AN2526NFH

Automotive LCD TV signal processor IC

Overview

The AN2526NFH is a video signal processing IC with an LCD's 5 V-source driving power supply for TFT color LCD (normally white type), and it supports NTSC and PAL systems. The main circuitry of this IC includes videosignal processing circuit, color signal processing circuit, interface circuit, synchronizing circuit and many color quality adjusting circuits. This IC converts the composite video signal or separated Y/C signal or RGB signals into RGB signals available for TFT color LCD.

Features

- Supply voltage: $5 \mathrm{~V} / 7.5 \mathrm{~V}$
- Built-in LCD's 5 V-source driving power supply
- Low consumption power (typ. 260 mW)
- Supporting NTSC and PAL
- Supporting composite, component and color differential signal input
- Video signal analog RGB (2 systems) One is for OSD (analog/digital).
- Each mode setting is possible with 3 -wire or $\mathrm{I}^{2} \mathrm{C}$ Bus control.
- Electronic volume (D/A converter) built in
- Contrast/Brightness/ γ correction circuit built in
- Horizontal and vertical display position adjustment are possible by serial control.
- Package: QFP-64HP10L ($10 \times 10 \times 1.95 \mathrm{~mm}$)
- Difference from the AN2526FH Compared to the AN2526FH, the sync. system gain is increased in no signal input. This may cause the picture on the screen to be swaying horizontally. So we cannot recommend this IC to be used in the set with no-signal input mode.

Applications

- 4 inches to 7 inches middle size TFT LCD equipment of normally white, of such as in-car TV, an LCD monitor for car navigation system.

Note) The package of this product will be changed to lead-free type (QFP064-P-1010A). See the new package dimensions section later of this datasheet.

Application Circuit Examples

1. Composite signal input

Application Circuit Examples (continued)

2. Component signal input

Application Circuit Examples (continued)

3. Analog RGB signal input

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	$\mathrm{V}_{\mathrm{CC} 1}(5.0 \mathrm{~V})$	33	PWM output pin
2	Reference voltage pin	34	Power-on reset detection pin
3	R-ch. clamp detection pin	35	Vertical synchronous signal input pin
4	G-ch. clamp detection pin	36	1H reverse signal input pin
5	B-ch. clamp detection pin	37	Clock-system GND ($\mathrm{V}_{\text {SS }}$)
6	R-ch. decoder output pin	38	Clamp pulse input pin
7	G-ch. decoder output pin	39	DAC monitor pin
8	B-ch. decoder output pin	40	Clock-system power supply (3.0 V)
9	R-ch. analog signal input pin	41	GND 2
10	G-ch. analog signal input pin	42	Analog imposing control signal input pin
11	B-ch. analog signal input pin	43	AFC loop filter connecting pin
12	R-ch. analog/character signal input pin	44	VCO frequency adjustment pin
13	G-ch. analog/character signal input pin	45	Synchronous signal input pin
14	B-ch. analog/character signal input pin	46	Serial/ $/{ }^{2} \mathrm{C}$ Bus switching pin
15	Black level indication control signal input pin	47	Serial data shift clock input pin
16	Character picking up pulse input pin	48	Serial data input pin
17	B-ch. output pin	49	Serial data write pulse input pin
18	B-ch. output DC feedback detection pin	50	ACC detection pin
19	G-ch. output pin	51	ACC input pin
20	$\mathrm{V}_{\mathrm{CC} 2}(7.5 \mathrm{~V})$	52	Horizontal clock detection pin
21	Drive output reference potential input pin	53	Chroma killer detection pin
22	GND 1	54	APC detection pin
23	G-ch. output DC feedback detection pin	55	VXO input pin
24	R-ch. output pin	56	VXO output pin
25	R-ch. output DC feedback detection pin	57	Y-system clamp detection pin
26	Common reverse signal output pin	58	Chroma trap filter connection pin
27	Testing pulse input pin	59	GND 3
28	Testing clock input pin	60	Luminance signal input pin
29	Field identification signal output pin	61	$\mathrm{R}-\mathrm{Y}$ output pin
30	Composite synchronous signal output pin	62	B-Y output pin
31	Vertical synchronous signal output pin	63	$\mathrm{R}-\mathrm{Y}$ input pin
32	Horizontal synchronous signal output pin	64	B-Y input pin

- Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CC} 1}$	5.5	V
	$\mathrm{V}_{\mathrm{CC} 2}$	8.5	
Supply current	I_{CC}	-	mA
Power dissipation *2	P_{D}	423	mW
Operating ambient temperature *1	$\mathrm{T}_{\text {opr }}$	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature *1	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Note) $* 1$: Except for the operating ambient temperature and storage temperature, all ratings are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
*2: The power dissipation shown is the value in free air for $\mathrm{T}_{\text {opr }}=85^{\circ} \mathrm{C}$.

- Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CC} 1}$	4.7 to 5.3	V
	$\mathrm{~V}_{\mathrm{CC} 2}$	7.0 to 8.0	

