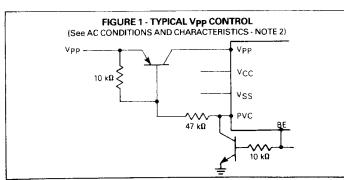
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

MCM2801

Advance Information


16 x 16-BIT SERIAL ELECTRICALLY ERASABLE PROM

The MCM2801 is a 256-bit serial Electrically Erasable PROM designed for handling small amounts of data in applications requiring both non-volatile memory and in-system information updates.

The MCM2801 offers in-system erase and reprogram capability. It has external control of timing functions and serial format for data and address. The MCM2801 is fabricated in floating gate technology for high reliability and producibility.

- Single +5 V power supply
- · Organized as 16 words of 16 bits
- MPU Bus compatible
- Single + 25 V power supply for erase and program
- · In-System program/erase capability
- · Both word and whole array erasable
- 100,000 write/erase cycles

BLOCK DIAGRAM Block Frase BE Vpp Serial 16 × 16 4 B CTR2 Contro 16 Bit Serial Data Reg CTR3 HO DOA Vpp Vec VSS Inputs

This is advance information and specifications are subject to change without notice.

MOS

(N-CHANNEL, SILICON GATE)

16 × 16 BIT

ELECTRICALLY ERASABLE

PROGRAMMABLE READ

ONLY MEMORY

PLASTIC PACKAGE CASE 646

PIN ASSIGNMENT

Vpp		14	vcc
•т2	2	13	CTR1
N/C	3	12	CTR2
BE 🕻	4	11	СТЯЗ
*T1 C	5	10	PVC
Ī 【	6	9	С
VSS	7	8	ADQ

*For normal operation, these inputs should be hardwired to ${\sf VSS}$

	PIN NAMES
ADQ	
	Data-In/Data-Out
C	Clock
PVC	Program Voltage Control
CTR1, 2, 3	Control
BE	Block Erase
<u>s</u>	Chip Select
T1, T2	Test Pins

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

MODE SELECTION

		Pin Number						
Vord Erase Vrite	1 V _{PP}	6 S	7 Vss	11 CTR3	12 CTR2	13 CTR1	14 VCC	
Standby	VSS or VCC	VIH	٧ss	VIH	VIH	ViH	Vcc	
Word Erase	V _{PP}	VIŁ	Vss	VIH	VIL	VIL	Vcc	
Write	Vpp	VIL	٧ss	VIL	ViH	VIL	Vcc	
Serial Data Out	V _{SS} or V _{CC}	VIL	٧ss	VIH	VIH	VIL	Vcc	
Serial Address In	V _{SS} or V _{CC}	VIL	VSS	VIL	VIL	VIH	Vcc	
Serial Data In	V _{SS} ar V _{CC}	٧Į٤	VSS	VIH	VIL	VIH	VCC	
Read	V _{SS} or V _{CC}	VIL	VSS	VIL	VIH	VIH	Vcc	
Standby	VSS or VCC	VIH	٧ss	VIL	VIL	VIL	Vcc	

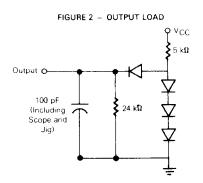
ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Temperature Under Bias	40 to +85	°C
Operating Temperature Range	0 to +70	°C
Storage Temperature	- 55 to + 150	°C
All Input or Output Voltages with Respect to VSS (Except PVC)	+8 to -0.5	V
Vpp Supply Voltage with Respect to VSS	+ 28 to 0.5	V
PVC Voltage with Respect to VSS	+ 28 to -05	٧

NOTE 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS(Full operating voltage and temperature range unless otherwise noted.)

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V _{CC} Vpp	4.5 24.0	5.0 25	5.5 26.0	V
Input High Voltage	VPP	2.4	- 25	V _{CC} + 1.0	V
Input Low Voltage	VIL	- 0.1	-	0.8	V


OPERATING DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Units
Input Sink Current	0 < V ₁₇₁ < V _{CC}	l _{in}	T-	-	10	μА
V _{CC} Supply Current	V _{CC} = 5 5 V	ICC	_	-	30	mA
Vpp Supply Current	Vpp = 26 0 V	1PP		-	4.0	mA
Output Low Voltage	I _{OL} = 1.0 mA	VOL	1		0.5	V
Output High Voltage	I _{OH} = -0.1 mA	∨он	2.4	<u> </u>		V
PVC Current (Write or Word Erase)	PVCL = 1 V	PVCON	200	Γ-		μA
PVC Leakage	PVCH = 26 V	PVCOFF	-		5	μΑ

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = +5 V, periodically sampled rather than 100% tested)

Characteristic	Symbol	Түр	Max	Unit
Input Capacitance (V _{in} = 0 V)	·C _{in}	-	60	pF
Output Capacitance (Vout = Q V)	Court		12	pF

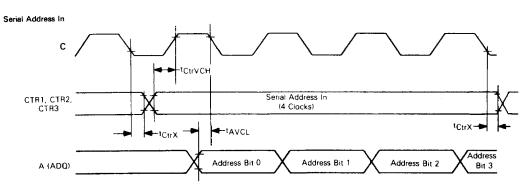
Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta_t/\Delta V$.

