GENERAL DESCRIPTION

High-voltage, high-speed planar-passivated npn power switching transistor in the SOT533 envelope intended for use in high frequency electronic lighting ballast applications, converters and inverters, etc.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {CESM }}$	Collector-emitter voltage peak value	$\mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V}$	-	600	V
$\mathrm{~V}_{\mathrm{CBO}}$	Collector-Base voltage (open emitter)		-	600	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-emitter voltage (open base)		-	300	V
I_{C}	Collector current (DC)		-	1.5	A
I_{CM}	Collector current peak value		-	3	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation	$\mathrm{T}_{\mathrm{mb}} \leq 25{ }^{\circ} \mathrm{C}$	50	W	
$\mathrm{~V}_{\mathrm{CEsat}}$	Collector-emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} ; \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A}$	0.27	1.0	V
$\mathrm{~h}_{\text {FE }}$		$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	12	19	
t_{fi}	Fall time (Inductive)	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} ; \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{~A}$	56	76	ns

PINNING - SOT533

PIN	DESCRIPTION
	base
2	collector
3	emitter
tab	collector

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum Rating System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {CESM }}$	Collector to emitter voltage	$\mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V}$	-	600	V
$\mathrm{~V}_{\text {CEO }}$	Collector to emitter voltage (open base)		-	300	V
$\mathrm{~V}_{\text {CBO }}$	Collector to base voltage (open emitter)		-	600	V
I_{C}	Collector current (DC)		-	1.5	A
I_{CM}	Collector current peak value		-	3	A
I_{B}	Base current (DC)		-	0.75	A
I_{BM}	Base current peak value		-	1.5	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation		-	50	W
$\mathrm{~T}_{\text {stg }}$	Storage temperature	$\mathrm{T}_{\text {mb }} \leq 25{ }^{\circ} \mathrm{C}$	-65	150	${ }^{\circ} \mathrm{C}$
T_{j}	Junction temperature		-	150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
$\mathrm{R}_{\text {th } \mathrm{j} \text {-mb }}$	Junction to mounting base		-	2.5	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{a}}$	Junction to ambient	in free air	70	-	K / W

STATIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\begin{aligned} & \mathrm{I}_{\mathrm{CES}} \mathrm{I}_{\mathrm{CBO}} \\ & \mathrm{I}_{\mathrm{CES}} \end{aligned}$	Collector cut-off current ${ }^{1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CESMmax}} \\ & \mathrm{~V}_{B E}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CESMmax}} ; \\ & \mathrm{T}_{\mathrm{j}}=125{ }^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} 0.14 \\ 39 \end{gathered}$	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{I}_{\text {ceo }}$	Collector cut-off current ${ }^{1}$	$\mathrm{V}_{\text {CEO }}=\mathrm{V}_{\text {CEOMmax }}(300 \mathrm{~V})$	-	3.7	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Ebo }}$	Emitter cut-off current	$\mathrm{V}_{\mathrm{EB}}=9 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=0 \mathrm{~A}$		20	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CEOsust }}$	Collector-emitter sustaining voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0 \mathrm{~A} ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \\ & \mathrm{L}=25 \mathrm{mH} \end{aligned}$	300	-	-	V
$V_{\text {CEsat }}$	Collector-emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} ; \mathrm{l}_{\mathrm{B}}=0.2 \mathrm{~A}$	-	0.27	1.0	V
$V_{\text {BEsat }}$	Base-emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} ; \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A}$	17	1.03	1.3	V
$\mathrm{h}_{\text {FE }}$	DC current gain	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\text {CE }}=5 \mathrm{~V}$	17	23		
$\mathrm{h}_{\text {FE }}$		$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\text {CE }}=5 \mathrm{~V}$	19	30	46	
$\mathrm{h}_{\text {FE }}$		$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	9	12	19	

DYNAMIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
$\begin{aligned} & \mathrm{t}_{\mathrm{on}} \\ & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Switching times (resistive load) Turn-on time Turn-off storage time Turn-off fall time	$\begin{aligned} & \mathrm{I}_{\text {Con }}=1.0 \mathrm{~A} ; \mathrm{I}_{\text {Bon }}=-\mathrm{I}_{\text {Boff }}=0.2 \mathrm{~A} ; \\ & \mathrm{R}_{\mathrm{L}}=75 \mathrm{ohms} ; \mathrm{V}_{\mathrm{BB} 2}=4 \mathrm{~V} ; \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.91 \\ & 0.25 \end{aligned}$	$\begin{gathered} 1.0 \\ 1.22 \\ 0.34 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{si}} \\ & \mathrm{t}_{\mathrm{fi}} \end{aligned}$	Switching times (inductive load) Turn-off storage time Turn-off fall time	$\begin{aligned} & \mathrm{I}_{\mathrm{Con}}=1.0 \mathrm{~A} ; \mathrm{I}_{\mathrm{Bon}}=0.2 \mathrm{~A} ; \mathrm{L}_{\mathrm{B}}=1 \mu \mathrm{H} ; \\ & -\mathrm{V}_{\mathrm{BB}}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.55 \\ 56 \end{gathered}$	$\begin{gathered} 0.74 \\ 76 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{si}} \\ & \mathrm{t}_{\mathrm{fi}} \end{aligned}$	Switching times (inductive load) Turn-off storage time Turn-off fall time	$\begin{aligned} & I_{C o n}=1.0 \mathrm{~A} ; \mathrm{I}_{\mathrm{Bon}}=0.2 \mathrm{~A} ; \mathrm{L}_{\mathrm{B}}=1 \mu \mathrm{H} ; \\ & -\mathrm{V}_{B B}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100{ }^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 140 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$

Fig.1. Test circuit for $V_{\text {CEOsust }}$.

Fig.2. Oscilloscope display for $V_{\text {CEOsust }}$.

Fig.4. Transient thermal impedance. $Z t h_{j-m b}=f(t) ;$ parameter $D=t_{\rho} / T$

Fig.5. Typical DC current gain. $h_{\text {FE }}=f\left(l_{C}\right)$ parameter $V_{C E}$

Fig.6. Typical DC current gain. $h_{\text {FE }}=f\left(I_{C}\right)$ parameter V_{CE}

Fig.7. Collector-Emitter saturation voltage. Solid Lines = typ values, $I_{C} I_{B}=3$

Fig.8. Base-Emitter saturation voltage. Solid Lines = typ values, $I_{C} I_{B}=3$

INDUCTIVE SWITCHING

Fig.13. Inductive switching. $t s i=f\left(h_{F E}\right)$

Fig.14. Inductive switching. $t s i=f\left(I_{C}\right)$

RESISTIVE SWITCHING

Fig.15. Test circuit resistive load. $V_{I M}=-6$ to +8 V
$V_{C C}=250 V ; t_{p}=20 \mu s ; \delta=t_{p} / T=0.01$.
R_{B} and R_{L} calculated from $I_{\text {con }}$ and $I_{\text {Bon }}$ requirements.

Fig.17. Resistive switching. ton $=f\left(h_{F E}\right)$

Fig.16. Switching times waveforms with resistive load.

Fig.18. Resistive switching. ton $=f\left(I_{C}\right)$

Fig.24. Reverse bias safe operating area $T_{j} \leq T_{j \text { max }}$ for $-V_{B E}=9 \mathrm{~V}, 5 \mathrm{~V}, 3 \mathrm{~V}$ \& 1 V

MECHANICAL DATA

Fig.25. SOT533 surface mounting package. Pin 2 connected to mounting base.

Silicon Diffused Power Transistor

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	Where application information is given, it is advisory and does not form part of the specification. © Philips Electronics N.V. 2000 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