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
DC						
$\mathrm{V}_{\mathrm{CC1} 1}$-system current consumption	$\mathrm{I}_{\text {TOTAL1 }}$	-	29	-	43	mA
$\mathrm{V}_{\mathrm{CC} 2}$-system current consumption	$\mathrm{I}_{\text {TOTAL2 }}$	-	6.0	-	14.0	mA
Pin 2 voltage	V_{2}	-	1.8	-	2.2	V
Pin 40 voltage	V_{40}	-	2.7	-	3.3	V
Chroma system						
$\mathrm{R}-\mathrm{Y}$ standard gain	G_{RY}	$\begin{aligned} & \mathrm{SG} 3\left(\mathrm{Y}_{\mathrm{y}}=-17 \mathrm{~dB}, \mathrm{Y}_{\mathrm{s}}=0 \mathrm{~V}[\mathrm{p}-\mathrm{p}],\right. \\ & \text { NTSC }), \text { ch. } 1=" \mathrm{C} 0 " \end{aligned}$	9.5	-	14.5	dB
R-Y/G-Y relative gain	$\mathrm{G}_{\text {RYGY }}$	$\begin{aligned} & \mathrm{SG} 3\left(\mathrm{Y}_{\mathrm{y}}=-17 \mathrm{~dB}, \mathrm{Y}_{\mathrm{s}}=0 \mathrm{~V}[\mathrm{p}-\mathrm{p}],\right. \\ & \text { NTSC }), \text { ch. } 1=" \mathrm{C} 0 " \end{aligned}$	-8.0	-	-4.0	dB
B-Y standard gain	G_{BY}	$\begin{aligned} & \text { SG3 }\left(\mathrm{Y}_{\mathrm{y}}=-17 \mathrm{~dB}, \mathrm{Y}_{\mathrm{s}}=0 \mathrm{~V}[\mathrm{p}-\mathrm{p}],\right. \\ & \text { NTSC), ch. } 1=\text { "C0" } \end{aligned}$	9.5	-	14.5	dB
B-Y/G-Y relative gain	$\mathrm{G}_{\text {BYGY }}$	$\begin{aligned} & \text { SG3 }\left(Y_{y}=-17 \mathrm{~dB}, \mathrm{Y}_{\mathrm{s}}=0 \mathrm{~V}[\mathrm{p}-\mathrm{p}],\right. \\ & \text { NTSC }) \text {, ch. } 1=\text { "C0" } \end{aligned}$	-20.5	-	-12.5	dB
High-level APC pull-in	AP_{H}	SG5 (4.43 MHz + 520 Hz, PAL)	500	-	540	Hz
Low-level APC pull-in	AP_{L}	SG5 (4.43 MHz - 520 Hz, PAL)	-540	-	-500	Hz
ACC output characteristic 1	$\mathrm{G}_{\mathrm{ACC} 1}$	SG5 (0 dB, 6 dB, NTSC), ch. $1=$ "80"	-1.0	-	1.0	dB
ACC output characteristic 2	$\mathrm{G}_{\text {ACC2 }}$	SG5 (0 dB, 6 dB, NTSC), ch. $1=$ "80"	-1.0	-	1.0	dB
Chroma killer characteristic 1	$\mathrm{V}_{\text {KILL1 }}$	$\begin{aligned} & \text { SG5 }(-30 \mathrm{~dB}, \text { NTSC }) \\ & \text { ch. } 1=\text { " } 80 " \text { " ch. } 2=" 80 ", \text { ch. } 5=" \mathrm{FF} " \end{aligned}$	400	-	-	$\mathrm{mV}[\mathrm{p}-\mathrm{p}]$
Chroma killer characteristic 2	$\mathrm{V}_{\text {KILL2 }}$	$\begin{aligned} & \text { SG5 (}-50 \mathrm{~dB}, \text { NTSC) } \\ & \text { ch. } 1=\text { " } 80 " \text { " ch. } 2=" 80 " \text { ch. } 5=\text { "FF" } \end{aligned}$	-	-	600	$\mathrm{mV}[\mathrm{p}-\mathrm{p}]$

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Y-system						
Sharpness control characteristic	$\mathrm{G}_{\text {SH }}$	SG1 (2 MHz, NTSC) ch. 1 = " 80 ", ch. 9 = " 80 "/"FF"	1.0	-	-	dB
Sharpness frequency characteristic 1	$\mathrm{f}_{\text {SH1 }}$	$\begin{aligned} & \text { SG1 }(100 \mathrm{kHz} / 2 \mathrm{MHz}, \text { NTSC }) \\ & \text { ch. } 1=" 80 " \end{aligned}$	3.5	-	-	dB
R-ch. contrast adjustment range 1	CTR ${ }_{\text {R1 }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12 / 13 / 14=\text { "FF" } \\ & \text { ch. } 8 / 10 / 11 \text { adjustment } \\ & \text { ch. } 15=\text { "C0"/"FF" } \end{aligned}$	1.5	-	-	dB
G-ch. contrast adjustment range 1	$\mathrm{CTR}_{\mathrm{Gl} 1}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=\text { " } 80 ", \text { ch. } 12 / 13 / 14=\text { "FF" } \\ & \text { ch. } 8 / 10 / 11 \text { adjustment } \\ & \text { ch. } 15=\text { "C0"/"FF" } \end{aligned}$	1.5	-	-	dB
B-ch. contrast adjustment range 1	$\mathrm{CTR}_{\mathrm{B} 1}$	$\begin{aligned} & \text { SG3 }(\text { NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 \text { " } \\ & \text { ch. } 5=\text { " } 80 ", \text { ch. } 12 / 13 / 14=\text { "FF" } \\ & \text { ch. } 8 / 10 / 11 \text { adjustment } \\ & \text { ch. } 15=\text { "C0"/"FF" } \end{aligned}$	1.5	-	-	dB
R-ch. contrast adjustment range 2	$\mathrm{CTR}_{\mathrm{R} 2}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 \text { " } \\ & \text { ch. } 5=\text { " } 80 ", \text { ch. } 12 / 13 / 14=\text { "FF" } \\ & \text { ch. } 8 / 10 / 11 \text { adjustment } \\ & \text { ch. } 15=\text { "C0"/" } 80 " \end{aligned}$	-	-	-5.2	dB
G-ch. contrast adjustment range 2	$\mathrm{CTR}_{\mathrm{G} 2}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 \text { " } \\ & \text { ch. } 5=\text { " } 80 ", \text { ch. } 12 / 13 / 14=\text { "FF" } \\ & \text { ch. } 8 / 10 / 11 \text { adjustment } \\ & \text { ch. } 15=\text { "C0"/" } 80 " \end{aligned}$	-	-	-5.2	dB
B-ch. contrast adjustment range 2	$\mathrm{CTR}_{\mathrm{B} 2}$	$\begin{aligned} & \text { SG3 }(\text { NTSC }), \text { ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=\text { " } 80 ", \text { ch. } 12 / 13 / 14=\text { "FF" } \\ & \text { ch. } 8 / 10 / 11 \text { adjustment } \\ & \text { ch. } 15=\text { "C0"/" } 80 " \end{aligned}$	-	-	-5.2	dB
R-ch. pedestal amplitude minimum	$\mathrm{V}_{\text {PEDRmin }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12 / 13 / 14=" F F " \\ & \text { ch. } 8 / 10 / 11 \text { adjustment, ch. } 8=\text { "FF" } \\ & \text { ch. } 15=\text { "C0" } \end{aligned}$	-	-	2.0	V[p-p]
G-ch. pedestal amplitude minimum	$\mathrm{V}_{\text {PEDGmin }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12 / 13 / 14=" F F " \\ & \text { ch. } 8 / 10 / 11 \text { adjustment, ch. } 8=\text { "FF" } \\ & \text { ch. } 15=\text { "C0" } \end{aligned}$	-	-	2.0	V [p-p]
B-ch. pedestal amplitude minimum	$\mathrm{V}_{\text {PEDBmin }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12 / 13 / 14=" F F " \\ & \text { ch. } 8 / 10 / 11 \text { adjustment, ch. } 8=\text { "FF" } \\ & \text { ch. } 15=\text { "C0" } \end{aligned}$	-	-	2.0	V [p-p]

