16-bit Proprietary Microcontroller

CMOS

F^{2} MC-16F MB90220 Series

MB90223/224/P224A/W224A MB90P224B/W224B/V220

■ OUTLINE

The MB90220 series of general-purpose high-performance 16-bit microcontrollers has been developed primarily for applications that demand high-speed real-time processing and is suited for industrial applications, office automation equipment, process control, and other applications. The $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~F} \mathrm{CPU}$ is based on the $\mathrm{F}^{2} \mathrm{MC}$ *-16 Family with improved high-level language support functions and task switching functions, as well as additional addressing modes.
On-chip peripheral resources include a 4-channel PWC timer, a 4-channel ICU (Input Capture Unit), a 1-channel 24-bit timer counter, an 8-channel OCU (Output Compare Unit), a 6-channel 16-bit reload timer, a 2-channel 16-bit PPG timer, a 10-bit A/D converter with 16 inputs, and a 4-channel serial port with a UART function (one channel includes the CTS function).
The MB90P224B, MB90W224B, MB90224 is under development.
*: F²MC stands for FUJITSU Flexible Microcontroller.

PACKAGE

MB90220 Series

FEATURES

F^{2} MC-16F CPU

- Minimum execution time: $62.5 \mathrm{~ns} / 16 \mathrm{MHz}$ oscillation (using a duty control system)
- Instruction sets optimized for controllers

Upward object-compatible with the $\mathrm{F}^{2} \mathrm{MC}$-16(H)
Various data types (bit, byte, word, and long-word)
Instruction cycle improved to speed up operation
Extended addressing modes: 25 types
High coding efficiency
Access method (bank access with linear pointer)
Enhanced multiplication and division instructions (with signed instructions added)
Higher-precision operation using a 32 -bit accumulator

- Extended intelligent I/O service (automatic transfer function independent of instructions)

Access area expanded to 64 Kbytes

- Enhanced instruction set applicable to high-level language (C) and multitasking System stack pointer
Enhanced pointer-indirect instructions
Barrel shift instruction
Stack check function
- Increased execution speed: 8-byte instruction queue
- Powerful interrupt functions: 8 levels and 28 sources

Peripheral resources

- Mask ROM : 64 Kbytes (MB90223)

96 Kbytes (MB90224)
EPROM : 96 Kbytes (MB90W224A/W224B)

- One-time PROM : 96 Kbytes (MB90P224A/P224B)
- RAM: 3 Kbytes (MB90223)
4.5 Kbytes (MB90224/MB90W224A/P224A/W224B/P224B)

5 Kbytes (MB90V220)

- General-purpose ports: max. 102 channels
- ICU (Input Capture Unit): 4 channels
- 24-bit timer counter: 1 channel
- OCU (Output Compare Unit): 8 channels
- PWC timer with time measurement function: 4 channels
- 10-bit A/D converter: 16 channels
- UART: 4 channels (one channel includes CTS function)
- 16-bit reload timer

Toggled output, external clock, and gate functions: 6 channels

- 16-bit PPG timer: 2 channels
- DTP/External-interrupt inputs: 8 channels (of which five have edge detection function only)
- Write-inhibit RAM: 0.5 Kbytes (1 Kbyte for MB90V220)
- Timebase counter: 18 bits
- Clock gear function
- Low-power consumption mode Sleep mode Stop mode Hardware standby mode

MB90220 Series

Product description

- MB90223/224 are mask ROM product.
- MB90P224A/P224B are one-time PROM products.
- MB90W224A/W224B are EPROM products. ES only.
- Operating temperature of MB90P224A/W224A is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (However, the AC characteristics is assured in $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)
- Operation clock cycle of MB90223 is 10 MHz to 12 MHz .
- MB90V220 is a evaluation device for the program development. ES only.

