EARTH LEAKAGE CURRENT DETECTOR ### **Description** The SL7101 is designed for use in earth leakage circuit interrupters for operation directly of the AC Line in breakers. It contains pre regulator, main regulator, after regulator, differential amplifier, level comparator, latch circuit. The input in the differential amplifier is connect to the secondary node of zero current transformer. The level comparator generates high level when earth leakage current is greater than some level. #### **Feature** - Low Power Consumption (P_D=5mW) 100V/200V - 100V/200V Common Built-in Voltage Regulator - High Gain Differential Amplifier - · High Input Sensitivity - Minimum External Parts - Large Surge Margin - Wide Operating Temperature Range (T_A=-30 to 85°C) - High Noise Immunity ## Absolute Maximum Ratings (T^=25°c) Supply Voltage 20V Supply Current 8mA Power Dissipation 200mW Operating Temperature - 30 to 85°C Storage Temperature - 55 to 125°C # Pin Configuration (Top View) #### **Block Diagram** ## Recomended Operating Condition: T_A=-30°C to 80°C | PARAMETER | SYMBOL | MIN. | TYP. | MAX | UNIT | |-------------------------------|----------------|------|------|-----|------| | Supply Voltage | V ⁺ | 12 | | | V | | Vs-GND Capacitor | Cvs | 1 | | | μF | | O _s -GND Capacitor | Cos | | | 1 | μF | ## **Electrical Characteristics** | PARAMETER | SYMBOL CONDTIONS | | TEMP. | MIN. | TYP. | MAX. | UNIT | | |------------------------------|--------------------|---|----------------------|------|------|------|-------|-------| | | | | | (°C) | | | | | | | I _{S1} | $V^{+}=12V$, $V_{R} - V_{I} = 30 \text{ mV}$ | | -30 | - | - | 580 | μΑ | | Supply Current 1 | | | | 25 | 300 | 400 | 530 | | | | | | | 85 | • | - | 480 | | | * Trip Voltage | V_T | $V^{+} = 16V,$ | | -30 | 9 | 13.5 | 18 | mV | | | | $V_R - V_I = X$ | | 85 | | | | (rms) | | Differential | I_{TD1} | $V^{+} = 16 V$, | | 25 | -12 | -20 | -30 | μΑ | | Amplifier | | $V_{R} - V_{I} = 30$ |) mV | | | | | | | Output Current 1 | | $V_{OD} = 1.2 \text{ V}$ | 1 | | | | | | | Differential | I_{TD2} | $V^+ = 16 \text{ V},$
$V_R - V_I = \text{short}$
$V_{OD} = 0.8 \text{ V}$ | | 25 | 17 | 27 | 37 | μΑ | | Amplifier Output | | | | | | | | | | current 2 | | | | | | | | | | | | V _{SC} = 1.4 V | $I_{SI} = 580 \mu A$ | -30 | -200 | - | | | | Output Current | lo | $V_{SC} = 1.4 \text{ V}$
$V_{OS} = 0.8 \text{ V}$ | $I_{SI} = 530 \mu A$ | 25 | -100 | - | | μΑ | | | | V 05 = 0.0 V | $I_{SI} = 480 \mu A$ | 85 | -75 | - | | | | S _c ON Voltage | V _{SC} ON | V ⁺ = 16 V | | 25 | 0.7 | 1.0 | 1.4 | V | | S _C Input Current | I _{SC} ON | V ⁺ = I2V | | 25 | - | - | 5 | μА | | Output "L" Current | I _{OSL} | V ⁺ = 12 V,
V _{OSL} = 0.2 V | | -30 | 200 | 800 | 1400 | μА | | Catput L Carront | OSL | | | 85 | 200 | | 1 100 | μι | | Input Clamp | V _{IC} | V ⁺ = 12 V, | | -30 | 4.3 | - | 6.7 | V | | Voltage | | $I_{IC} = 20 \text{ mA}$ | | 85 | | | | | | Differential Input | V_{IDC} | I _{IDC} = 100mA | | -30 | 0.4 | 1.2 | 2 | V | | Clamp Voltage | | | | 85 | | | | | | Max. Current
Voltage | V _{SM} | I _{SM} = 7 mA | | 25 | 20 | 24 | 28 | V | | Supply Current 2 | I_{S2} | $V_{OS} = 0.5 \text{ V},$ | | -30 | - | - | 1200 | μΑ | | $V_R - V_1 = X$ | | | 85 | | | | · | | | Latch Circuit Off | V+ OFF | | | 25 | 0.5 | | | V | | Supply Votage | | | | | | | | | | Response Time | T _{ON} | V ⁺ = 16 V, | | 25 | 1 | 3 | 4 | ms | | | | $V_{R} - V_{I} = 0.3$ | | | | | | | ^{*} A: 9 ~12.5 B: 11.5~15.5 C: 14.5~18 ## **Typical Performance Curves** ## **Typical Application** ## Description of elements of application diagram - 1. The resistance of R1 resistor is chosen in such a way so that to limit IC's consumption current (not more than 8 mA), and here the voltage drop is around 21-28V. - 2. R2 resistor provides the necessary bias of the differential cascade. - 3. R3 resistor is a loading one per input. - 4. R4 resistor limits the charging current of C4 electrolytic capacitor are required to maintain IC performance until the fuse is completely burn out. Its value is chosen correspondingly. - 5. C1 electrolytic capacitor is a filtering one as per supply (around $1-10 \, \mu F$). - 6. $\tilde{N}2$ and C3 capacitors are filtering ones (not more than 1 μ F)