ASSP

Single Serial Input
 PLL Frequency Synthesizer On-chip 2.5 GHz Prescaler

MB15E07SL

DESCRIPTION

The Fujitsu MB15E07SL is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 2.5 GHz prescaler. The 2.5 GHz prescaler has a dual modulus division ratio of $32 / 33$ or 64/65 enabling pulse swallowing operation.
The supply voltage range is between 2.4 V and 3.6 V . The MB15E07SL uses the latest BiCMOS process, as a result the supply current is typically 3.5 mA at 2.7 V . A refined charge pump supplies well-balanced output currents of 1.5 mA and 6 mA . The charge pump current is selectable by serial data.
MB15E07SL is ideally suited for wireless mobile communications, such as GSM (Global System for Mobile Communications) and PCS.

■ FEATURES

- High frequency operation: 2.5 GHz max
- Low power supply voltage: $\mathrm{Vcc}=2.4$ to 3.6 V
- Ultra Low power supply current: Icc $=3.5 \mathrm{~mA}$ typ. ($\mathrm{Vcc}=\mathrm{Vp}=2.7 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$, in locking state)

$$
\mathrm{Icc}=4.0 \mathrm{~mA} \text { typ. }\left(\mathrm{Vcc}=\mathrm{Vp}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \text {, in locking state }\right)
$$

- Direct power saving function: Power supply current in power saving mode

$$
\text { Typ. } 0.1 \mu \mathrm{~A}\left(\mathrm{Vcc}=\mathrm{Vp}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right) \text {, Max. } 10 \mu \mathrm{~A}(\mathrm{Vcc}=\mathrm{Vp}=3.0 \mathrm{~V})
$$

- Dual modulus prescaler: $32 / 33$ or $64 / 65$
- Serial input 14-bit programmable reference divider: $R=3$ to 16,383
- Serial input programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 3 to 2,047
- Software selectable charge pump current
- On-chip phase control for phase comparator
- Operating temperature: $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$
- Pin compatible with MB15E07, MB15E07L

PACKAGES

MB15E07SL

PIN ASSIGNMENTS

MB15E07SL

PIN DESCRIPTIONS

| Pin no. | | Pin | I/O | \quad Descriptions |
| :---: | :---: | :---: | :---: | :--- | :--- |
| SSOP | BCC | name | | |
| 1 | 16 | OSCIN | I | Programmable reference divider input. Connection to a TCXO. |
| 2 | 1 | OSCout | O | Oscillator output. |
| 3 | 2 | V_{P} | - | Power supply voltage input for the charge pump. |
| 4 | 3 | Vcc | - | Power supply voltage input. |

MB15E07SL

BLOCK DIAGRAM

MB15E07SL

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating		Unit	Remark
			Min.	Max.		
Power supply voltage	Vcc	-	-0.5	4.0	V	
	V_{P}	-	Vcc	6.0	V	
Input voltage	V_{1}	-	-0.5	$\mathrm{Vcc}+0.5$	V	
Output voltage	Vo	Except Do	GND	Vcc	V	
	Vo	Do	GND	V_{P}	V	
Storage temperature	Tstg	-	-55	+125	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remark
		Min.	Typ.	Max.		
Power supply voltage	V_{cc}	2.4	3.0	3.6	V	
	$\mathrm{~V}_{\mathrm{P}}$	Vcc	-	5.5	V	
Input voltage	V_{C}	GND	-	V_{cc}	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

- ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition		$\left(\mathrm{Vcc}=2.4\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$)					
		Value			Unit					
		Min.			Typ.	Max.				
Power supply current**			$1 \mathrm{Icc}^{+1}$	$\begin{aligned} & \operatorname{fin}=2500 \mathrm{~N} \\ & \left(\mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}}=\right. \end{aligned}$		$\begin{aligned} & \mathrm{V} \mathrm{VC}=\mathrm{V}_{\mathrm{P}}=2.7 \mathrm{~V} \\ & \mathrm{~V}) \end{aligned}$	-	$\begin{gathered} \hline 3.5 \\ (4.0) \end{gathered}$	-	mA
Power saving current			Ips	$\mathrm{ZC}=$ "H" or		-	0.1^{2}	10	$\mu \mathrm{A}$	
Operating frequency	fin	fin		-	100	-	2500	MHz		
	OSCIn	OSCIn		-	3	-	40	MHz		
Input sensitivity	fin^{3}	Pfin	50Ω system (Refer to th circuit.)	easurement	-15	-	+2	dBm		
	OSCIn ${ }^{\text {3/3 }}$	Vosc		-	0.5	-	Vcc	Vp-p		
" H " level input voltage	$\begin{aligned} & \text { Data, } \\ & \text { Clock, } \\ & \text { LE,PS, } \\ & \text { ZC } \end{aligned}$	VIH		-	$\mathrm{V} \mathrm{cc} \times 0.7$	-	-	V		
"L" level input voltage		VIL		-	-	-	$\mathrm{Vcc} \times 0.3$			
"H" level input current	Data, Clock, LE, PS	$1 H^{* 4}$		-	-1.0	-	+1.0	$\mu \mathrm{A}$		
"L" level input current		$1 L^{*}$		-	-1.0	-	+1.0			
"H" level input current	OSCIn	$\mathrm{IH}^{\text {H}}$		-	0	-	+100	$\mu \mathrm{A}$		
"L" level input current		$11{ }^{\text {+4 }}$		-	-100	-	0			
"H" level input current	ZC	$11 \sim^{* 4}$		-	-1.0	-	+1.0	$\mu \mathrm{A}$		
"L" level input current		$11{ }^{*} 4$	Pull up inpu		-100	-	0			
"L" level output voltage	¢P	VoL	Open drain		-	-	0.4	V		
"H" level output voltage	ϕ R, LD/fout	Vон	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}=3$	V , $\mathrm{lo} \mathrm{o}=-1 \mathrm{~mA}$	$\mathrm{V} c \mathrm{c}-0.4$	-	-	V		
"L" level output voltage		VoL	$V_{C C}=V_{P}=3.0$	V , loL $=1 \mathrm{~mA}$	-	-	0.4			
"H" level output voltage	Do	Vooh	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}=3$	$\mathrm{V}, \mathrm{IOOH}=-0.5 \mathrm{~mA}$	$\mathrm{V} P-0.4$	-	-	V		
"L" level output voltage		Vod	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}=3$	V , lool $=0.5 \mathrm{~mA}$	-	-	0.4			
High impedance cutoff current	Do	loff	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}= \\ & \text { Voff }=0.5 \end{aligned}$	$V_{P}-0.5 V$	-	-	2.5	nA		
"L" level output current	фP	lo	Open drain		1.0	-	-	mA		
"H" level output current	¢R,	Іон		-	-	-	-1.0	mA		
"L" level output current	LD/fout	loL		-	1.0	-	-			
"H" level output current	Do		$\begin{aligned} & V_{c \mathrm{c}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{P}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DO}}=\mathrm{VP} / 2 \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$	CS bit = "H"	-	-6.0	-	mA		
		loOH^{4}		CS bit $=$ "L"	-	-1.5	-			
"L" level output current		Iool		CS bit $=$ " H "	-	6.0	-			
				CS bit = "L"	-	1.5	-			
Charge pump current rate	Iooi/looh	lomat ${ }^{5}$	$\mathrm{V}_{\mathrm{DO}}=\mathrm{V}_{\mathrm{P}} / 2$		-	3	-	\%		
	vs Vod	loovo ${ }^{\text {¢ }}$	$0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DO}}$	- 0.5 V	-	10	-	\%		
	vs Ta	Idota ${ }^{\text {a }}$	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta}$	$85^{\circ} \mathrm{C}$	-	10	-	\%		

MB15E07SL

*1: Conditions; fosc $=12 \mathrm{MHz}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$, in locking state.
*2: $\quad \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{fosc}=12.8 \mathrm{MHz}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$, in power saving mode
*3: AC coupling. 1000 pF capacitor is connected under the condition of min. operating frequency.
*4: The symbol "-" (minus) means direction of current flow.
*5: $\quad \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\left(| |_{3}\left|-\left|\left.\right|_{4}\right|\right) /\left[\left(\left|\left.\right|_{3}\right|+\left|\left.\right|_{4}\right|\right) / 2\right] \times 100(\%)\right.$
*6: $\quad \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\left[\left(\left|\mathrm{I}_{2}\right|-\left|\left.\right|_{1}\right|\right) / 2\right] /\left[\left(\left|\mathrm{I}_{1}\right|+\left|\mathrm{I}_{2}\right|\right) / 2\right] \times 100$ (\%) (Applied to each Idol, IDoн)

MB15E07SL

FUNCTIONAL DESCRIPTION

1. Pulse Swallow Function

The divide ratio can be calculated using the following equation:

```
fvoo = [(M N N)+A] × fosc % R (A < N)
    fvco : Output frequency of external voltage controlled oscillator (VCO)
    N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)
    A : Preset divide ratio of binary 7-bit swallow counter (0\leqA\leq127)
    fosc : Output frequency of the reference frequency oscillator
    R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)
    M : Preset divide ratio of modulus prescaler (32 or 64)
```