PRODUCT LINEUP

$\begin{aligned} & \text { Part number } \\ & \text { Item } \\ & \hline \end{aligned}$	MB90223	MB90224	$\begin{aligned} & \text { MB90P224A } \\ & \text { MB90P224B } \end{aligned}$	$\begin{aligned} & \text { MB90W224A } \\ & \text { MB90W224B } \end{aligned}$	MB90V220
Classification	Mask ROM product	Mask ROM product	One-time PROM product	EPROM product	Evaluation device
ROM size	64 Kbytes	96 Kbytes	96 Kbytes	96 Kbytes	None
RAM size	3 Kbytes	4.5 Kbytes	4.5 Kbytes	4.5 Kbytes	5 Kbytes
CPU functions	 The number of instructions: 412 Instruction bit length: 8 or 16 bits Instruction length: 1 to 7 bytes Data bit length: $1,4,8,16$, or 32 bits Minimum execution time: $62.5 \mathrm{~ns} / 16 \mathrm{MHz}$ Interrupt processing time: $1.0 \mu \mathrm{~s} / 16 \mathrm{MHz}$ (min.)				
Ports	I/O ports (N-ch open-drain): 16 I/O ports (CMOS): 86 Total: 102				
ICU (Input Capture Unit)	Number of channels: 4 Rising edge/falling edge/both edges selectable				
24-bit timer counter	Number of channels: 1 Overflow interrupt, intermediate bit interrupt				
OCU (Output Compare Unit)	Number of channels: 8 Pin change source (match signal causes register value transfer/general-purpose port)				
PWC timer	Number of channels: 4 16-bit reload timer operation (operation clock cycle: $0.25 \mu \mathrm{~s}$ to 1.31 ms) 16-bit pulse-width count operation (Allowing continuous/one-shot measurement, H / L width measurement, inter-edge measurement, and divided-frequency measurement)				
$\begin{aligned} & \text { 10-bit } \\ & \text { A/D converter } \end{aligned}$	Resolution: 10 bits Number of inputs: 16 Single conversion mode (conversion of each channel) Scan conversion mode (continuous conversion for up to 16 consecutive channels) Continuous conversion mode (repeated conversion of specified channel) Stop conversion mode (conversion every fixed cycle)				
UART	Number of channels: 4 (1 channel with CTS function) Clock-synchronous transfer mode (full-duplex double buffering, 7 to 9 -bit data length, 2400 to 62500 bps) Asynchronous transfer mode (full-duplex double buffering, 7 to 9 -bit data length, 2400 to 62500 bps)				
16-bit reload timer	Number of channels: 6 16-bit reload timer operation (operation clock cycle: $0.25 \mu \mathrm{~s}$ to 1.05 s)				

(Continued)

MB90220 Series

(Continued)

$\overbrace{\text { Item }}^{\text {Part number }}$	MB90223	MB90224	$\begin{aligned} & \text { MB90P224A } \\ & \text { MB90P224B } \end{aligned}$	MB90W224A MB90W224B	MB90V220
16-bit PPG timer	Number of channels: 2 16-bit PPG operation (operation clock cycle: $0.25 \mu \mathrm{~s}$ to 6 s)				
DTP/External interrupts	Number of inputs: 8 (of which five have edge detection function only) External interrupt mode (allowing interrupts to activate at four different request levels) Simple DMA transfer mode (allowing extended I'OS to activate at two different request levels)				
Write-inhibited RAM	RAM size: 512 bytes (1 Kbyte for MB90V220) RAM write-protectable with WI pin				
Standby mode	stop mode (activated by software or hardware) and sleep mode				
Gear function	Machine clock operation frequency switching: $16 \mathrm{MHz}, 8 \mathrm{MHz}, 4 \mathrm{MHz}, 1 \mathrm{MHz}$ (at $16-\mathrm{MHz}$ oscillation)				
Package	FPT-120P-M03			FPT-120C-C02	PGA-256C-A02

Note: MB90V220 is a evaluation device, therefore, the electrical characteristics are not assured.
DIFFERENCES BETWEEN MB90223/224 (MASK ROM PRODUCT) AND MB90P224A/ W224A/P224B/W224B

Item Part number	MB90223	MB90224	$\begin{aligned} & \text { MB90P224A } \\ & \text { MB90Р224B } \end{aligned}$	$\begin{aligned} & \text { MB90W224A } \\ & \text { MB90W224B } \end{aligned}$
ROM	Mask ROM 64 Kbytes	Mask ROM 96 Kbytes	OTPROM 96 Kbytes	EPROM 96 Kbytes
Pin functions: pin 87	MD2 pin		MD2/Vpp pin	

MB90220 Series

PIN ASSIGNMENT

(Top view)

MB90220 Series

PIN DESCRIPTION

Pin no. QFP*	Pin name	Circuit type	Function
$\begin{aligned} & 92, \\ & 93 \end{aligned}$	$\begin{aligned} & \mathrm{X} 0, \\ & \mathrm{X} 1 \end{aligned}$	A	Crystal oscillation pins (16 MHz)
89 to 87	MD0 to MD2	D	Operation mode specification input pins Connect directly to Vcc or V_{ss}.
90	RST	G	External reset request input
86	HST	E	Hardware standby input pin
95 to 102	P00 to P07	C	General-purpose I/O ports This function is valid only in single-chip mode.
	D00 to D07		Output pins for low-order 8 bits of the external address bus. This function is valid only in modes where the external bus is enabled.
103 to 110	P10 to P17	C	General-purpose I/O ports This function is valid only in single-chip mode or when the external bus is enabled and the 8 -bit data bus specification has been made.
	D08 to D15		I/O pins for higher-order 8 bits of the external data bus This function is valid only when the external bus is enabled and the 16-bit bus specification has been made.
111 to 118	P20 to P27	C	General-purpose I/O ports This function is valid only in single-chip mode.
	A00 to A07		Output pins for lower-order 8 bits of the external address bus This function is valid only in modes where the external bus is enabled.
$\begin{gathered} 120, \\ 1 \text { to } 7 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { P30, } \\ \text { P31 to P37 } \end{array}$	C	General-purpose I/O ports This function is valid either in single-chip mode or when the address mid-order control register specification is "port".
	$\begin{aligned} & \text { A08, } \\ & \text { A09 to A15 } \end{aligned}$		Output pins for mid-order 8 bits of the external address bus This function is valid in modes where the external bus is enabled and the address mid-order control register specification is "address".
9 to 11	P40 to P42	C	General-purpose I/O ports This function is valid either in single-chip mode or when the address high-order control register specification is "port".
	A16 to A18		Output pins for higher-order 8 bits of the external address bus This function is valid in modes where the external bus is enabled and the address high-order control register specification is "address".
12 to 16	P43 to P47	C	General-purpose I/O ports This function is valid when either single-chip mode is enabled or the address higher-order control register specification is "port".
	A19 to A23		Output pins for higher-order 8 bits of the external address bus This function is valid in modes where the external bus is enabled and the address higher-order control register specification is "address".
	TIN1 to TIN5		16-bit reload timer input pins This function is valid when the timer input specification is "enabled". The data on the pins is read as timer input (TIN1 to TIN5).

