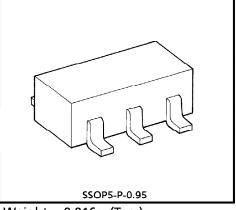
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

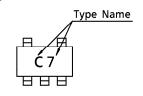
TC4SU11F

2 INPUT NAND GATE

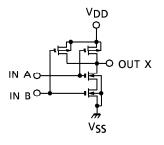

TC4SU11F is 2 input NAND gate respectively.

The internal circuit of only basic NAND circuit without the waveform shaping inverter.

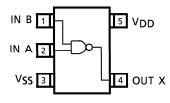
Therefore, this is suitable for the applications in liner circuits such as oscillator circuits and amplifier circuits, and this has advantage in the applications of Logical processing systems with faster operating speed.


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	V _{IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	>
Output Voltage	Vout	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧
DC Input Current	IN	± 10	mA
Power Dissipation	PD	200	mW
Operating Temperature Range	T _{opr}	- 40~85	°C
Storage Temperature Range	T _{stg}	- 65∼150	°C
Lead Temperature (10s)	TL	260	°C



Weight: 0.016g (Typ.)


Marking

LOGIC DIAGRAM

PIN ASSIGNMENT (TOP VIEW)

961001EBA2

● TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

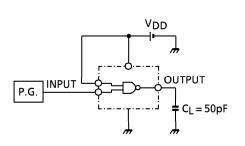
RECOMMENDED OPERATING CONDITIONS $(V_{SS} = 0V)$

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V_{DD}	_	3	_	18	V
Input Voltage	V _{IN}		0		V_{DD}	V

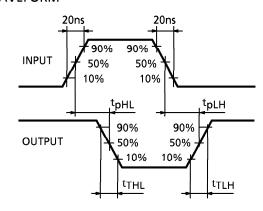
STATIC ELECTRICAL CHARACTERISTICS $(V_{SS} = 0V)$

CHARACTERISTIC SYN		TEST CONDITION	V_{DD}	– 40°C		25°C			85°C		UNIT
BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
High-Level		llourl / 1,,,A	5	4.95	_	4.95	5.00	_	4.95	_	
Output Voltage VOH	I _{OUT} <1μΑ V _{IN} =V _{SS}	10	9.95		9.95	10.00	—	9.95			
- Catput Voltage		VIIV - 422	15	14.95		14.95	15.00		14.95		V
Low-Level	 I _{OUT} <1μΑ	5	_	0.05		0.00	l	—	0.05	•	
Output Voltage	VOL	$V_{IN} = V_{DD}$	10	—	0.05	_	0.00	l	—	0.05	
- Catput Voltage			15	_	0.05	_	0.00	0.05	_	0.05	
		V _{OH} = 4.6V	5	- 0.61		- 0.51	- 1.0	l	- 0.42		
Output High		$V_{OH} = 2.5V$	5	- 2.5		- 2.1	- 4.0	l	- 1.7	_	
Current	IOH	V _{OH} = 9.5V	10	– 1.5		- 1.3	- 2.2	ı	- 1.1		
Current		V _{OH} = 13.5V	15	- 4.0	_	- 3.4	- 9.0	—	– 2.8	_	
		$V_{IN} = V_{SS}$, V_{DD}									A
		$V_{OL} = 0.4V$	5	0.61	_	0.51	1.2	_	0.42	_	mΑ
Output Low		V _{OL} = 0.5V	10	1.5	_	1.3	3.2	_	1.1	_	
Current	lOL	V _{OL} = 1.5V	15	4.0	_	3.4	12.0	 	2.8	_	
		$V_{IN} = V_{DD}$							•		
		V _{OUT} = 0.5V	5	4.0	_	4.0	3.0	_	4.0	_	
land tide Valtage		V _{OUT} = 1.0V	10	8.0	_	8.0	6.5	_	8.0	_	
Input High Voltage	VIH	V _{OUT} = 1.5V	15	12.0	_	12.0	9.5	_	12.0	_	
		l _{OUT} <1μΑ									
		V _{OUT} = 4.5V	5	_	1.0	_	2.0	1.0	_	1.0	V
Input Low Voltage	.,	V _{OUT} = 9.0V	10	_	2.0		3.5	2.0	 	2.0	
	V_{IL}	V _{OUT} = 13.5V	15		3.0		5.5	3.0	 	3.0	
		I _{OUT} <1μΑ	1								
Input H Level	ΊΗ	V _{IH} = 18V	18	_	0.1	_	10 - 5	ı	_	1.0	
Current L Level	Ίμ	V _{IL} = 0V	18	_	- 0.1	_	- 10 ⁻⁵	- 0.1	_	- 1.0	μ A
Quiescent			5	_	0.25	_	0.001	0.25	_	7.5	
	IDD	$V_{IN} = V_{SS}, V_{DD}$	10	—	0.5	_	0.001	0.5	—	15	μ A
Device Current			15		1.0		0.002	1.0		30	

961001EBA2'

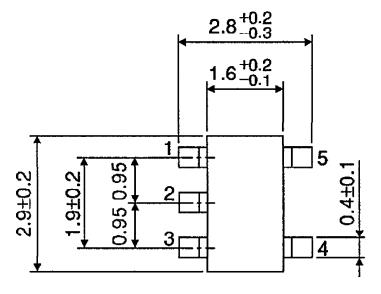

The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

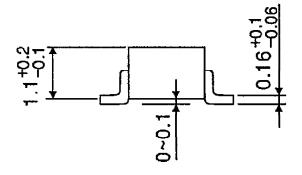
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C, V_{SS} = 0V, C_L = 50pF)


CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT	
Output Transition Time			5	_	70	200		
(Low to High)	tTLH	_	10	_	35	100		
(Low to High)			15	—	30	80		
Output Transition Time (High to Low)			5	_	60	200	ns	
	tTHL	_	10	_	25	100		
			15	—	20	80		
	t _{pLH}		5		50	110		
Propagation Delay Time		<u> </u>	10	_	28	60		
			15	_	22	50		
Propagation Delay Time	t _{pHL}		5	_	50	110	ns	
		_	10	_	28	60		
	'		15	_	22	50		
Input Capacitance	C _{IN}	_	_	5	7.5	pF		

CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

CIRCUIT


WAVEFORM



OUTLINE DRAWING

SSOP5-P-0.95

Weight: 0.016g (Typ.)