

# CRT Driver + DC Bias Amplifier

# **Preliminary Data Sheet**

# **CVA1775N**

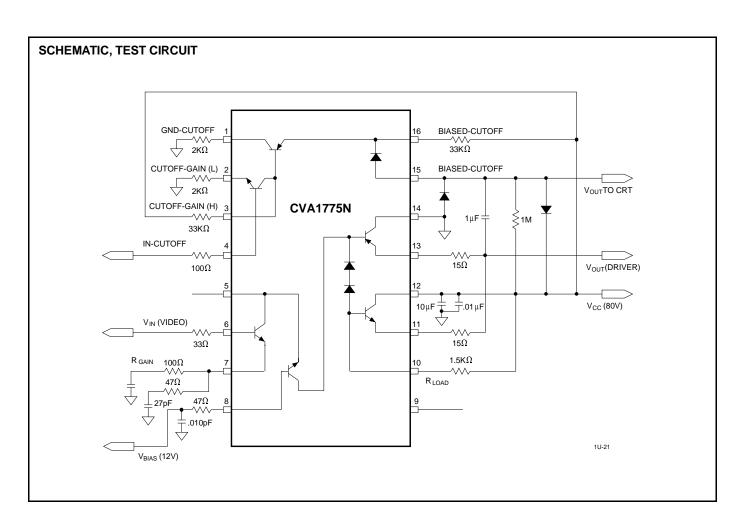
### **FEATURES**

| • | Little | or | No | Heat | Sink | Req | uired |
|---|--------|----|----|------|------|-----|-------|
|---|--------|----|----|------|------|-----|-------|

| • | Ease | of | Use |
|---|------|----|-----|
|---|------|----|-----|

| • | Rise Time | <8ns |
|---|-----------|------|
| • | Fall Time | <7ns |

#### **APPLICATIONS**


• 14", 15", 17" Monitors with 70KHz Scanning Frequency

### **DESCRIPTION**

The CVA1775N includes a cascode CRT driver and a DC bias cutoff amplifier. All of the active components are inside the CVA1775N. Only the passive components and protection diodes are needed to drive a CRT tube. The CVA1775N can easily drive 70KHz monitors. With the unique feature of DC bias circuitry the printed circuit board will shrink as EMI performance will be improved.

### **ORDERING INFORMATION**

| Part     | Package | Temperature   |
|----------|---------|---------------|
| CVA1775N | 16-PDIP | 0°C to +110°C |



# **CVA1775N**



### **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage (Driver Pin #12)   | Junction Temperature                       |
|-----------------------------------|--------------------------------------------|
| Supply Voltage (cutoff)           | Operating Temperature (Case) 0°C to +110°C |
| Storage Temperature25°C to +125°C | Lead Temperature                           |

# CRT DRIVER DC ELECTRICAL CHARACTERISTICS $V_s = 80V$ , $C_L = 12pF$ , $V_{BIAS} = 12V$ , $V_{IN} = 2.7V$ , $R_L = 1500\Omega$ , $T_{CASE} = +25^{\circ}C$ .

| SYMBOL                  | CHARACTERISTICS | MIN | TYP | MAX | UNITS |
|-------------------------|-----------------|-----|-----|-----|-------|
| Icc                     | Supply Current  |     | 20  | 26  | mA    |
| VOUT DC                 | Output DC Level | 44  | 50  | 56  | V     |
| A <sub>v</sub> (Driver) | Voltage Gain    |     | 13  | 15  | V     |

### CRT DRIVER AC ELECTRICAL CHARACTERISTICS $V_s = 80V$ , $C_L = 12pF$ , $V_{BIAS} = 12V$ , $V_{IN} = 2.7V$ , $R_L = 1500\Omega$ , $T_{CASE} = +25^{\circ}C$ .