Pin no.	Pin name	Circuit type	Function
QFP*			
12 to 16	INT3 to INT7	C	External interrupt request input pins When external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately.
78	P50	C	General-purpose I/O port This function is valid in single-chip mode and when the CLK output specification is disabled.
	CLK		CLK output pin This function is valid in modes where the external bus is enabled and the CLK output specification is enabled.
79	P51	C	General-purpose I/O port This function is valid in single-chip mode or when the ready function is disabled.
	RDY		Ready input pin This function is valid in modes where the external bus is enabled and the ready function is enabled.
80	P52	C	General-purpose I/O port This function is valid in single-chip mode or when the hold function is disabled.
	$\overline{\text { HAK }}$		Hold acknowledge output pin This function is valid in modes where the external bus is enabled and the hold function is enabled.
81	P53	C	General-purpose I/O port This function is valid in single-chip mode or external bus mode and when the hold function is disabled.
	HRQ		Hold request input pin This function is valid in modes where the external bus is enabled and the hold function is enabled. During this operation, the input may be used suddenly at any time; therefore, it is necessary to stop output by other fuctions on this pin, except when using it for output deliberately.
82	P54	C	General-purpose I/O port This function is valid in single-chip mode, when the external bus is in 8 -bit mode, or when $\overline{\text { WRH }}$ pin output is disabled.
	$\overline{\text { WRH }}$		Write strobe output pin for the high-order 8 bits of the data bus This function is valid in modes where the external bus is enabled, the external bus is in 16-bit mode, and WRH pin output is enabled.
83	P55	C	General-purpose I/O port This function is valid in single-chip mode or when WRL pin output is disabled.
	$\overline{\overline{W R L}}$		Write strobe output pin for the low-order 8 bits of the data bus This function is valid in modes where the external bus is enabled and WRL pin output is enabled.

MB90220 Series

Pin no.	Pin name	Circuit type	Function
84	P56	C	General-purpose I/O port This function is valid in single-chip mode. This function is valid in modes where the external bus is valid.
	$\overline{\mathrm{RD}}$		Read strobe output pin for the data bus This function is valid in modes where the external bus is enabled.
85	P57	B	General-purpose I/O port This function is always valid. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to $\mathrm{V}_{\mathrm{cc}} / \mathrm{V}_{\mathrm{ss}}$ level to use these pins in input mode.
	$\overline{\text { WI }}$		RAM write disable request input During this operation, the input may be used suddenly at any time; therefore, it is necessary to stop output by other fuctions on this pin, except when using it for output deliberately.
46 to 53	P60 to P67	F	Open-drain I/O ports This function is valid when the analog input enable register specification is "port".
	AN00 to AN07		10-bit A/D converter analog input pins This function is valid when the analog input enable register specification is "analog input".
17 to 24	P70 to P77	C	General-purpose I/O ports This function is valid when the output specification for DOT0 to DOT7 is "disabled".
	DOT0 to DOT7		This function is valid when OCU (output compare unit) output is enabled.
25 to 30	P80 to P85	C	General-purpose I/O ports This function is valid when the output specification for TOT0 to TOT5 is "disabled".
	TOT0 to TOT5		16-bit reload timer output pins (TOT0 to TOT5)
$\begin{aligned} & 31, \\ & 32 \end{aligned}$	$\begin{aligned} & \text { P86, } \\ & \text { P87 } \end{aligned}$	C	General-purpose I/O ports This function is valid when the PPG0, and PPG1 output specification is "disabled".
	$\begin{aligned} & \text { PPG0, } \\ & \text { PPG1 } \end{aligned}$		16-bit PPG timer output pins This function is valid when the PPG control/status register specification is "PPG output pins".
34 to 41	P90 to P97	F	Open-drain I/O ports This function is valid when the analog input enable register specification is "port".
	AN08 to AN15		10-bit A/D converter analog input pins This function is valid when the analog input enable register specification is "analog input".