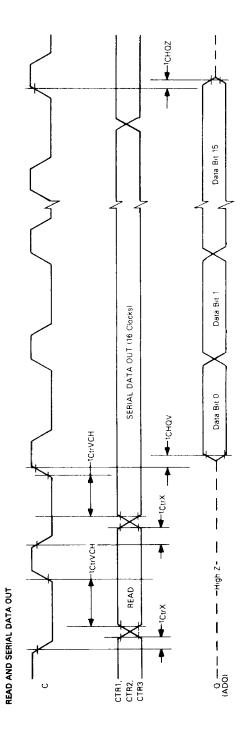
MCM2801

AC OPERATING CONDITIONS AND CHARACTERISTICS

Input Pulse Levels	0.65 Volts and 2.6 Volts	Output Timing Levels	1.0 Volt and 2 Volts
Input Rise and Fall Times	20 ns	Output Load	See Figure 2
Input Timing Levels	1.0 Volt and 3 8 Volts		

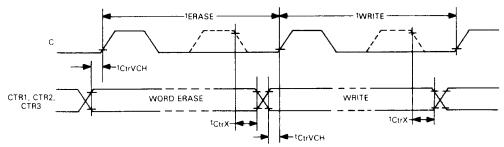
Characteristic	Symbol	Min	Max	Unit
Erase Time	†ERASE	100	_	ms
Write Time	†WRITE	10	-	ms
Clock High Level Hold Time	†CHCL	4	10	μS
Clock Low Level Hold Time	1CLCH	4	-	μS
Clock Rise Time	¹Cr	5	1000	ns
Clock Fall Time	¹ Ct	5	1000	ns
Chip Select Setup	¹SLCH	1	_	μS
Chip Select Hold	¹CLSH	1	_	μS
Data Out Delay	'CHQV	-	1	μS
Address In Setup	1AVCL	1	-	μS
Data In Setup	†DVCL	1		μS
Control Setup Time	¹CtrVCH	1	-	μS
Control Hold Time	[†] CtrX	50	· ·	nş
Data-Off Time (from the Clock)	tснαz	-	3.0	μS
Chip Select Low to Output Active Time	¹SLQX		2.0	μS
Data-Off Time (from Chip Select)	1SHQZ		20	μ5


NOTE 2: During application of Vpp, a 1 μ F ceramic capacitor is recommended between Vpp and Ground to suppress any voltage transients which might damage the device.


Clock Cycle Detail

TIMING DIAGRAMS

All times defined at 10% or 90% points.


Data Bit 15 Data Bit 1... 14 SERIAL DATA IN (16 Clocks) Data Bit 0 ₹ TDVCL **▼** tCtrVCH tCtrX---CTR1, CTR2, CTR3 D (ADQ)

MOTOROLA MEMORY DATA

SERIAL DATA IN

MCM2801

ERASE-WRITE SEQUENCE

NOTE: One clock pulse is sufficient to load a new control code

FUNCTIONAL DESCRIPTION

The memory stores sixteen words, each of sixteen bits. All functions are selected by a 3 bit parallel control code. The clock line is used to strobe these codes and to serially shift data and addresses.

Read-Out

- The 4-bit serial address is shifted on the ADQ line while the SERIAL ADDRESS-IN code is applied on the three control pins.
- The READ instruction is strobed with one clock pulse. This reads the word from the new address in the memory array and parallel loads it into the data register.
- While the SERIAL DATA-OUT code is being applied, data is shifted out on the ADQ pin with 16 clock pulses. In this mode, the ADQ pin output buffer is active.

Writing

- The address is changed, if necessary, in the same manner as in the readout.
- While the SERIAL DATA-IN code is being applied, data is shifted in on the ADQ pin with 16 clock pulses. If the data to be written has already been shifted into the data register, it is not necessary to re-enter the 16 bits, so this step may be omitted.
- The WORD ERASE code is strobed in with one clock pulse. After the specified ERASE time, the addressed word is erased.
- The WRITE code is strobed in with one clock pulse. After the specified WRITE time, a STANDBY code can be strobed in to stop writing. Data will be programmed at the specified address.

It is also possible to change the sequence by erasing a memory location before starting a write sequence.

Standby

Either of the two STANDBY codes, when strobed in with a clock pulse, puts the memory in a quiescent state. The output is then in the high-impedance state and the absence or presence of the clock will not affect the device.

Pin Description

The active high clock signal (C) is used for shifting addresses and data into or out of the chip. It is also used for strobing control codes.

The I/O pin (ADQ) is used for entering addresses and data in. It is in the output state only for shifting output data.

The active low Chip Select pin (S) is only used to block the clock and put the ADQ buffer into the high-impedance mode. It has no influence on the operating status of the device and does not force a standby condition.

The programming voltage control pin (PVC) is an opendrain output that is active when a WORD ERASE or WRITE control code is strobed in. As shown in Figure 1, it can be used to control the Vpp supply applied to the circuit. The BLOCK ERASE (BE) pin can be used to clear the whole array. As the PVC output is not active in this state, the programming voltage should be directly applied to the Vpp pin for the specified erase time.

The Test inputs (TEST1) and TEST2) are provided for testing purpose only and should be connected to VSS in any application.

Data Protection

When Vpp is turned off, data stored in the array is protected. The programming voltage should not be applied to the Vpp pin if V_{CC} is not present. Therefore, use of the PVC control output, which is controlled by the V_{CC} supply is recommended. Using this feature, Vpp and V_{CC} can be turned on or off in any sequence without disturbing data in the array. However, to avoid spurious control codes being strobed into the device, all inputs should be stable when Vpp is on.

General Comments

The erased state corresponds to a logical zero at the ADQ autout.

WRITE (for any address) must be preceded by an ERASE at the same address.

Vpp is necessary for WRITE, WORD ERASE or BLOCK ERASE. In all other cases, it can be switched to high impedance, VCC or VSS.