PRELIMINARY

## 16-Bit Bidirectional Transceiver with 3-State Outputs

## GENERAL DESCRIPTION

The ML65F16245 is a BiCMOS, non-inverting 16-bit transceiver with 3-state outputs. This device was specifically designed for high speed bus applications. Its 16 channels support propagation delay of 2 ns maximum, and fast output enable and disable times of 5 ns or less to minimize datapath delay.

This device is designed to minimize undershoot, overshoot, and ground bounce to decrease noise delays. These transceivers implement a unique digital and analog implementation to eliminate the delays and noise inherent in traditional digital designs. The device offers a new method for quickly charging up a bus load capacitor to minimize bus settling times, or FastBus ${ }^{\top M}$ Charge. FastBus Charge is a transition current, (specified as $I_{\text {DYNAMIC }}$ ) that injects between 60 to 200 mA (depending on output load) of current during the rise time and fall time. This current is used to reduce the amount of time it takes to charge up a heavily-capacitive loaded bus, effectively reducing the bus settling times, and improving data/clock margins in tight timing budgets.

Micro Linear's solution is intended for applications for critical bus timing designs that include minimizing device propagation delay, bus settling time, and time delays due to noise. Applications include; high speed memory arrays, bus or backplane isolation, bus to bus bridging, and sub-2ns propagation delay schemes.

The ML65F16245 follows the pinout and functionality of the industry standard 2.7 V to 3.6 V -logic families.

## FEATURES

■ Low propagation delays - 2 ns maximum for 3.3 V , 2.5 ns maximum for 2.7 V

■ Fast output enable/disable times of 5 ns maximum

- FastBus Charge current to minimize the bus settling time during active capacitive loading

■ 2.7 V to 3.6 V a $\mathrm{V}_{\mathrm{CC}}$ supply operation; LV-TTL compatible input and output levels with 3-state capability

- Industry standard pinout compatible to FCT, ALV, LCX, LVT, and other low voltage logic families

■ ESD protection exceeds 2000 V

- Full output swing for increased noise margin

■ Undershoot and overshoot protection to 400 mV typically

- Low ground bounce design
*This Part Is End Of Life As Of August 1, 2000

BLOCK DIAGRAM


ML65F16245
48-Pin SSOP (R48)
48-Pin TSSOP (T48)


## FUNCTION TABLE

(Each 8-bit section)

| $\overline{\mathbf{O E}}$ | DIR | $\mathbf{A i}$ | $\mathbf{B i}$ | FUNCTION |
| :---: | :---: | :---: | :---: | :--- |
| $H$ | X | Z | Z | Disable |
| L | L | Output | Input | Bus B to Bus A |
| L | H | Input | Output | Bus A to Bus B |
| $\mathrm{L}=$ Logic Low, $\mathrm{H}=$ Logic High, $\mathrm{X}=$ Don't Care, $\mathrm{Z}=$ High Impedance <br> $\mathrm{i}=0$ to 7 |  |  |  |  |

## PIN DESCRIPTION

| PIN | NAME | FUNCTION | PIN | NAME | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1DIR | Direction Select | 25 | $2 \overline{\mathrm{OE}}$ | Output Enable |
| 2 | 1 BO | Data Bus 1B | 26 | 2A7 | Data Bus 2A |
| 3 | 1B1 | Data Bus 1B | 27 | 2A6 | Data Bus 2A |
| 4 | GND | Signal Ground | 28 | GND | Signal Ground |
| 5 | 1B2 | Data Bus 1B | 29 | 2A5 | Data Bus 2A |
| 6 | 1B3 | Data Bus 1B | 30 | 2A4 | Data Bus 2A |
| 7 | $\mathrm{V}_{\mathrm{CC}}$ | 2.7V to 3.6V Supply | 31 | $\mathrm{V}_{\text {CC }}$ | 2.7V to 3.6V Supply |
| 8 | 1B4 | Data Bus 1B | 32 | 2A3 | Data Bus 2A |
| 9 | 1B5 | Data Bus 1B | 33 | 2A2 | Data Bus 2A |
| 10 | GND | Signal Ground | 34 | GND | Signal Ground |
| 11 | 1B6 | Data Bus 1B | 35 | 2A1 | Data Bus 2A |
| 12 | 1B7 | Data Bus 1B | 36 | 2A0 | Data Bus 2A |
| 13 | 2B0 | Data Bus 2B | 37 | 1A7 | Data Bus 1A |
| 14 | 2B1 | Data Bus 2B | 38 | 1A6 | Data Bus 1A |
| 15 | GND | Signal Ground | 39 | GND | Signal Ground |
| 16 | 2B2 | Data Bus 2B | 40 | 1A5 | Data Bus 1A |
| 17 | 2B3 | Data Bus 2B | 41 | 1A4 | Data Bus 1A |
| 18 | $\mathrm{V}_{\text {CC }}$ | 2.7V to 3.6V Supply | 42 | $\mathrm{V}_{\text {CC }}$ | 2.7V to 3.6V Supply |
| 19 | 2B4 | Data Bus 2B | 43 | 1 A 3 | Data Bus 1A |
| 20 | 2B5 | Data Bus 2B | 44 | 1A2 | Data Bus 1A |
| 21 | GND | Signal Ground | 45 | GND | Signal Ground |
| 22 | 2B6 | Data Bus 2B | 46 | 1A1 | Data Bus 1A |
| 23 | 2B7 | Data Bus 2B | 47 | 1A0 | Data Bus 1A |
| 24 | 2DIR | Direction Select | 48 | $1 \overline{\mathrm{OE}}$ | Output Enable |

## ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
$\mathrm{V}_{\mathrm{CC}}$ 7V
DC Input Voltage ............................ -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
AC Input Voltage (PW < 20ns) ................................ -3.0V
DC Output Voltage ...................................-0.3V to 7VDC
Output Current, Source or Sink ............................. 180mA

| Storage Temperature Ra | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Junction Temperature . | $150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 10sec) | $150^{\circ} \mathrm{C}$ |
| Thermal Impedance ( $\theta_{\text {IA }}$ ) | $76^{\circ} \mathrm{C} / \mathrm{W}$ |

## OPERATING CONDITIONS

Temperature Range$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$V_{\text {IN }}$ Operating Range ..... 2.7 V to 3.6 V

## ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range (Note 1).

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC ELECTRICAL CHARACTERISTICS ( $\mathrm{C}_{\text {LOAD }}=50 \mathrm{pF}$ ) |  |  |  |  |  |  |  |
| $\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$ | Propagation Delay | Ai to/from Bi | 3.3 V | 1.35 | 1.7 | 2 | ns |
|  |  |  | 2.7V | 1.25 | 1.9 | 2.5 | ns |
| toe | Output Enable Time | OE to $\mathrm{Ai} / \mathrm{Bi}$ | 3.3 V |  |  | 5 | ns |
|  |  |  | 2.7 V |  |  | 6 | ns |
|  |  | DIR to Ai/Bi | 3.3 V |  |  | 5 | ns |
|  |  |  | 2.7 V |  |  | 6 | ns |
| ${ }_{\text {tod }}$ | Output Disable Time | OE to $\mathrm{Ai} / \mathrm{Bi}$ | 3.3 V |  |  | 5 | ns |
|  |  |  | 2.7 V |  |  | 6 | ns |
|  |  | DIR to Ai/Bi | 3.3 V |  |  | 5 | ns |
|  |  |  | 2.7 V |  |  | 6 | ns |
| TOS | Output-to-Output Skew |  |  |  |  | 300 | ps |
| $\mathrm{CIN}^{\text {N }}$ | Input Capacitance |  |  |  | 8 |  | pF |

DC ELECTRICAL CHARACTERISTICS (C $\mathrm{C}_{\text {LOAD }}=50 \mathrm{pF}, \mathrm{R}_{\text {LOAD }}=$ Open)

| $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage | Logic high | 2.0 |  |  |
| :---: | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{~V}_{\mathrm{IL}}$ | Input Low Voltage | Logic low |  |  | 0.8 |
| $\mathrm{I}_{\mathrm{IH}}$ | Input High Current | Per pin, $\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ | V |  |  |
| $\mathrm{I}_{\mathrm{IL}}$ | Input Low Current | Per pin, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ |  |  | 300 |
| $\mathrm{I}_{\mathrm{HI}-\mathrm{Z}}$ | Three-State Output Current | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, 0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$ |  | 300 | $\mu \mathrm{~A}$ |
| $\mathrm{~V}_{\mathrm{IC}}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=18 \mathrm{~mA}$ |  |  | 5 |
| $\mathrm{I}_{\mathrm{DYNAMIC}}$ | Dynamic Transition Current <br> (FastBus Charge) | Low to high transitions | $\mu \mathrm{A}$ |  |  |
|  | High to low transitions |  | -0.7 | -0.2 | V |
| $\mathrm{~V}_{\mathrm{OH}}$ | Output High Voltage |  | 80 |  | mA |
|  |  |  | $\mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ | 2.4 | 3.4 |
| $\mathrm{~V}_{\mathrm{OL}}$ | Output Low Voltage | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ and 2.7 V | 2.25 | 2.35 |  |
| $\mathrm{I}_{\mathrm{CC}}$ | Quiescent Power Supply Current | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{f}=0 \mathrm{~Hz}$, <br> inputs $=\mathrm{V}_{\mathrm{CC}}$ or 0 V | VA |  |  |

Note 1: Limits are guaranteed by $100 \%$ testing, sampling, or correlation with worst-case test conditions.