*:FPT-120P-M03, FPT-120C-C02
(Continued)

Pin no.	Pin name	Circuit type	Function
55	PAO	C	General-purpose I/O port This function is always valid.
	ASR0		ICU (input capture unit) input pin This function is valid during ICU (input capture unit) input operations.
56	PA1	C	General-purpose I/O port This function is always valid.
	PWC0		PWC input pin During PWCO input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.
	POTO		PWC output pin This function is valid during PWC output operations.
57 to 59	PA2 to PA4	C	General-purpose I/O ports This function is always valid.
	PWC1 to PWC3		PWC input pins This function is valid during PWC input operations. During PWC1 to PWC3 input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.
	POT1 to POT3		PWC output pins This function is valid during PWC output operations.
	ASR1 to ASR3		ICU (input capture unit) input pins This function is valid during ICU (input capture unit) input operations.
$\begin{aligned} & 60, \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { PA5, } \\ & \text { PA6 } \end{aligned}$	B	General-purpose I/O ports This function is always valid. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to $\mathrm{V}_{\mathrm{cc}} / \mathrm{Vss}_{\text {ss }}$ level to use these pins in input mode.
	INTO, INT1		DTP/External interrupt request input pins When DTP/external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to $\mathrm{V}_{\mathrm{cc}} / \mathrm{Vss}_{s s}$ level to use these pins in input mode.
62	PA7	B	General-purpose I/O port This function is always valid. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to $\mathrm{V}_{\mathrm{cc}} / \mathrm{Vss}_{\text {ss }}$ level to use these pins in input mode.

[^0]
MB90220 Series

Pin no.	Pin name	Circuit type	Function
62	INT2	B	DTP/External interrupt request input pin When DTP/external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to $\mathrm{V}_{\mathrm{cc}} / \mathrm{Vss}_{\text {ss }}$ level to use these pins in input mode.
	$\overline{\text { ATG }}$		10-bit A/D converter external trigger input pin When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to $\mathrm{Vcc} / \mathrm{Vss}_{\text {ss }}$ level to use these pins in input mode.
64	PB0	C	General-purpose I/O port This function is valid when the UARTO (ch.0) serial data output specification is "disabled".
	SODO		UARTO (ch.0) serial data output This function is valid when the UARTO (ch.0) serial data output specification is "enabled".
65	PB1	C	General-purpose I/O port This function is always valid.
	SIDO		UART0 (ch.0) serial data input pin During UART0 (ch.0) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.
66	PB2	C	General-purpose output port This function is valid when the UARTO (ch.0) clock output specification is "disabled".
	SCKO		UARTO (ch.0) clock output pin The clock output function is valid when the UARTO (ch.0) clock output specification is "enabled". UART0 (ch.0) external clock input pin. This function is valid when the port is in input mode and the UART0 (ch.0) specification is external clock mode.
67	PB3	C	General-purpose I/O port This function is valid when the UART0 (ch.1) serial data output specification is "disabled".
	SOD1		UARTO (ch.1) serial data output pin This function is valid when the UART0 (ch.1) serial data output specification is "enabled".
68	PB4	C	General-purpose I/O port This function is always valid.
	SID1		UART0 (ch.1) serial data input pin During UART0 (ch.1) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.

[^1]| Pin no. | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| 69 | PB5 | C | General-purpose I/O port
 This function is valid when the UART0 (ch.1) clock output specification is "disabled". |
| | SCK1 | | UARTO (ch.1) clock output pin
 The clock output function is valid when the UART0 (ch.1) clock output specification is "enabled".
 UART0 (ch.1) external clock input pin
 This function is valid when the port is in input mode and the UART0 (ch.1) specification is external clock mode. |
| 70 | PB6 | C | General-purpose I/O port
 This function is valid when the UARTO (ch.2) serial data output specification is "disabled". |
| | SOD2 | | UART0 (ch.2) serial data output pin This function is valid when the UART0 (ch.2) serial data output specification is "enabled". |
| 71 | PB7 | C | General-purpose I/O port This function is always valid. |
| | SID2 | | UART0 (ch.2) serial data input pin During UARTO (ch.2) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately. |
| 72 | PC0 | C | General-purpose I/O port This function is valid when the UARTO (ch.2) clock output specification is "disabled". |
| | SCK2 | | UARTO (ch.2) clock output pin
 The clock output function is valid when the UARTO (ch.2) clock output specification is "enabled".
 UART0 (ch.2) external clock input pin
 This function is valid when the port is in input mode and the UARTO (ch.2) specification is external clock mode. |
| 73 | PC1 | C | General-purpose I/O port This function is valid when the UART1 serial data output specification is "disabled". |
| | SOD3 | | UART1 serial data output pin This function is valid when the UART1 serial data output specification is "enabled". |
| 74 | PC2 | C | General-purpose I/O port This function is always valid. |
| | SID3 | | UART1 serial data input pin
 During UART1 input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately. |

[^2](Continued)

MB90220 Series

(Continued)