2. Serial Data Input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference divider and the programmable divider separately.
Binary serial data is entered through the Data pin.
One bit of data is shifted into the shift register on the rising edge of the Clock. When the LE signal pin is taken high, stored data is latched according to the control bit data as follows:

Table 1. Control Bit

Control bit (CNT)	Destination of serial data
H	For the programmable reference divider
L	For the programmable divider

(1) Shift Register Configuration

MB15E07SL

Programmable Counter																		
$\underset{\downarrow}{\text { LSB }}$									Flo	-								$\begin{gathered} \text { MSB } \\ \downarrow \end{gathered}$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C	A	A	A	A	A	A	A	N	N	N	N	N	N	N	N	N	N	N
N	1	2	3	4	5	6	7	1	2	3	4	5	6	7	8	9	10	11
CNT : Control bit [Table 1] N1 to N11: Divide ratio setting bits for the programmable counter (3 to 2,047) [Table 3] A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127) [Table 4]																		
Note: Data input with MSB first.																		

Table 2. Binary 14-bit Programmable Reference Counter Data Setting

Divide ratio (R)	\mathbf{R} $\mathbf{1 4}$	\mathbf{R} $\mathbf{1 3}$	\mathbf{R} $\mathbf{1 2}$	\mathbf{R} $\mathbf{1 1}$	\mathbf{R} $\mathbf{1 0}$	\mathbf{R} $\mathbf{9}$	\mathbf{R} $\mathbf{8}$	\mathbf{R} $\mathbf{7}$	\mathbf{R} $\mathbf{6}$	\mathbf{R} $\mathbf{5}$	\mathbf{R} $\mathbf{4}$	\mathbf{R} $\mathbf{3}$	\mathbf{R} $\mathbf{2}$	\mathbf{R} $\mathbf{1}$
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
\cdot														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 3 is prohibited.
Table 3. Binary 11-bit Programmable Counter Data Setting

Divide ratio (N)	\mathbf{N} $\mathbf{1}$	\mathbf{N} $\mathbf{1 0}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{8}$	\mathbf{N} $\mathbf{7}$	\mathbf{N} $\mathbf{6}$	\mathbf{N} $\mathbf{5}$	\mathbf{N} $\mathbf{4}$	\mathbf{N} $\mathbf{3}$	\mathbf{N} $\mathbf{2}$	\mathbf{N} $\mathbf{1}$
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\cdot											
2047	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 3 is prohibited.

Table 4. Binary 7-bit Swallow Counter Data Setting

Divide ratio (A)	\mathbf{A} $\mathbf{7}$	\mathbf{A} $\mathbf{6}$	\mathbf{A} $\mathbf{5}$	\mathbf{A} $\mathbf{4}$	\mathbf{A} $\mathbf{3}$	\mathbf{A} $\mathbf{2}$	\mathbf{A} $\mathbf{1}$
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot							
127	1	1	1	1	1	1	1

Table 5. Prescaler Data Setting

SW	Prescaler divide ratio
H	$32 / 33$
L	$64 / 65$

Table 6. Charge Pump Current Setting

CS	Current value
H	$\pm 6.0 \mathrm{~mA}$
L	$\pm 1.5 \mathrm{~mA}$

Table 7. LD/fout Output Select Data Setting

LDS	LD/fout output signal
H	fout signal
L	LD signal

(2) Relation between the FC Input and Phase Characteristics

The FC bit changes the phase characteristics of the phase comparator. Both the internal charge pump output level (Do) and the phase comparator output ($\phi \mathrm{R}, \phi \mathrm{\phi}$) are reversed according to the FC bit. Also, the monitor pin (fout) output is controlled by the FC bit. The relationship between the FC bit and each of Do, ϕR, and ϕP is shown below.

Table 8. FC Bit Data Setting (LDS = " H ")

	FC = High				FC = Low			
	Do	¢R	фP	LD/fout	Do	中R	ϕP	LD/fout
$\mathrm{fr}>\mathrm{ff}$	H	L	L	fout $=\mathrm{fr}$	L	H	Z*	fout $=\mathrm{fp}$
$\mathrm{fr}<\mathrm{fp}$	L	H	Z*		H	L	L	
$\mathrm{fr}=\mathrm{ff}$	Z*	L	Z^{*}		Z*	L	Z*	

[^0]
MB15E07SL

When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.