| SYMBOL | CHARACTERISTICS | MIN | TYP | MAX | UNITS |
|--------|-----------------|-----|-----|-----|-------|
| Tr     | Rise Time       |     | 7.5 | 9   | ns    |
| Tf     | Fall Time       |     | 7.5 | 9   | ns    |
| Le     | Linearity       |     | 5   |     | %     |
| os     | Overshoot       |     | 3   |     | %     |

# BIAS AMPLIFIER DC ELECTRICAL CHARACTERISTICS Supply Voltage = 150V, V<sub>B</sub> = 12Vsee test circuit.

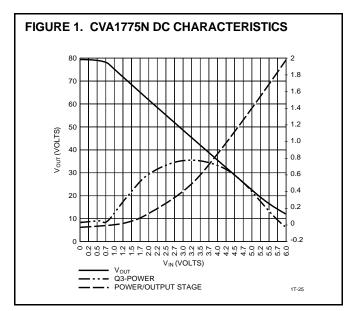
| SYMBOL     | CHARACTERISTICS | TYP  | MIN | MAX | UNITS | CONDITIONS                          |
|------------|-----------------|------|-----|-----|-------|-------------------------------------|
| Icc        | Supply Current  | 5    |     | 5.5 | mA    | V <sub>IN</sub> = 5V                |
| Vout(LOW)  | Output Voltage  | 66   | 60  | 70  | V     | V <sub>IN</sub> = 5V                |
| Vout(HIGH) | Output Voltage  | 121  | 118 | 126 | V     | V <sub>IN</sub> = 1V                |
| Gain       | Voltage Gain    | 13.8 | 12  | 16  | V/V   | ΔV <sub>OUT</sub> /ΔV <sub>IN</sub> |
| Δ Gain     | Gain Match      | 0.5  |     | 1   | dB    | Note 1                              |

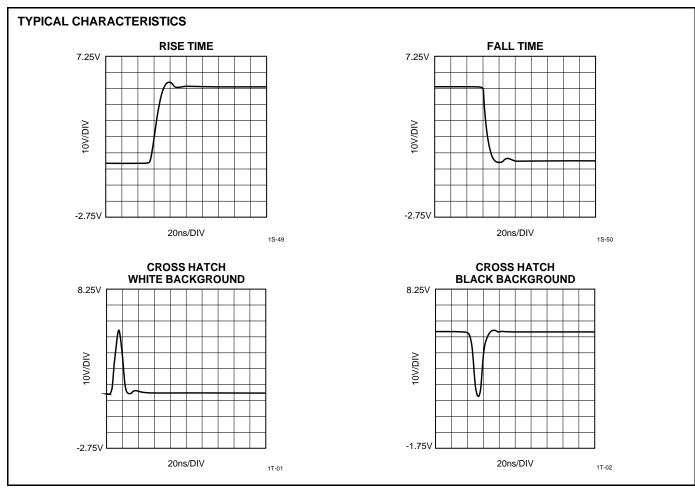
Note 1. Calculate from voltage gain of each channel.

Note 2:  $V_{OUT}$  at  $V_{IN} = 5V$ ,  $\Delta T = 25^{\circ}C 100^{\circ}C$ 



### **APPLICATION INFORMATION**


The CVA1775N is a high voltage driver and DC bias amplifier suitable for VGA, Super VGA, IBM® 8514, 1024 x 768 non-interlaced display applications. The CVA1775N features 80V and low power dissipation. The part is housed in the industry standard 16-pin PDIP.


### **Thermal Considerations**

The transfer characteristics of the CVA1775N application are shown in *Figure 1*. Since this is a class A input stage, power supply current increases as the input signal increases and consequently power dissipation also increases.

The CVA1775N can be used without a heat sink. Under white screen condition, i.e. 25V output, dissipation is 0.6W/channel. Under gray level conditions  $C_L$  =12pf,  $V_{OUT}$  = 45p-p, the dissipation is 1.1W/channel.

The output of CVA1775N is not short circuit proof.





Information furnished by Calogic is believed to be accurate and reliable. However, no responsibility is assumed for its use: nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Calogic.