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Y-system (continued)						
R-ch. pedestal amplitude maximum	$\mathrm{V}_{\text {PEDRmax }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12 / 13 / 14=" F F " \\ & \text { ch. } 8 / 10 / 11 \text { adjustment, ch. } 8=" 00 " \\ & \text { ch. } 15=\text { "C0" } \end{aligned}$	3.0	-	-	V[p-p]
G-ch. pedestal amplitude maximum	$\mathrm{V}_{\text {PEDGmax }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text {, ch. } 12 / 13 / 14=" F F " \\ & \text { ch. } 8 / 10 / 11 \text { adjustment, ch. } 8=" 00 " \\ & \text { ch. } 15=" \mathrm{C} 0 " \end{aligned}$	3.0	-	-	V[p-p]
B-ch. pedestal amplitude maximum	$\mathrm{V}_{\text {PEDBmax }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12 / 13 / 14=" F F " \\ & \text { ch. } 8 / 10 / 11 \text { adjustment, ch. } 8=" 00 " \\ & \text { ch. } 15=\text { "C0" } \end{aligned}$	3.0	-	-	V[p-p]
G-ch. output DC voltage	$\mathrm{V}_{\text {GDC }}$	$\begin{aligned} & \text { SG3 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 \text { adjustment, ch. } 15=" C 0 " \end{aligned}$	2.2	-	2.5	V[p-p]
R-ch. gamma characteristic 1	$\mathrm{G}_{\text {GAMR1 }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 \text { " } \\ & \text { ch. } 5=\text { " } 80 \text { " ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \end{aligned}$	-8.5	-	-3.5	dB
G-ch. gamma characteristic 1	$\mathrm{G}_{\text {GAMG1 }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 \text { " } \\ & \text { ch. } 5=\text { " } 80 " \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \end{aligned}$	-8.5	-	-3.5	dB
B-ch. gamma characteristic 1	$\mathrm{G}_{\text {GAMB1 }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 \text { " } \\ & \text { ch. } 5=\text { " } 80 " \text { ch. } 12=\text { "FF", ch. } 14=\text { " } 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \end{aligned}$	-8.5	-	-3.5	dB
R-ch. gamma characteristic 2	$\mathrm{G}_{\text {GAMR2 }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 4=\text { " } 40 \text { " } \\ & \text { ch. } 5=\text { " } 80 " \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 13=\text { " } 80 " / " \text { FF" } \end{aligned}$	-8.2	-	-	dB
G-ch. gamma characteristic 2	$\mathrm{G}_{\mathrm{GAMG} 2}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "EO", ch. } 4=" 40 " \\ & \text { ch. } 5=" 80 " \text { "ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 13=\text { " } 80 " / " \mathrm{FF} " \end{aligned}$	-8.2	-	-	dB
B-ch. gamma characteristic 2	$\mathrm{G}_{\text {GAMB2 }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "EO", ch. } 4=" 40 " \\ & \text { ch. } 5=" 80 " \text { "ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 13=\text { " } 80 " / " \text { FF" } \end{aligned}$	-8.2	-	-	dB
R-ch. gamma characteristic 3	$\mathrm{G}_{\text {GAMR3 }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "EO", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 13=" 80 " / " 60 " \end{aligned}$	-3.5	-	0.5	dB