* : When the LPF and VCO characteristics are similar to (1), set FC bit high. * : When the VCO characteristics are similar to (2), set FC bit low.		
		LPF Output Voltage \longrightarrow

3. Do Output Control

Table 9. ZC Pin Setting

ZC pin	Do output
H	Normal output
L	High impedance

4. Power Saving Mode (Intermittent Mode Control Circuit)

Table 10. PS Pin Setting

PS pin	Status
H	Normal mode
L	Power saving mode

The intermittent mode control circuit reduces the PLL power consumption.
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See the Electrical Characteristics chart for the specific value.
The phase detector output, Do, becomes high impedance.
For the signal PLL, the lock detector, LD, remains high, indicating a locked condition.
Setting the PS pin high, releases the power saving mode, and the device works normally.
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time.
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation.

Note: When power (V cc) is first applied, the device must be in standby mode, $\mathrm{PS}=$ Low, for at least $1 \mu \mathrm{~s}$.

MB15E07SL

Note: • PS pin must be set "L" for Power-ON.

(1) $P S=L$ (power saving mode) at Power ON
(2) Set serial data 1μ s later after power supply remains stable ($\mathrm{V}_{\mathrm{cc}} \geq 2.2 \mathrm{~V}$).
(3) Release power saving mode (PS: $L \rightarrow H$) 100 nS later after setting serial data.

MB15E07SL

SERIAL DATA INPUT TIMING

On the rising edge of the clock, one bit of data is transferred into the shift register.

Parameter	Min.	Typ.	Max.	Unit
t_{1}	20	-	-	ns
t_{2}	20	-	-	ns
t_{3}	30	-	-	ns
t_{4}	30	-	-	ns

Parameter	Min.	Typ.	Max.	Unit
t_{5}	100	-	-	ns
t_{6}	20	-	-	ns
t_{7}	100	-	-	ns

Note: LE should be "L" when the data is transferred into the shift register.

MB15E07SL

PHASE COMPARATOR OUTPUT WAVEFORM

[FC = "H"]

[FC = "L"]

Notes: 1. Phase error detection range: -2π to $+2 \pi$
2. Pulses on Do signal during locked state are output to prevent dead zone.
3. LD output becomes low when phase is twu or more. LD output becomes high when phase error is twL or less and continues to be so for three cycles or more.
4. twu and twl depend on $\mathrm{OSC}_{\mathrm{IN}}$ input frequency.
twu \geq 2/fosc (s) (e. g. twu $\geq 156.3 \mathrm{~ns}$, fosc $=12.8 \mathrm{MHz}$)
$\mathrm{twu} \leq 4 / \mathrm{fosc}$ (s) (e. g. $\mathrm{twL} \leq 312.5 \mathrm{~ns}, \mathrm{fosc}=12.8 \mathrm{MHz}$)
5. LD becomes high during the power saving mode ($\mathrm{PS}=$ " L ").

MB15E07SL

MEASURMENT CIRCUIT (for Measuring Input Sensitivity fin/OSCin)

Note: SSOP-16

MB15E07SL

TYPICAL CHARACTERISTICS

1. fin input impedance

MB15E07SL

2. OSCIn input frequency

MB15E07SL

3. Do output current

1.5 mA mode

6.0 mA mode

MB15E07SL

4. fin input impedance

START $\quad 500.000 \quad 000 \mathrm{MHz}$
STOP 2500.000000 MHz
5. OSCin input impedance

REFERENCE INFORMATION

PLL Reference Leakage

PLL Phase Noise

MB15E07SL

(Continued)

MB15E07SL

APPLICATION EXAMPLE

VP: 5.5 V Max

Notes: 1. SSOP-16
2. In case of using a crystal resonator, it is necessary to optimize matching between the crystal and this LSI, and perform detailed system evaluation. It is recommended to consult with a supplier of the crystal resonator. (Reference oscillator circuit provides its own bias, feedback resistor is $100 \mathrm{k} \Omega$ (typ).)

MB15E07SL

USAGE PRECAUTIONS

To protect against damage by electrostatic discharge, note the following handling precautions:
-Store and transport devices in conductive containers.
-Use properly grounded workstations, tools, and equipment.
-Turn off power before inserting device into or removing device from a socket.
-Protect leads with a conductive sheet when transporting a board-mounted device.
■ ORDERING INFORMATION

Part number	Package	Remarks
MB15E07SLPFV1	16-pin, Plastic SSOP (FPT-16P-M05)	
MB15E07SLPV1	16-pad, Plastic BCC (LCC-16P-M06)	

MB15E07SL

PACKAGE DIMENSIONS

16-pin plastic SSOP
(FPT-16P-M05)

* : These dimensions do not include resin protrusion.

© 1994 FUJITSU LIMITED F16013S-2C-4
Dimensions in mm (inches)
(Continued)

MB15E07SL

(Continued)
16-pad plastic BCC
(LCC-16P-M06)

© 1999 FUUTSU LIMITED C160017S-1C-1
Dimensions in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/

North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am- 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

F9904

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *: High impedance

