IF AMPLIFIER IC
 WITH ON-CHIP MIXER FOR DIGITAL CELLULAR PHONES

The μ PC8001 is a 3-volt IF amplifier IC with an on-chip mixer developed for digital cellular phones.
The $\mu \mathrm{PC} 8001$ consists of a high-sensitivity limiter amplifier with an input frequency of 455 kHz , a high-speed and high-precision linear RSSI (received signal strength indicator), and a second mixer with an inputfrequency of 80 to 150 MHz .

The μ PC8001 features a low 3 mA (TYP.) and $2.2 \mu \mathrm{~A}$ (TYP.) current consumption at normal operation and power-OFF, respectively. Its high-speed charge/discharge circuit enables fast power-ON/OFF switching.

The μ PC8001 boasts an extremely small size packaged in a 14-pin plastic shrink SOP, and low external capacitances of less than $0.01 \mu \mathrm{~F}$, in addition to an on-chip RSSI output resistor, and is most suitable for high-density mounting.

FEATURES

- Low-voltage operation... $3 \mathrm{~V} \pm 10 \%$
- Low power consumption... (Vcc $=3 \mathrm{~V}$)

	Mixer	IF amp. + RSSI
During operation	2.1 mA (TYP.)	0.95 mA (TYP.)
At power-OFF	$0 \mu \mathrm{~A}$ (TYP.)	$2.2 \mu \mathrm{~A}$ (TYP.)

- High limiting sensitivity...-91 dBm (TYP.)
- High-precision RSSI linearity... $\pm 0.5 \mathrm{~dB}$ (TYP.) (VIF IN $=-86$ to -6 dBm)
- High-speed RSSI response time

RSSI output rise time	77μ S (TYP.)
RSSI output fall time	113μ (TYP.)

- High-speed power-ON/OFF switching time

Rise time at power-ON	$174 \mu \mathrm{~S}$ (TYP.)
Fall time at power-OFF	$3 \mu \mathrm{~S}$ (TYP.)

- External capacitors of less than $0.01 \mu \mathrm{~F}$
- On-chip RSSI output resistor (34 k)
- Ultra-compact package...14-pin plastic shrink SOP

ORDERING INFORMATION

Part number	Package
$\mu \mathrm{PC} 8001 \mathrm{GR}$	14-pin plastic shrink SOP (225 mil)
$\mu \mathrm{PC} 8001 \mathrm{GR}$-E1	14-pin plastic shrink SOP (225 mil) Embossed carrier taping (Pin 1 located toward tape unwind direction)
μ PC8001GR-E2	14-pin plastic shrink SOP (225 mil) Embossed carrier taping (Pin 1 located toward tape wind direction)

BLOCK DIAGRAM

Note Input/output impedance of 455 kHz BPF: $1.5 \mathrm{k} \Omega$

CONTENTS

1. PIN CONFIGURATION AND PIN FUNCTIONS 5
2. I/O EQUIVALENT CIRCUIT 7
3. ELECTRICAL SPECIFICATIONS 8
4. CHARACTERISTIC CURVES 14
5. TEST CIRCUIT EXAMPLE 18
6. PACKAGE DRAWINGS 19
7. RECOMMENDED SOLDERING CONDITIONS 20

1. PIN CONFIGURATION AND PIN FUNCTIONS

(1) PIN CONFIGURATION (Top View)

- 14-pin plastic shrink SOP (225 mil)

FIL1-FIL3	$:$ Filter
GND	$:$ Ground
IF IN	: Intermediate Frequency Input
IF OUT	: Intermediate Frequency Output
MIX IN1, MIX IN2 $:$ Mixer Input	
MIX OUT	: Mixer Output
OSC IN	: Oscillator Input
PD	: Power Down
RSSI OUT	: Received Signal Strength Indicator Output
VCC1, VCC2	: Power Supply

(2) PIN FUNCTIONS

Number	Pin Name	I/O	
1	IF OUT	O	IF amplifier output
2	PD	I	Power-ON/OFF control signal input High level: Power-ON; Low level: Power-OFF
3	PSSI OUT	O	RSSI output
4	FIL3	-	Connect capacitor for filter.
5	VCC2	-	IF amplifier and RSSI power pin
6	IF IN	FIL1	-
7	FIL2	-	Connect capacitor for filter.
8	MIX OUT	-	Mixer output
9	GND	I	Oscillator input
10	OSC IN	-	Mixer power pin
11	VCC1	I	Connect capacitor for filter.
12	MIX IN2	I	Mixer input
13	MIX IN1		
14			

2. I/O EQUIVALENT CIRCUIT

3. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V_{cc}		7	V
Total power dissipation	P_{T}		300	mW
Operating ambient temperature	T_{A}		-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-40 to +125	${ }^{\circ} \mathrm{C}$

Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability;

 exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.Recommended Operating Conditions ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc			2.7	3.0	3.3	V
Mixer input level	Vmix in	See Figure 3-1.	50Ω termination	-100		-20	dBmNoter
			LC matching	-113 ${ }^{\text {Note2 }}$		-33Note2	dBmNoter
IF amplifier input level	Vifin			-86		-6	dBmNoter
Oscillator input level	Voscin			-30	-15	-5	dBmNoter
IF amplifier input frequency	$\mathrm{fiF}_{\text {I }}$			400	455	500	kHz
Mixer input frequency	fmix in			80	130	150	M Hz
Mixer output frequency	fmix out			400	455	500	kHz

Notes 1. Assuming a conversion value of $50 \Omega, 0 \mathrm{dBm}=0.2236 \mathrm{~V}$ rms.
2. Depends on board wiring pattern, use as reference value.