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Y-system (continued)						
G-ch. gamma characteristic 3	$\mathrm{G}_{\text {GAMG3 }}$	$\begin{aligned} & \text { SG3 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=" F F ", \text { ch. } 14=" 40 " \end{aligned}$ ch. $8 / 10 / 11 / 15$ adjustment ch. 13 = " 80 "/" $60 "$	-3.5	-	0.5	dB
B-ch. gamma characteristic 3	$\mathrm{G}_{\text {GAMB3 }}$	$\begin{aligned} & \text { SG3 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=80 " \text { " ch. } 12=\text { "FF", ch. } 14=\text { "40" } \end{aligned}$ ch.8/10/11/15 adjustment ch. 13 = " 80 "/" 60 "	-3.5	-	0.5	dB
R-ch. white limiter low-level	$\mathrm{V}_{\text {WRRL }}$	$\begin{aligned} & \text { SG3 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=" 00 ", \text { ch. } 14=40 " \end{aligned}$ ch.8/10/11/15 adjustment ch. $15=$ "FF"	-	-	3.0	V[p-p]
G-ch. white limiter low-level	$\mathrm{V}_{\text {WRGL }}$	$\begin{aligned} & \text { SG3 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text { " ch. } 12=" 00 " \text { ch. } 14=" 40 " \end{aligned}$ ch.8/10/11/15 adjustment ch. $15=$ "FF"	-	-	3.0	V [p-p]
B-ch. white limiter low-level	$\mathrm{V}_{\text {WRBL }}$	$\begin{aligned} & \text { SG3 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=80 " \text { " ch. } 12=" 00 " \text { ch. } 14=" 40 " \end{aligned}$ ch.8/10/11/15 adjustment ch. $15=$ "FF"	-	-	3.0	$\mathrm{V}[\mathrm{p}-\mathrm{p}]$
R-ch. white limiter high-level	$\mathrm{V}_{\text {WRRH }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 15=\text { "FF" } \end{aligned}$	3.2	-	-	V[p-p]
G-ch. white limiter high-level	$\mathrm{V}_{\text {WRGH }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=" F F ", \text { ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 15=\text { "FF" } \end{aligned}$	3.2	-	-	V[p-p]
B-ch. white limiter high-level	$\mathrm{V}_{\text {WRBH }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 " \text { " ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 15=\text { "FF" } \end{aligned}$	3.2	-	-	$\mathrm{V}[\mathrm{p}-\mathrm{p}]$
R-ch. black limiter low-level	$\mathrm{V}_{\text {BRRL }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text { " ch. } 7=" 80 " \text { " ch. } 12=" \mathrm{FF} " \\ & \text { ch. } 14=" 40 \text { ", ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 8=" 00 " \end{aligned}$	3.0	-	-	V
G-ch. black limiter low-level	$\mathrm{V}_{\text {BrGL }}$	$\begin{aligned} & \text { SG3 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 7=" 80 ", \text { ch. } 12=" F F " \\ & \text { ch. } 14=" 40 ", \text { ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 8=" 00 " \end{aligned}$	3.0	-	-	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Y-system (continued)						
B-ch. black limiter low-level	$\mathrm{V}_{\text {BRBL }}$	$\begin{aligned} & \text { SG3 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 7=" 80 ", \text { ch. } 12=\text { "FF" } \\ & \text { ch. } 14=" 40 " \text {, ch. } 8 / 10 / 11 / 15 \text { adjustment } \\ & \text { ch. } 8=" 00 " \end{aligned}$	3.0	-	-	V
R-ch. black limiter high-level	$\mathrm{V}_{\text {BRRH }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF" } \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, ch. } 7=\text { "FF" } \\ & \text { ch. } 8=" 00 ", \text { ch. } 14=" 40 " \end{aligned}$	-	-	1.2	V
G-ch. black limiter high-level	$\mathrm{V}_{\text {BRGH }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { "40" } \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF" } \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, ch. } 7=\text { "FF" } \\ & \text { ch. } 8=" 00 ", \text { ch. } 14=" 40 " \end{aligned}$	-	-	1.2	V
B-ch. black limiter high-level	$\mathrm{V}_{\text {BRBH }}$	$\begin{aligned} & \text { SG3 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF" } \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, ch. } 7=\text { "FF" } \\ & \text { ch. } 8=" 00 ", \text { ch. } 14=" 40 " \end{aligned}$	-	-	1.2	V
R-ch. $\mathrm{Y}_{\text {S }}$ threshold 1	$\mathrm{V}_{\text {tYSR1 }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=" F F ", \text { ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=1 \mathrm{~V} \end{aligned}$	0.8	-	-	V[p-p]
G-ch. $\mathrm{Y}_{\text {S }}$ threshold 1	$\mathrm{V}_{\text {tYSG1 }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=" F F ", \text { ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=1 \mathrm{~V} \end{aligned}$	0.8	-	-	V[p-p]
B-ch. Y_{S} threshold 1	$\mathrm{V}_{\text {tYSB1 }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=" F F ", \text { ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=1 \mathrm{~V} \end{aligned}$	0.8	-	-	V [p-p]
R-ch. $\mathrm{Y}_{\text {S }}$ threshold 2	$\mathrm{V}_{\text {tYSR2 }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=" F F ", \text { ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=2.2 \mathrm{~V} \end{aligned}$	-	-	0.5	V [p-p]
G-ch. $\mathrm{Y}_{\text {S }}$ threshold 2	$\mathrm{V}_{\mathrm{tYSG} 2}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text { ch. } 12=" F F ", \text { ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=2.2 \mathrm{~V} \end{aligned}$	-	-	0.5	V[p-p]
B-ch. $\mathrm{Y}_{\text {S }}$ threshold 2	$\mathrm{V}_{\text {tYSB2 }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text { ch. } 12=" F F ", \text { ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=2.2 \mathrm{~V} \end{aligned}$	-	-	0.5	V [p-p]
R-ch. black level	$\mathrm{CHR}_{\text {RB }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=\text { SG } 7 \end{aligned}$	-0.6	-	0.6	V
G-ch. black level	$\mathrm{CHR}_{\text {GB }}$	$\begin{aligned} & \text { SG2 } 2 \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text { "ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=\text { SG } 7 \end{aligned}$	-0.6	-	0.6	V
B-ch. black level	$\mathrm{CHR}_{\text {BB }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=" \text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=\text { SG } 7 \end{aligned}$	-0.6	-	0.6	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Y-system (continued)						
R-ch. black level width	$\mathrm{WCHR}_{\text {RB }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 " \text { " ch. } 12=\text { "FF", ch. } 14=\text { " } 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=\text { SG } 7 \end{aligned}$	2.25	-	3.75	$\mu \mathrm{s}$
G-ch. black level width	$\mathrm{WCHR}_{\text {GB }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=\text { " } 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=\text { SG } 7 \end{aligned}$	2.25	-	3.75	$\mu \mathrm{s}$
B-ch. black level width	WCHR ${ }_{\text {BB }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=\text { " } 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 16=\text { SG } 7 \end{aligned}$	2.25	-	3.75	$\mu \mathrm{s}$
R-ch. CHR threshold 1	$\mathrm{V}_{\text {tCHR } 1}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 " \text { " ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 12=1 \mathrm{~V} \end{aligned}$	1.5	-	-	V [p-p]
G-ch. CHR threshold 1	$\mathrm{V}_{\text {tCHG1 }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 " \text { " ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 13=1 \mathrm{~V} \end{aligned}$	1.5	-	-	V[p-p]
B-ch. CHR threshold 1	$\mathrm{V}_{\mathrm{tCHB} 1}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 14=1 \mathrm{~V} \end{aligned}$	1.5	-	-	V[p-p]
R-ch. CHR threshold 2	$\mathrm{V}_{\text {tCHR2 }}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 12=2.2 \mathrm{~V} \end{aligned}$	3.0	-	-	V[p-p]
G-ch. CHR threshold 2	$\mathrm{V}_{\mathrm{tCHG} 2}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 13=2.2 \mathrm{~V} \end{aligned}$	3.0	-	-	V[p-p]
B-ch. CHR threshold 2	$\mathrm{V}_{\mathrm{tCHB} 2}$	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 \text { " } \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 14=2.2 \mathrm{~V} \end{aligned}$	3.0	-	-	V[p-p]
R-ch. white level	$\mathrm{CHR}_{\text {RW }}$	$\begin{aligned} & \text { SG2 }(\text { NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 12=\text { SG } 7 \end{aligned}$	2.0	-	-	V [p-p]
G-ch. white level	$\mathrm{CHR}_{\mathrm{GW}}$	$\begin{aligned} & \text { SG2 } \text { (NTSC), ch. } 1=\text { "E0", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text { ch. } 12=\text { "FF", ch. } 14=40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 13=\text { SG } 7 \end{aligned}$	2.0	-	-	V[p-p]
B-ch. white level	$\mathrm{CHR}_{\text {BW }}$	$\begin{aligned} & \text { SG2 } \text { (NTSC), ch. } 1=\text { "EO", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text {, ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 14=\text { SG } 7 \end{aligned}$	2.0	-	-	V[p-p]
R-ch. white level width	WCHR RW	$\begin{aligned} & \text { SG2 (NTSC), ch. } 1=\text { "E0", ch. } 2=\text { " } 40 " \\ & \text { ch. } 5=" 80 " \text { " ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 12=\text { SG } 7 \end{aligned}$	2.25	-	3.75	$\mu \mathrm{s}$
G-ch. white level width	$\mathrm{WCHR}_{\text {GW }}$	$\begin{aligned} & \text { SG2 } \text { (NTSC), ch. } 1=\text { "EO", ch. } 2=" 40 " \\ & \text { ch. } 5=" 80 " \text { ch. } 12=\text { "FF", ch. } 14=40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, Pin } 13=\text { SG } 7 \end{aligned}$	2.25	-	3.75	$\mu \mathrm{s}$

