

High Reliability Photologic® Hermetic Sensors Type OPL800B

Features

- 100% screened and quality conformance tested to Optek's High Reliability program
- Direct TTL/STTL interface
- Hermetic, lensed TO-18 package
- Mechanically and spectrally matched OP235/OP236TX/TXV LEDs

Description

The OPL800B is a high reliability optoelectronic microcircuit that incorporates a photodiode, linear amplifier, and Schmitt trigger on a single silicon chip. The device features TTL/STTL compatible logic level output which can drive up to 8 TTL loads without additional interface circuitry. The Photologic® chip is mounted on a standard TO-18 header which is hermetically sealed in a lensed metal can. These devices are mechanically and spectrally matched to the OP235TX/ TXV and 236TX/TXV infrared emitting diodes. All parts are processed to Optek's 100 percent screening program patterned after Method 5004 of MIL-STD-883 and the quality conformance testing in Method 5005 for Class B devices. Typical screening and lot acceoptance tests are provided on page 13-4.

Typical characteristic curves are shown on the commercial OPL800 data sheet.

Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unless otherwise noted)

Supply Voltage, V _{CC} (not to exceed 3 sec.)+10.0 V
Storage Temperature Range65° C to +150° C
Operating Temperature Range55° C to +125° C
Lead Soldering Temperature [1/16 (1.6 mm) inch from case for 5 sec. with soldering
iron]
Power Dissipation
Duration of Output Short to Vcc or Ground
Irradiance
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when wave soldering.
- (2) Derate linearly 2.5mW/° C above 25° C.
- (3) Light measurements are made with $\lambda = 935$ nm.

Schematic

Totem-Pole Output Buffer

Light On - Output High

Type OPL800B

Group A Inspection-Electrical Tests

(Performed on each inspection lot after all devices have been subject to the 100% processing requirements.)

Symbol	Examination or Test		MIL-STD-883		Limit		Units
		Method	Conditions	n/c	Min	Max	Units
Subgroup 1 ⁽⁵⁾				116/0			
Іссн	Supply Current, High	3005	$V_{CC} = 5.5 \text{ V}, E_e = 1.0 \text{ mW/cm}^2$			15.0	mA
Iccl	Supply Current, Low	3005	V _{CC} = 5.5 V, E _e = 0			15.0	mA
VoL	Low Level Output Voltage	3007	$V_{CC} = 4.5 \text{ V}, I_{OL} = 12.8 \text{ mA}, E_e = 0$			0.40	٧
Voн	High Level Output Voltage	3006	$V_{CC} = 4.5 \text{ V, } I_{OH} = -800 \mu\text{A,}$ $E_e = 1.0 \text{ mW/cm}^2$		2.4		٧
los	Short Circuit Output Current	3011	$V_{CC} = 4.5 \text{ V}, E_e = 1.0 \text{ mW/cm}^2,$ Output = GND		-20	-100	mA
Subgroup 2 ⁽⁵⁾			T _A = +125° C	116/0			
Іссн	Supply Current, High	3005	$V_{CC} = 5.5 \text{ V}, E_e = 1.0 \text{ mW/cm}^2$			15.0	mA
Iccl	Supply Current, Low	3005	V _{CC} = 5.5 V, E _e = 0			15.0	mA
V _{OL}	Low Level Output Voltage	3007	V _{CC} = 4.5 V, I _{OL} = 12.8 mA, E _e = 0			0.40	٧
Vон	High Level Output Voltage	3006	$V_{CC} = 4.5 \text{ V, } I_{OH} = -800 \mu\text{A},$ $E_e = 1.0 \text{ mW/cm}^2$		2.4		٧
Subgroup 3 ⁽⁵⁾			T _A = -55° C	116/0			
Іссн	Supply Current, High	3005	$V_{CC} = 5.5 \text{ V}, E_e = 1.0 \text{ mW/cm}^2$	- .		15.0	mA
Iccl	Supply Current, Low	3005	V _{CC} = 5.5 V, E _e = 0			15.0	mA
Vol	Low Level Output Voltage	3007	V _{CC} = 4.5 V, I _{OL} = 12.8 mA, E _e = 0			0.40	٧
Voн	High Level Output Voltage	3006	$V_{CC} = 4.5 \text{ V, } I_{OH} = -800 \mu\text{A,} \\ E_e = 1.0 \text{mW/cm}^2$		2.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V
Subgroup 4 ⁽⁵⁾				116/0			
t _r , t _f	Rise and Fall Time	3004	V _{CC} = 5.0 V, R _L = 8 TTL loads			100	ns
tpHL	Propagation Delay, Low-High	3003	V _{CC} = 5.0 V, R _L = 8 TTL loads			10.0	μs
tpHL	Propagation Delay, High-Low	3003	V _{CC} = 5.0 V, R _L = 8 TTL loads			10.0	μѕ