR. AVOID DIRECT EXPOSURE TO THE BEAM. DO NOT VIEW WITH OPTICAL INSTRUMENTS.

For additional information, contact your Agere Systems Account Manager or the following:INTERNET:http://www.agere.comE-MAIL:docmaster@agere.comN. AMERICA:Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)ASIA:Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon
Tel. (852) 3129-2000, FAX (852) 3129-2020
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)EUROPE:Tel. (44) 7000 624624, FAX (44) 1344 488 045

Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.

Copyright © 2001 Agere Systems Inc. All Rights Reserved