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Y-system (continued)						
B-ch. white level width	$\mathrm{WCHR}_{\text {BW }}$	SG2 (NTSC), ch. $1=$ "E0", ch. $2=$ " 40 " ch. 5 = "80", ch. 12 = "FF", ch. 14 = " 40 " ch.8/10/11/15 adjustment, Pin 14 = SG7	2.25	-	3.75	$\mu \mathrm{s}$
R-ch. RGB2 relative amplitude	$\mathrm{V}_{\text {RGB2R }}$	$\begin{aligned} & \text { SG2 } \text { (NTSC), ch. } 1=\text { "A0" } \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=\text { "FF", ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, ch. } 3=" 40 " \\ & \text { ch. } 6=" 40 ", \text { Pin } 42=2.2 \mathrm{~V} \end{aligned}$	-0.45	-	0.45	V[p-p]
B-ch. RGB2 relative amplitude	$\mathrm{V}_{\text {RGB2B }}$	$\begin{aligned} & \text { SG2 } 2 \text { (NTSC), ch. } 1=\text { "A0" } \\ & \text { ch. } 5=" 80 ", \text { ch. } 12=" F F ", \text { ch. } 14=" 40 " \\ & \text { ch. } 8 / 10 / 11 / 15 \text { adjustment, ch. } 3=" 40 " \\ & \text { ch. } 6=" 40 ", \text { Pin } 42=2.2 \mathrm{~V} \end{aligned}$	- 0.45	-	0.45	$\mathrm{V}[\mathrm{p}-\mathrm{p}]$