Pin no.	Pin name	Circuit type	Function
75	PC3	C	General-purpose I/O port This function is valid when the UART1 clock output specification is "disabled".
	SCK3		UART1 clock output pin The clock output function is valid when the UART1 clock output specification is "enabled". UART1 external clock input pin This function is valid when the port is in input mode and the UART1 specification is external clock mode.
76	PC4	C	General-purpose I/O port This function is always valid.
	CTSO		UART0 (ch.0) Clear To Send input pin When the UARTO (ch.0) CTS function is enabled, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.
77	PC5	C	General-purpose I/O port This function is always valid.
	TRGO		16-bit PPG timer trigger input pin This function is valid when the 16 -bit PPG timer trigger input specification is enabled. The data on this pin is read as 16-bit PPG timer trigger input (TRGO). During this operation, the input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.
$\begin{aligned} & 8, \\ & 54, \\ & 94 \end{aligned}$	V cc	Power supply	Power supply for digital circuitry
$\begin{array}{r} \hline 33, \\ 63, \\ 91, \\ 119 \end{array}$	Vss	Power supply	Ground level for digital circuitry
42	AV ${ }_{\text {cc }}$	Power supply	Power supply for analog circuitry When turning this power supply on or off, always be sure to first apply electric potential equal to or greater than AVcc to Vcc . During normal operation AVcc should be equal to Vcc .
43	AVRH	Power supply	Reference voltage input for analog circuitry When turning this pin on or off, always be sure to first apply electric potential equal to or greater than AVRH to AV cc.
44	AVRL	Power supply	Reference voltage input for analog circuitry
45	AVss	Power supply	Ground level for analog circuitry

MB90220 Series

I/O CIRCUIT TYPE

| Type | Circuit | Oscillation feedback resistor: Approx. $1 \mathrm{M} \Omega$
 MB90223
 MB90224
 MB90224B
 MB90W224B |
| :---: | :---: | :---: | :---: |
| A | | |

Note: The pull-up and pull-down resistors are always connected, regardless of the state.
(Continued)

MB90220 Series

Type	Circuit	Remarks
C		- CMOS-level output - CMOS-level hysteresis input with standby control
D		- CMOS-level input with no standby control Mask ROM products only: MD2: with pull-down resistor MD1: with pull-up resistor MDO: with pull-down resistor
		- CMOS-level input with no standby control MD2 of OTPROM products/EPROM products only
E		- CMOS-level hysteresis input with no standby control - With input analog filter (40 ns Typ.)

Note: The pull-up and pull-down resistors are always connected, regardless of the state.
(Continued)

MB90220 Series

(Continued)

Type	Circuit	Remarks
F		- N-channel open-drain output - CMOS-level hysteresis input with A/D control and with standby control
G		- CMOS-level hysteresis input with no standby control and with pull-up resistor - With input analog filter (40 ns Typ.) MB90223, MB90224: $\overline{\text { RST }}$ pin can be set to with or without a pull-up resistor by a mask option. MB90P224A: With pull-up resistor MB90W224A: With pull-up resistor MB90P224B: With no pull-up resistor MB90W224B: With no pull-up resistor

ち-: P-type transistor \quad Һ: N-type transistor
Note: The pull-up and pull-down resistors are always connected, regardless of the state.

MB90220 Series

HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup when a voltage higher than V_{cc} or lower than V ss is applied to input or output pins other than medium-and high-voltage pins, or when a voltage exceeding the rating is applied between V_{cc} and V ss.

If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let any voltage exceed the maximum rating.
Also, take care to prevent the analog power supply (AV Vc and AVRH) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Pins when A / D is not Used

Connect to be $\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=\mathrm{Vcc}$ and $\mathrm{AVss}=\mathrm{AVRL}=\mathrm{V} s$ even if the A / D converter is not in use.

4. Precautions when Using an External Input

To reset the internal circuit properly by the " L " level input to the $\overline{\mathrm{RST}}$ pin, the " L " level input to the $\overline{\mathrm{RST}}$ pin must be maintained for at least five machine cycles. Pay attention to it if the chip uses external clock input.

5. Vcc and Vss Pins

Apply equal potential to the V_{cc} and V_{ss} pins.

6. Supply Voltage Variation

The operation assurance range for the Vcc supply voltage is as given in the ratings. However, sudden changes in the supply voltage can cause misoperation, even if the voltage remains within the rated range. Therefore, it is important to supply a stable voltage to the IC. The recommended power supply control guidelines are that the commercial frequency (50 to 60 Hz) ripple variation ($\mathrm{P}-\mathrm{P}$ value) on Vcc should be less than 10% of the standard V_{cc} value and that the transient rate of change during sudden changes, such as during power supply switching, should be less than $0.1 \mathrm{~V} / \mathrm{ms}$.

7. Notes on Using an External Clock

When using an external clock, drive the X0 pin as illustrated below. When an external clock is used, oscillation stabilization time is required even for power-on reset and wake-up from stop mode.

- Use of External Clock

Note: When using an external clock, be sure to input external clock more than 6 machine cycles after setting the HST pin to " L " to transfer to the hardware standby mode.

MB90220 Series

8. Power-on Sequence for A/D Converter Power Supplies and Analog Inputs

Be sure to turn on the digital power supply (V cc) before applying voltage to the A / D converter power supplies ($\mathrm{AVcc}, \mathrm{AVRH}$, and AVRL) and analog inputs (ANOO to AN15).
When turning power supplies off, turn off the A/D converter power supplies (AVcc, AVRH, and AVRL) and analog inputs (ANOO to AN15) first, then the digital power supply (Vcc).
When turning AVRH on or off, be careful not to let it exceed $A V c c$.