ELECTRICAL CHARACTERISTICS

(1) Mixer

Notes 1. Depends on board wiring pattern, use as reference value.
2. Time until DC voltage of mixer output reaches $\pm 10 \%$ of power-ON value.
3. Time until supply current reaches 10% of power-ON value.

(2) Power-ON/OFF

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power-ON input voltage	Von	Power-ON over Von and under Vcc		1.2	2.4	V
Power-OFF input voltage	Vof	Power-OFF over GND and under Vof	0.6	1.2		V
Power-ON input current	Ion	Von $=3 \mathrm{~V}$		48	75	$\mu \mathrm{~A}$

(3) IF Amplifier/RSSI

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Supply current	Icc2	No signal			0.95	1.3	mA
IF amplifier output amplitude	Vo	$\mathrm{V}_{\text {IF IN }}=-20 \mathrm{dBm}$		1.2	1.5	1.8	V_{p-p}
Limiting sensitivity	LS	-3dB point, see Figure 4-5.			-91	-86	dBm
IF amplifier input impedance	ZIN			1.2	1.5	1.8	$\mathrm{k} \Omega$
IF amplifier phase variation	$\Delta \phi$	$\mathrm{V}_{\mathrm{IF} \text { IN }}=-86$ to -6 dBm See Figure 4-6 ${ }^{\text {Notel }}$.			11		deg
RSSI linearity	Lrs	$\mathrm{V}_{\mathrm{IF} \text { IN }}=-86$ to -6 dBm Recursive calculation with VIF IN $=-60$ to -6 dBm			± 0.5	± 2	dB
RSSI slope	SLRS	Recursive calculation with $\mathrm{V}_{\mathrm{IF} \text { IN }}=-60$ to -6 dBm		22.3	24.4	30.1	$\mathrm{mV} / \mathrm{dB}$
RSSI intercept	$\mathrm{ICRS}^{\text {r }}$	Recursive calculation with $\mathrm{V}_{\mathrm{IF}} \mathrm{IN}=-60$ to -6 dBm See Figure 3-4.		-135	-118	-104	dBm
RSSI output voltage1	$V_{\text {R1 }}$	$\mathrm{V}_{\text {IF IN }}=-86 \mathrm{dBm}$		0.50	0.79	0.98	V
RSSI output voltage 2	VR2	$\mathrm{V}_{\text {IF IN }}=-46 \mathrm{dBm}$		1.60	1.79	1.90	V
RSSI output voltage 3	VR3	$\mathrm{VIFIN}^{\text {I }}=-6 \mathrm{dBm}$		2.70	2.75	2.82	V
RSSI output temperature stability	$\mathrm{S}_{\text {T }}$	$\begin{aligned} & V_{\text {IF } I N}=-86 \text { to }-6 \mathrm{dBm}, \\ & \mathrm{~T}_{\mathrm{A}}=-30 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			1		dB
RSSI rise time	tres	$\mathrm{V}_{\mathrm{IF} \text { IN }}=-6 \mathrm{dBm}$ See Figure 3-5.			77	300	$\mu \mathrm{S}$
RSSI fall time	tfrs	$\mathrm{V}_{\mathrm{IF} \text { IN }}=-6 \mathrm{dBm}$ See Figure 3-5.			113	300	$\mu \mathrm{S}$
RSSI output ripple	$V_{\text {RRS }}$	$\mathrm{VIFIN}^{\text {I }}=-6 \mathrm{dBm}$			3	12	$\mathrm{mV}_{\mathrm{p}-\mathrm{p}}$
Power-OFF supply current	lu	Vof $=0 \mathrm{~V}$			2.2	10	$\mu \mathrm{A}$
Power-ON rise time ${ }^{\text {Note2 }}$	toni	$\mathrm{V}_{\mathrm{on}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IF}}$ IN $=-86 \mathrm{dBm}$ PD signal rise time: 10 ns			174	600	$\mu \mathrm{s}$
Power-OFF fall time ${ }^{\text {Note3 }}$	tofı	$\begin{aligned} & \text { Vof }=0 \mathrm{~V} \\ & \text { PD signal fall time: } 10 \mathrm{~ns} \end{aligned}$			3	200	$\mu \mathrm{S}$
IF amplifier output slew rate	SRo	$\mathrm{VIFIN}^{\text {I }}=-20 \mathrm{dBm}$	Rise ${ }^{\text {Note4 }}$		3.4		$\mathrm{V} / \mu \mathrm{s}$
			Fall Note5		3.8		
RSSI output resistance	Ror			27	34	41	k Ω