Synchronous system

Horizontal sync. pulse low-level	$\mathrm{V}_{\mathrm{HDL}}$	-	-	-	0.4	V
Horizontal sync. pulse amplitude	V_{HD}	-	4.0	-	-	$\mathrm{V}[\mathrm{p}-\mathrm{p}]$
Horizontal sync. pulse width	t_{HD}	-	4.86	-	6.86	$\mu \mathrm{~s}$
Vertical sync. pulse low-level	$\mathrm{V}_{\mathrm{VDL}}$	-	-	-	0.4	V
Vertical sync. pulse amplitude	V_{VD}	-	4.0	-	-	$\mathrm{V}[\mathrm{p}-\mathrm{p}]$
Horizontal sync. separation pulse high-level	$\mathrm{V}_{\mathrm{HSSH}}$	$\mathrm{SG} 2(\mathrm{NTSC})$	4.0	-	-	V
Horizontal sync. separation pulse amplitude	$\mathrm{V}_{\mathrm{HSS}}$	SG 2 (NTSC)	4.0	-	-	$\mathrm{V}[\mathrm{p}-\mathrm{p}]$
Horizontal sync. separation pulse width	$\mathrm{t}_{\mathrm{HSS}}$	SG 2 (NTSC)	3.8	-	5.8	$\mu \mathrm{~s}$
Horizontal sync. pulse free-run frequency	f_{HD}		15.434	-	16.034	kHz

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	Voltage - Waveform
1	-	$\mathrm{V}_{\mathrm{CC} 1}$: 5.0 V -system power supply pin Supply current 40 mA typ.	-
2		$\mathrm{V}_{\text {REF }}$: Reference voltage output pin 2.0 V typ.	-

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage • Waveform
15		BLAK: Black level indication control signal input pin	
16		$Y_{S}:$ Character picking up signal input	
17		B-out: B signal output pin	
18		B-ch.AVE det.: B-ch. output DC feedback detection pin	-
19		G-out: G signal output pin	
20	-	$\mathrm{v}_{\mathrm{CC} 2}$ 7.5 V system power supply Supply current 12 mA typ.	-

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage - Waveform
21		AVE: R,G,B output DC reference voltage pin	-
22	-	GND 2: Drive circuit system GND	-
23	(23)	G-ch.AVE det.: G-ch. output DC feedback detection pin	-
24		R-out: R signal output pin	
25		R-ch.AVE det.: R-ch. output DC feedback detection pin	-

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage - Waveform
31		VD: Vertical synchronous signal output pin	Output waveform
32		HD : Horizontal synchronous signal output pin	Output waveform
33		PWM: PWM signal output pin	Output waveform
34		RST: Capacitor coupling pin for power-on reset	-
35		VDB in: Vertical synchronous pulse input pin	High or Low

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage - Waveform
36		Ext. pol.: 1 H reverse signal input pin	High or Low
37	-	$\mathrm{V}_{\text {SS }}$: MOS system GND	-
38		Clamp in: Clamp pulse input pin Valid only in the external clamp mode. Positive polarity input.	High or Low
39		DAC mon.: DAC DC voltage output pin	DC
40	-	V_{DD} : Capacitor connection pin for MOS part power supply. 3.0 V typ.	-
41	-	GND 3: Pulse system GND	-
42		PRGB: Analog OSD signal input Mode start-up signal input pin Valid only in the analog OSD mode High = Analog OSD start up	High or Low

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage • Waveform
48		DAT: Serial data input pin	
49		LEN: Load pulse input pin, also works as the slave address conversion pin in the $\mathrm{I}^{2} \mathrm{C}$ mode. $\begin{aligned} & \text { High }=" 88 " \\ & \text { Low }=" 8 A " \end{aligned}$	High or Low
50		ACC det.: ACC capacitor connecting pin, adjusting the amplitude of a burst signal automatically	-
51		C in: Chroma signal input pin Input chroma signal (video signal)	Input signal example: Video signal
52		L.det.: Capacitor coupling pin for the horizontal unlock detecting circuit	-

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage - Waveform
62	(62)	B-Y out : B-Y signal output pin, demodulated from a video signal	B-Y signal
63		R-Y in: R-Y signal input pin in a color difference mode and standard PAL.	R-Y signal
64		B-Y in : B-Y signal input pin in a color difference mode and standard PAL.	B-Y signal

Usage Notes

- You are required to study adequately before using it in PAL.
- If the duty of PWM output is set to other than 0% to 100%, the jitter of the HD out put increases. So, confirm the horizontal jitter amount on the screen of the set you introduce the PWM function into.

Technical Data

Serial data control

In addition to its serial control by the conventional three-wire method, the AN2526NFH can be controlled by the $I^{2} \mathrm{C}$ Bus. The transmission method is selected by the voltage to be applied to Pin 46.

Three-wire control mode: Pin 46 Low-level (connect to GND)
$I^{2} \mathrm{C}$ Bus mode: $\mathrm{Pin} 46=$ High-level (Pin 41 : connect to V_{DD})
It is recommended that the serial data is transferred during a vertical blanking period.

1. Three-wire control mode

A serial data is of three-line system transmitting three kinds of signals of data, shift clock and load pulse independently. The data to be transmitted is made up by 12 bits in total of address (4 bits) and data (8 bits). The DAC is composed of four blocks of serial-parallel conversion, address decoder, data latch and ladder resistors, enabling to control 16 channels in total. Further, the mode setting such as the input signal switching is done by a serial data to reduce the pin count.