MB90220 Series

PROGRAMMING FOR MB90P224A/P224B/W224A/W224B

In EPROM mode, the MB90P224A/P224B/W224A/W224B functions equivalent to the MBM27C1000. This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter (do not use the electronic signature mode).

1. Program Mode

When shipped from Fujitsu, and after each erasure, all bits ($96 \mathrm{~K} \times 8$ bits) in the MB90P224A/P224B/W224A/ W224B are in the "1" state. Data is written to the ROM by selectively programming "0's" into the desired bit locations. Bits cannot be set to " 1 " electrically.

2. Programming Procedure

(1) Set the EPROM programmer to MBM27C1000.
(2) Load program data into the EPROM programmer at 08000н to 1 FFFFн.

Note that ROM addresses FE8000н to FFFFFFн in the operation mode in the MB90P224A/P224B/W224A/ W224B series assign to $08000^{\text {н }}$ to 1 FFFFH in the EPROM mode (on the EPROM programmer).

*: Be sure to set the programming, the start address and the stop address on the EPROM programmer to $08000 \mathrm{H} / 1$ FFFFH.
(3) Mount the MB90P224A/P224B/W224A/W224B on the adapter socket, then fit the adapter socket onto the EPROM programmer. When mounting the device and the adapter socket, pay attention to their mounting orientations.
(4) Start programming the program data to the device.
(5) If programming has not successfully resulted, connect a capacitor of approx. $0.1 \mu \mathrm{~F}$ between V_{cc} and GND, between VPp and GND.

Note: The mask ROM products (MB90223, MB90224) does not support EPROM mode. Data cannot, therefore, be read by the EPROM programmer.

3. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

Part No.	MB90P224B	
Package	QFP-120	
Compatible socket adapter Sun Hayato Co., Ltd.	ROM-120QF-32DP-16F	
Recommended programmer manufacturer and programmer name	Advantest corp.	R4945A (main unit) + R49451A (adapter)

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106
Advantest Corp.: TEL: Except JAPAN (81)-3-3930-4111

4. Erase Procedure

Data written in the MB90W224A/W224B is erased (from "0" to "1") by exposing the chip to ultraviolet rays with a wavelength of $2,537 \AA$ A through the translucent cover.

Recommended irradiation dosage for exposure is $10 \mathrm{Wsec} / \mathrm{cm}^{2}$. This amount is reached in 15 to 20 minutes with a commercial ultraviolet lamp positioned 2 to 3 cm above the package (when the package surface illuminance is $1200 \mu \mathrm{~W} / \mathrm{cm}^{2}$).

If the ultraviolet lamp has a filter, remove the filter before exposure. Attaching a mirrored plate to the lamp increases the illuminance by a factor of 1.4 to 1.8 , thus shortening the required erasure time. If the translucent part of the package is stained with oil or adhesive, transmission of ultraviolet rays is degraded, resulting in a longer erasure time. In that case, clean the translucent part using alcohol (or other solvent not affecting the package).
The above recommended dosage is a value which takes the guard band into consideration and is a multiple of the time in which all bits can be evaluated to have been erased. Observe the recommended dosage for erasure; the purpose of the guard band is to ensure erasure in all temperature and supply voltage ranges. In addition, check the life span of the lamp and control the illuminance appropriately.
Data in the MB90W224A/W224B is erased by exposure to light with a wavelength of 4,000 \AA or less.
Data in the device is also erased even by exposure to fluorescent lamp light or sunlight although the exposure results in a much lower erasure rate than exposure to $2,537 \AA$ ultraviolet rays. Note that exposure to such lights for an extended period will therefore affect system reliability. If the chip is used where it is exposed to any light with a wavelength of $4,000 \AA$ or less, cover the translucent part, for example, with a protective seal to prevent the chip from being exposed to the light.
Exposure to light with a wavelength of 4,000 to $5,000 \AA$ or more will not erase data in the device. If the light applied to the chip has a very high illuminance, however, the device may cause malfunction in the circuit for reasons of general semiconductor characteristics. Although the circuit will recover normal operation when exposure is stopped, the device requires proper countermeasures for use in a place exposed continuously to such light even though the wavelength is $4,000 \AA$ or more.

MB90220 Series

5. Recommended Screening Conditions

High temperature aging is recommended as the pre-assembly screening procedure.

6. Programming Yeild

MB90P224A/P224B cannot be write-tested for all bits due to their nature. Therefore the write yield cannot always be guaranteed to be 100%.
7. Pin Assignments in EPROM Mode
(1) Pins Compatible with MBM27C1000

MBM27C1000		MB90P224A/P224B/ MB90W224A/W224B	
Pin no.	Pin name	Pin no.	Pin name
1	VPp	87	MD2 (VPP)
2	OE	83	P55
3	A15	7	P37
4	A12	4	P34
5	A07	118	P27
6	A06	117	P26
7	A05	116	P25
8	A04	115	P24
9	A03	114	P23
10	A02	113	P22
11	A01	112	P21
12	A00	111	P20
13	D00	95	P00
14	D01	96	P01
15	D02	97	P02
16	GND	$33,63,91,119$	Vss

