

AIGAAS INFRARED EMITTING DIODE

QEE122/123

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONS ARE IN INCHES (mm).
- TOLERANCE IS ± .010 (.25)
 UNLESS OTHERWISE SPECIFIED.

DESCRIPTION

The QEE12X is an 880 nm AlGaAs LED encapsulated in a wide angle, dark green, plastic sidelooker shell package.

FEATURES

- Tight production E₀ distribution.
- Steel lead frames for improved reliability in solder
- Good optical-to-mechanical alignment.
- Mechanically and wavelength matched to QSE11X series phototransistor.
- Plastic package color allows easy recognition from phototransistor.
- High irradiance level.

AIGAAS INFRARED EMITTING DIODE

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C Un	ess Otherwise Specified)
Storage Temperature	-40°C to + 100°C
Operating Temperature	40°C to + 100°C
Soldering:	
Lead Temperature (Iron)	240°C for 5 sec. (2.3,4.
Lead Temperature (Flow)	
Continuous Forward Current	
Reverse Voltage	
Power Dissipation	

ELECTRICAL CHARACTERISTICS (T _A = 25°C Unless Otherwise Specified) (All measurements made under pulse conditions.)							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
Forward Voltage	V _F	_		1.70	٧	$l_F = 20 \text{ mA}$	
Reverse Leakage Current	I _R	_	75.0 4.	10	μΑ	V _R = 5.0 V	
Peak Emission Wavelength	λ _P	_	880	_	nm	$I_F = 20 \text{ mA}$	
Emission Angle at ½ Power	θ	_	±25	_	Degrees		
Radiant Incidence QEE122	Ε _θ	0.02		0.08	mW/10° Cone	$I_F = 20 \text{ mA}^{(6,7)}$	
Radiant Incidence QEE123	E₀	0.04		_	mW/10° Cone	$I_F = 20 \text{ mA}^{(6.7)}$	

NOTES

- 1. Derate power dissipation linearly 1.33 mW/°C above 25°C.
- 2. RMA flux is recommended.
- Methanol or Isopropyl alcohols are recommended as cleaning agents.
 Soldering iron tip 1/4" (1.6 mm) minimum from housing.
 As long as leads are not under any stress or spring tension.

- 6. Measurement is taken at the end of a single 100 μ sec pulse.
- 7. E_a is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E_a is not necessarily uniform within the measurement area.