Notes 1. Use the network analyzer at RBW $=3 \mathrm{~Hz}$.
2. Time until RSSI output reaches $\pm 10 \%$ of power-ON value.
3. Time until supply current reaches 10% of power-ON value.
4. Rise: 10% to 90%
5. Fall: 90% to 10%

Figure 3-1. Mixer Input

(a) 50Ω Termination

(b) LC Matching

Note The values L and C are affected by the parasitic capacitance and inductance of the board. Therefore, adjust L and C so that the impedance at the MIX IN pin from the signal source equals 50Ω.

Remark The signal source impedance is 50Ω.

Figure 3-2. Third Order Intercept

Remark Signal source impedance is 50Ω.

Figure 3-3. -1 dB Compression Output Level

Figure 3-4. RSSI Intercept

Figure 3-5. RSSI Response Time

Figure 3-6. Noise Figure Measurement

The noise figure is calculated as follows:

$$
N F=E N R-10 \log (Y-1)
$$

NF (dB): Noise figure
ENR (dB): ENR of noise source
$Y: Y=10^{\frac{N_{2}-N_{1}}{10}}$
$N_{1}(\mathrm{dBm})$: Spectrum analyzer indication value at SW OFF.
$\mathrm{N}_{2}(\mathrm{dBm})$: Spectrum analyzer indication value at SW ON.

Remark This measurement measures DSB. To measure SSB, add 3 dB to NF above.

4. CHARACTERISTIC CURVES

Figure 4-1. Mixer Supply Current vs. Supply Voltage

Figure 4-2. Mixer Output Level vs. Mixer Input Level

Figure 4-3. Mixer Conversion Gain vs. Mixer Input Frequency

Figure 4-4. IF Amplifier/RSSI Supply Current vs. Supply Voltage

Figure 4-5. IF Amplifier Output Level vs. IF Amplifier Input Level

Figure 4-6. IF Amplifier Output Phase vs. IF Amplifier Input Level

Figure 4-7. RSSI Output Voltage vs. IF Amplifier Input Level
(The temperature characteristics curves)

Remarks 1. ----- $\mathrm{T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$
$-\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
$----T_{A}=+85^{\circ} \mathrm{C}$
2. The three temperature characteristic curves are virtually identical.

5. TEST CIRCUIT EXAMPLE

Note The value of the capacitance connected to the IF OUT pin (No. 1) includes the capacitances of PCB wiring patterns and the tester.

Remark In three cases of Mixer Input, Third Order Intercept and Noise Figure Measurement, refer to Figures 3-1, 3-2, and 3-6.

6. PACKAGE DRAWINGS

14 PIN PLASTIC SHRINK SOP (225 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	5.40 MAX.	0.213 MAX.
B	0.75 MAX.	0.030 MAX.
C	0.65 (T.P.)	0.026 (T.P.)
D	$0.30{ }_{-0.05}^{+0.10}$	$0.012_{-0.003}^{+0.004}$
E	0.125 ± 0.075	0.005 ± 0.003
F	1.8 MAX.	0.071MAX.
G	1.44	0.057
H	6.2 ± 0.3	0.244 ± 0.012
1	4.4	0.173
J	0.9	0.035
K	$0.155_{-0.05}^{+0.10}$	$0.006_{-0.002}^{+0.004}$
L	0.5 ± 0.2	$0.020_{-0.009}^{+0.008}$
M	0.10	0.004
N	0.10	0.004

7. RECOMMENDED SOLDERING CONDITIONS

The following conditions must be met for soldering conditions of the $\mu \mathrm{PC} 8001$. For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Please consolt with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

Types of Surface Mount Device
μ PC8001GR: 14-pin plastic shrink SOP (225 mil)

Soldedering process	Soldering conditions	Symbol		
Infrared ray reflow	Peak temperature of package surface: $2355^{\circ} \mathrm{C}$ or below, Reflow time: 30 seconds or below (210 ${ }^{\circ} \mathrm{C}$ or higher), Number of reflow processes: MAX. 2 [Remark] (1) Please start the second reflow process after the temperature, raised by the first reflow process, returns to normal.	IR35-107-2		
(2) Please avoid removing the residual flux with water after the				
first reflow process.			\quad	Terminal temperature: $300{ }^{\circ} \mathrm{C}$ or below,
:---				
Time: 3 seconds or below (Per one side of the device).				

Precautions Against Static Electricity

Caution When handling the device, be careful to protect it from static electricity. exposure to a strong static electricity charge may destroy intemal transistor junctions. During transportation and storage, place the device in the conductive tray or case originally provided by NEC for shipping, or conductive shock absorbing material, metal case, etc. During assembly, be sure to ground the device. Be careful not to place the device on a plastic board and do not touch the device's pins.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special" , and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