MBM27C1000		MB90P224A/P224B/ MB90W224A/W224B	
Pin no.	Pin name	Pin no.	Pin name
32	Vcc	$8,54,94$	Vcc
31	PGM	84	P56
30	N.C.	-	-
29	A14	6	P36
28	A13	5	P35
27	A08	120	P30
26	A09	1	P31
25	A11	3	P33
24	A16	9	P40
23	A10	2	P32
22	CE	82	P54
21	D07	102	P07
20	D06	101	P06
19	D05	100	P05
18	D04	99	P04
17	D03	98	P03

MB90220 Series

(2) Power Supply and GND Connection Pins

Type	Pin no.	Pin name
Power supply	89	MD0
	88	MD1
	86	HST
	$8,54,94$	Vcc
GND	$33,63,91,119$	Vss
	44	AVRL
	45	AVss
	80	P52
	81	P53
	90	RST

(3) Pins other than MBM27C1000-compatible Pins

Pin no.	Pin name	
92	X0	Pull up with $4.7 \mathrm{~K} \Omega$ resistor
93	X1	OPEN
109	P16	
110	P17	
10 to 16	P41 to P47	
42	AVcc	
43	AVRH	
46	P60	
47	P61	
48 to 53	P62 to P67	
17 to 24	P70 to P77	
25 to 32	P80 to P82	
34 to 41	P90 to P97	
55 to 61	PA0 to PA7	
63 to 70	PB0 to PB7	
71 to 76	PC0 to PC5	
78	P50	
79	P51	
85	P57	
103 to 108	P10 to P15	

BLOCK DIAGRAM

MB90220 Series

PROGRAMMING MODEL

Dedicated Registers

DPR

Accumulator

User stack pointer
System stack pointer
Processor status
Program counter
User stack upper register
System stack upper register
User stack lower register
System stack lower register

Direct page register

Program bank register
Data bank register
User stack bank register
System stack bank register
Additional bank register

General-purpose Registers

CCR

MEMORY MAP

MB90220 Series

I/O MAP

Address	Register	Register name	Access	Resouce name	Initial value
$000000{ }^{*}{ }^{3}$	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
000001н*3	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
000002 ${ }^{*}{ }^{\text {3 }}$	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
$000003{ }^{* 3}$	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
000004 ${ }^{* 3}$	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
$000005{ }^{* 3}$	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX
000006н	Port 6 data register	PDR6	R/W	Port 6	11111111
000007 H	Port 7 data register	PDR7	R	Port 7	XXXXXXXX
000008н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
000009н	Port 9 data register	PDR9	R/W	Port 9	11111111
00000 Ан	Port A data register	PDRA	R/W	Port A	XXXXXXXX
00000 в	Port B data register	PDRB	R/W	Port B	XXXXXXXX
$00000 \mathrm{CH}^{\text {¢ }}$	Port C data register	PDRC	R/W	Port C	$--X X X X X X$
$\begin{aligned} & 00000 \mathrm{D}_{\mathrm{H}} \\ & \text { to } 0 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	(Reserved area)**				
000010 ${ }^{* 3}$	Port 0 data direction register	DDR0	R/W	Port 0	00000000
$000011{ }^{* 3}$	Port 1 data direction register	DDR1	R/W	Port 1	00000000
000012 ${ }^{* 3}$	Port 2 data direction register	DDR2	R/W	Port 2	00000000
$000013{ }^{*}{ }^{3}$	Port 3 data direction register	DDR3	R/W	Port 3	00000000
000014 ${ }^{* 3}$	Port 4 data direction register	DDR4	R/W	Port 4	00000000
000015 ${ }^{* 3}$	Port 5 data direction register	DDR5	R/W	Port 5	00000000
000016н	Port 6 analog input enable register	ADER0	R/W	Port 6	11111111
000017 ${ }_{\text {H }}$	Port 7 data direction register	DDR7	R/W	Port 7	11111111
000018н	Port 8 data direction register	DDR8	R/W	Port 8	00000000
000019н	Port 9 analog input enable register	ADER1	R/W	Port 9	11111111
00001 Ан	Port A data direction register	DDRA	R/W	Port A	00000000
00001Вн	Port B data direction register	DDRB	R/W	Port B	00000000
00001桭	Port C data direction register	DDRC	R/W	Port C	--000000
$\begin{aligned} & 00001 \mathrm{DH}_{\mathrm{H}} \\ & \text { to } 1 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	(Reserved area)**				
000020н	Mode control register 0	UMC0	R/W	UART 0 (ch.0)	00000100
000021н	Status register 0	USR0	R/W		00010000
000022н	Input data register 0 /output data register 0	UIDR0 /UODR0	R/W		XXXXXXXX

(Continued)