1) Serial data format

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Address block				Data block							

2) Serial data input timing chart

Timing chart expanded diagram

Technical Data (continued)

1. Three-wire control mode (continued)
2) Serial data input timing chart (continued)

	Parameter	Symbol	Min	Max
Clock low-level pulse width	$\mathrm{t}_{\mathrm{CKL}}$	500	-	ns
Clock high-level pulse width	$\mathrm{t}_{\mathrm{CKH}}$	500	-	ns
Clock rise time	t_{cr}	-	20	ns
Clock fall time	t_{cf}	-	20	ns
Data setup time	$\mathrm{t}_{\mathrm{DCH}}$	30	-	ns
Data hold time	$\mathrm{t}_{\mathrm{CHD}}$	60	-	ns
Load setup time	$\mathrm{t}_{\mathrm{CHL}}$	200	-	ns
Load hold time	$\mathrm{t}_{\mathrm{LDC}}$	100	-	ns
Load high-level pulse width	$\mathrm{t}_{\mathrm{LDH}}$	500	-	ns

3) Serial-data control contents

D11	D10	D9	D8	Selection-ch.	EVR control function	Number of bit
0	0	0	0	0	Vertical sync. signal output position	3
1	0	0	0	1	Horizontal sync. signal output position	5
0	1	0	0	2	PWM duty	6
1	1	0	0	3	Common pulse amplitude	7
0	0	1	0	4	Y-gain	8
1	0	1	0	5	Color gain	7
0	1	1	0	6	Hue	7
1	1	1	0	7	Black-limiter level	8
0	0	0	1	8	Bright	8
1	0	0	1	9	Y-aperture gain	8
0	1	0	1	10	R-ch. sub brightness	8
1	1	0	1	11	B-ch. sub brightness	8
0	0	1	1	12	White peak limiter level	8
1	0	1	1	13	Gamma-1 Knee level	8
0	1	1	1	14	Gamma-2 Knee level	8
1	1	1	1	15	RGB contrast	7

A variety of mode-settings for the channel for 8 bits or less is made by using the data stored in the data block.
The contents of each mode setting are shown next.

Technical Data (continued)

1. Three-wire control mode (continued)
4) Mode setup channel bit-map.

- ch.0: Vertical sync. output position adjustment

D11	D10	D9	D8	D7EXCHF	$\begin{gathered} \text { D6 } \\ \text { FIXHD } \end{gathered}$	$\begin{gathered} \text { D5 } \\ \text { BOSC } \end{gathered}$	D4 to D3	D2	D1	D0
							Hor. PLL start position adjustment			
0	0	0	0	-	-	0	Automatic switching			
				-	-	1	263H/313H fixed (NTSC/PAL)			
				-	0	HD/	output timing is serially variable			
				-	1	HD/VD	output timing fixed			
				0	Odd n	mber fie	d: Advanced phase			
				1	Even n	mber fie	d: Advanced phase			

- Vertical sync. output timing adjusting range

The pin 31 timing is synchronous with the pin 35 input timing.
The above timing chart is just for your reference.

Technical Data (continued)

1. Three-wire control mode (continued)

4) Mode setup channel bit-map. (continued)

- Horizontal PLL start position adjustment range

- ch.1: Horizontal sync. output position adjustment

The delay time of pin 30 output to video signal is likely to vary according to an external constant connected to pin 45. For an external constant, you are required to evaluate adequately the characteristics in weak electric field. Though the horizontal sync signal output adjustment range is designed by referring to the center of pin 30 output pulse, there would be some error according to VCO free-run frequency.

Technical Data (continued)

1. Three-wire control mode (continued)
4) Mode setup channel bit-map. (continued)

- ch.2: PWM duty adjustment

D11	D10	D9	D8	$\begin{gathered} \text { D7 } \\ \mathrm{P} \text { mode } \end{gathered}$	D6 YC mode	D5	D4	D3	D2	D1	D0
0	1	0	0	-	0	Composite input mode					
				-	1	Component input mode					
				0	STD PAL mode						
				1	Quasi PAL/NTSC mode						

Note that adjustment characteristics come to discontinuation around max. Duty.

$$
\begin{aligned}
(\mathrm{D} 5, \mathrm{D} 4, \mathrm{D} 3, \mathrm{D} 2, \mathrm{D} 1, \mathrm{D} 0) & =(000000): \mathrm{t}_{\mathrm{w}}=1 \mathrm{H} \\
& =(000001): \mathrm{t}_{\mathrm{w}}=3 \mathrm{H} \\
& =(000010): \mathrm{t}_{\mathrm{w}}=4 \mathrm{H} \\
& =(110110): \mathrm{t}_{\mathrm{w}}=56 \mathrm{H} \\
& =(110111): \mathrm{t}_{\mathrm{w}}=56 \mathrm{H} \\
& =(111000): \mathrm{t}_{\mathrm{w}}=0 \mathrm{H} \\
& =(111001): \mathrm{t}_{\mathrm{w}}=58 \mathrm{H}
\end{aligned}
$$

- ch.3: Common pulse amplitude adjustment

D11	D10	D9	D8	D7 OSD	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	0	Analog OSD signal input mode						
				1	Digital OSD signal input mode						

- ch.5: Color gain adjustment

D11	D10	D9	D8	$\begin{gathered} \text { D7 } \\ \text { HTS } \end{gathered}$	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	1H reverse inhibit mode						
				1	1H reverse mode						

- ch.6: Hue adjustment

D11	D10	D9	D8	D7 CP	D6	D5	D4	D3	D2	D1	D0
0	1	1	0	0	External clamp pulse input mode						
				1	Internal clamp (pedestal) mode						

Technical Data (continued)

1. Three-wire control mode (continued)
4) Mode setup channel bit-map. (continued)

- ch.9: Y-aperture gain adjustment

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	00h, 01h: Test mode							

- ch.15: RGB contrast adjustment

D11	D10	D9	D8	$\begin{gathered} \text { D7 } \\ \text { POL mode } \end{gathered}$	D6	D5	D4	D3	D2	D1	D0
1	1	1	1	0	Internal POL 1 H reverse mode						
				1	External POL 1H reverse mode						

2. $\mathrm{I}^{2} \mathrm{C}$ control mode

A serial data is capable of transferring 9-bit unit of 8-bit transfer data and 1-bit answering data using two kinds of signal lines of data and shift clock.