Figure 1a. Typical $\mathrm{V}_{\mathrm{OL}}$ vs. $\mathrm{I}_{\mathrm{OL}}$ for $3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$. One Buffer Output


Figure 2a. Propagation Delay vs. Load Capacitance: 3.3V, 50MHZ


Figure 3a. $\mathrm{I}_{\mathrm{CC}}$ vs. Frequency: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$. One Buffer Output


Figure 1b. Typical $\mathrm{V}_{\mathrm{OH}}$ vs. $\mathrm{I}_{\mathrm{OH}}$ for $3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$. One Buffer Output


Figure 2b. Propagation Delay vs. Load Capacitance: 2.7V, 50MHZ


Figure 3b. $I_{C C}$ vs. Frequency: $V_{C C}=V_{I N}=2.7 \mathrm{~V}$.
One Buffer Output

## FUNCTIONAL DESCRIPTION



Figure 4. Logic Diagram


Figure 5. Logic Symbol

## ARCHITECTURAL DESCRIPTION

The ML65F16245 is a 16 -bit (dual-octal) non-inverting bus transceiver with 3-state outputs designed for 2.7 V to 3.6 V $\mathrm{V}_{\mathrm{CC}}$ operation. This device is designed for asynchronous communication between data buses. The ML65F16245 can be used as two 8-bit transceivers or as one 16-bit transceiver and can be designated as Port-A bus and Port-B bus. The Direction and Output Enable controls are designed to operate these configurations. The direction control pin (iDIR) controls the direction of the data flow. The output enable pin ( $1 \overline{\mathrm{OE}}, 2 \overline{\mathrm{OE}}$ ) overrides the direction control and disables both ports.

Until now, these transceivers were typically implemented in CMOS logic and made to be TTL compatible by sizing the input devices appropriately. In order to buffer large capacitances with CMOS logic, it is necessary to cascade an even number of inverters, each successive inverter larger than the preceding, eventually leading to an inverter that will drive the required load capacitance at the required frequency. Each inverter stage represents an additional delay in the gating process because in order for a single gate to switch, the input must slew more than half of the supply voltage. The best of these 16 -bit CMOS buffers has managed to drive 50 pF load capacitance with a delay of 3 ns .

Micro Linear has produced a 16-bit transceiver with a delay less than 2 ns (at 3.3 V ) by using a unique circuit architecture that does not require cascade logic gates.

The basic architecture of the ML65F16245 is shown in Figure 6. In this circuit, there are two paths to the output. One path sources current to the load capacitance where the signal is asserted, and the other path sinks current from the output when the signal is negated.

The assertion path is the Darlington pair consisting of transistors Q1 and Q2. The effect of transistor Q1 is to increase the current gain through the stage from input to output, to increase the input resistance and to reduce input capacitance. During the transition state (the input from low-to-high) the output transistor Q2 sources large amount of current to quickly charge up a highly capacitive load which in effect reduces the bus settling time. This current is specified as $I_{\text {DYNAMIC. }}$.

The negation path is also the Darlington pair consisting of transistor Q3 and transistor Q4. With M1 connecting to the input of the Darlington pair, Transistor Q4 then sinks a large amount of current during the input transition from high-to-low.

Inverter X2 is a helpful buffer that not only drives the output toward the upper rail but also pulls the output to the lower rail.

There are a number of MOSFETs not shown in Figure 6. These MOSFETs are used to 3-state the buffers.


Figure 6. One Buffer Cell of the ML65F16245


Figure 7. Test Circuits for All Outputs


Figure 9. Enable and Disable Times


Figure 8. Propagation Delay


Figure 10. Output Skew

## PHYSICAL DIMENSIONS inches (millimeters)



Package: T48
48-Pin TSSOP


## ORDERING INFORMATION

| PART NUMBER | TEMPERATURE RANGE | PACKAGE |
| :---: | :---: | :---: |
| ML65F16245CR (Obsolete) | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 48 -Pin SSOP (R48) |
| ML65F16245CT (EOL) | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | $48-\operatorname{Pin}$ TSSOP (T48) |

© Micro Linear 1998. Micro Linear is a registered trademark of Micro Linear Corporation. All other trademarks are the property of their respective owners.
Products described herein may be covered by one or more of the following U.S. patents: $4,897,611 ; 4,964,026 ; 5,027,116 ; 5,281,862 ; 5,283,483 ; 5,418,502$; $5,508,570 ; 5,510,727 ; 5,523,940 ; 5,546,017 ; 5,559,470 ; 5,565,761 ; 5,592,128 ; 5,594,376 ; 5,652,479 ; 5,661,427 ; 5,663,874 ; 5,672,959 ; 5,689,167 ; 5,714,897 ;$ $5,717,798 ; 5,742,151 ; 5,747,977 ; 5,754,012 ; 5,757,174 ; 5,767,653 ;$. Japan: $2,598,946 ; 2,619,299 ; 2,704,176$. Other patents are pending.
Micro Linear reserves the right to make changes to any product herein to improve reliability, function or design. Micro Linear does not assume any liability arising out of the application or use of any product described herein, neither does it convey any license under its patent right nor the rights of others. The circuits contained in this data sheet are offered as possible applications only. Micro Linear makes no warranties or representations as to whether the illustrated circuits infringe any intellectual property rights of others, and will accept no responsibility or liability for use of any application herein. The customer is urged to consult