When a slave address after setting a start condition matches the address on the IC side, you can receive the data to be transmitted from then. Once the stop condition is set up, the next transmitting data will be ignored until the start condition is set up.

There are two kinds of transfer mode: an auto-increment mode which does not transmit sub-address, and data upgrade mode which transmits sub-address + data by 2 bites.

The typical models of transmitting sequence are shown below:

1) Start condition

When the S data changes from high-level to low-level at SCLK = high-level, a data receiving mode becomes available.
2) Slave address transfer

The slave address of the AN2526NFH is 88 h at pin $49=$ high-level and 8 Ah at pin $49=$ low-level.

3) Sub address transfer

When a data transfer mode bit is 0 , all the serial data columns transferred until a stop condition is set is regarded as the data block.

Technical Data (continued)
2. $I^{2} \mathrm{C}$ control mode (continued)
4) Data transfer

At auto increment mode: Data transfer At data update mode: Sub address transfer
5) Stop condition

When S-data changes from low-level to high-level at SCLK = high-level, data reception is halted.
6) Pulse timing

Timing chart expanded diagram

Parameter	Symbol	Min	Typ	Max	Unit
SCLK clock frequency	$\mathrm{t}_{\text {SCL }}$	0	-	400	kHz
Bus free-time for stop condition and start condition	$\mathrm{t}_{\text {BUF }}$	1.3	-	-	$\mu \mathrm{s}$
Hold time start condition	$\mathrm{t}_{\text {HDSTA }}$	0.6	-	-	$\mu \mathrm{s}$
SCLK clock low-state hold time	$\mathrm{t}_{\text {LOW }}$	1.3	-	-	$\mu \mathrm{s}$
SCLK clock high-state hold time	$\mathrm{t}_{\text {HIGH }}$	0.6	-	-	$\mu \mathrm{s}$
Data hold time	$\mathrm{t}_{\text {HDDAT }}$	0	-	-	$\mu \mathrm{s}$
Data setup time	$\mathrm{t}_{\text {SUDAT }}$	100	-	-	ns
S-data, SCLK signal rise time	t_{r}	-	-	300	ns
S-data, SCLK signal fall time	t_{f}	-	-	300	ns
Stop condition setup time	$\mathrm{t}_{\text {SUSTO }}$	0.6	-	-	$\mu \mathrm{s}$

Technical Data (continued)

2. $I^{2} \mathrm{C}$ control mode (continued)
6) Pulse timing (continued)

D7	D6 to D4	D3	D2	D1	D0	Selection channel	EVR control function	Number of bit
Mode	Don't Care	0	0	0	0	0	Vertical sync. signal output position	3
		0	0	0	1	1	Horizontal sync. signal output position	5
		0	0	1	0	2	PWM duty	6
		0	0	1	1	3	Common pulse amplitude	7
		0	1	0	0	4	Y-gain	8
		0	1	0	1	5	Color gain	7
		0	1	1	0	6	Hue	7
		0	1	1	1	7	Black-limiter level	8
		1	0	0	0	8	Bright	8
		1	0	0	1	9	Y-aperture gain	8
		1	0	1	0	10	R-ch. sub bright	8
		1	0	1	1	11	B-ch. sub bright	8
		1	1	0	0	12	White peak limiter	8
		1	1	0	1	13	Gamma-1 Knee level	8
		1	1	1	0	14	Gamma-2 Knee level	8
		1	1	1	1	15	RGB contrast	7

In case that the ch. has 8 bits or less of data bit number, the data in the data block is used to set various modes.
The content of each mode setting is same as three-wire control mode

3. Recommended Operating Conditions

Parameter	Symbol	Range	Min	Typ	Max	Unit
Composite video input signal	$\mathrm{Y}_{\text {IN }}$	Sync. chip - white	0.9	1.0	1.1	V[p-p]
Y-input signal voltage	$\mathrm{Y}_{\text {IN }}$	Pedestal - white	0.6	0.7	0.8	$\mathrm{~V}[\mathrm{p}-\mathrm{p}]$
C-input signal voltage	$\mathrm{C}_{\text {IN }}$	Burst signal amplitude	200	300	400	$\mathrm{mV}[\mathrm{p}-\mathrm{p}]$
MOS input signal low-level voltage	$\mathrm{V}_{\text {MOSL }}$		0	-	0.8	V
MOS input signal high-level voltage	$\mathrm{V}_{\text {MOSH }}$		2.3	-	$* 1$	V
Synchronous signal input	$\mathrm{H}_{\text {SYNC }}$	Pedestal - sync. chip	0.2	0.3	0.4	$\mathrm{~V}[\mathrm{p}-\mathrm{p}]$
Serial data transfer frequency	$\mathrm{f}_{\text {SD }}$		-	-	1.0	MHz
Analog RGB input signal	$\mathrm{RGB}_{\text {IN }}$	Pedestal - white	0.6	0.7	0.8	$\mathrm{~V}[\mathrm{p}-\mathrm{p}]$

Note) *: Set it lower than $\mathrm{V}_{\mathrm{CC} 1}$ (Pin 1 voltage).

Technical Data (continued)
4. $P_{D}-T_{a}$ curves of QFP064-P-1010

New Package Dimensions (Unit: mm)

- QFP064-P-1010A (Lead-free package)

(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
(2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
(3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:
- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
(6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
(7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
C. These materials are solely intended for a customer's individual use.

Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.