MB90220 Series

Address	Register	Register name	Access	Resouce name	Initial value
000023н	Rate and data register 0	URD0	R/W	UART0 (ch.0)	0000000 X
000024н	Mode control register 1	UMC1	R/W		00000100
000025 ${ }_{\text {H }}$	Status register 1	USR1	R/W		00010000
000026н	Input data register 1 /output data register 1	UIDR1 /UODR1	R/W	UART0 (ch.1)	XXXXXXXX
000027	Rate and data register 1	URD1	R/W		0000000 X
000028н	Mode control register 2	UMC2	R/W		00000100
000029н	Status register 2	USR2	R/W		00010000
00002Ан	Input data register 2 /output data register 2	UIDR2 /UODR2	R/W	UART0 (ch.2)	XXXXXXXX
00002Bн	Rate and data register 2	URD2	R/W		0000000 X
00002CH	UART CTS control register	UCCR	R/W	UART0 (ch.0)	---000--
00002D	(Reserved area)* ${ }^{+1}$				
00002Ен	Mode register	SMR	R/W	UART1	00000000
00002FH	Control register	SCR	R/W		00000100
000030н	Input data register /output data register	$\begin{aligned} & \text { SIDR } \\ & \text { /SODR } \end{aligned}$	R/W		XXXXXXXX
000031н	Status register	SSR	R/W		00001-00
000032н	A/D channel setting register	ADCH	R/W	10-bit A/D converter	00000000
000033н	A/D mode register	ADMD	R/W		---X0000
000034н	A/D control status register	ADCS	R/W		0000--00
000035н	(Reserved area)**				
000036н	A/D data register	ADCD	R	10-bit A/D converter	XXXXXXXX
000037					000000 XX
000038н	(Reserved area)**				
00003Ан	DTP/interrupt enable register	ENIR	R/W	DTP/external interrupt	00000000
00003Вн	DTP/interrupt source register	EIRR	R/W		00000000
00003CH	Request level setting register	ELVR	R/W		00000000
00003D					00000000
$\begin{aligned} & 00003 \mathrm{E}_{\mathrm{H}} \\ & \text { to } 3 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	(Reserved area)**				
000040н	Timer control status register 0	TMCSR0	R/W	16-bit reload timer 0	00000000
000041H					----0000

(Continued)

MB90220 Series

Address	Register	Register name	Access	Resouce name	Initial value			
000042н	Timer control status register 1	TMCSR1	R/W	16-bit reload timer 1	00000000			
000043н					----0000			
000044н	Timer control status register 2	TMCSR2	R/W	16-bit reload timer 2	00000000			
000045н					----0000			
000046н	Timer control status register 3	TMCSR3	R/W	16-bit reload timer 3	00000000			
000047					----0000			
000048н	Timer control status register 4	TMCSR4	R/W	16-bit reload timer 4	00000000			
000049н					----0000			
00004Ан	Timer control status register 5	TMCSR5	R/W	16-bit reload timer 5	00000000			
00004Вн					----0000			
00004Сн	PPG control status register 0	PCNT0	R/W	16-bit PPG timer 0	00000000			
00004Dн					00000000			
00004Ен	PPG control status register 1	PCNT1	R/W	16-bit PPG timer 1	00000000			
00004Fн					00000000			
000050н	PWC control status register 0	PWCSR0	R/W	PWC timer 0	00000000			
000051н					00000000			
000052н	PWC control status register 1	PWCSR1	R/W	PWC timer 1	00000000			
000053н					00000000			
000054н	PWC control status register 2	PWCSR2	R/W	PWC timer 2	00000000			
000055н					00000000			
000056н	PWC control status register 3	PWCSR3	R/W	PWC timer 3	00000000			
000057H					00000000			
000058н	ICU control register 0	ICC0	R/W	ICU (Input Capture Unit)	00000000			
000059н	(Reserved area)**							
00005Ан	Input capture control register 1	ICC1	R/W	ICU (Input Capture Unit)	00000000			
00005Вн	(Reserved area) ${ }^{+1}$							
$00005 \mathrm{CH}_{\mathbf{H}}$								
00005Dн								
00005Ен								
00005Fн								
000060н	OCU control register 00	CCROO	R/W	OCU (Output Compare Unit)	11110000			
000061н					----0000			

(Continued)

MB90220 Series

Address	Register	Register name	Access	Resouce name	Initial value			
000062н	OCU0 control register 01	CCR01	R/W	OCU (Output Compare Unit)	11110000			
000063н					----0000			
000064н								
000065н	(Reserved area) ${ }^{*}$							
000066н								
000067H								
000068н	OCU0 control register 10	CCR10	R/W	OCU (Output Compare Unit)	----0000			
000069н					00000000			
00006Ан	OCU0 control register 11	CCR11	R/W		----0000			
00006Вн					0000000			
00006С ${ }_{\text {н }}$								
00006D	(Reserved area)**							
00006Ен								
00006Fн								
000070н	Free-run timer control register	TCCR	R/W	24-bit timer counter	11000000			
000071н					--111111			
000072н	Free-run timer lower-order data register	TCRL	R		00000000			
000073н					00000000			
000074н	Free-run timer upper-order data register	TCRH			00000000			
000075 ${ }_{\text {H }}$					00000000			
000076н	(Reserved area)**							
000077								
000078н								
000079н								
00007Ан	PWC divider ratio control register 0	DIVR0	R/W	PWC timer 0	------00			
00007Вн	Reserved area* ${ }^{1}$							
00007CH	PWC divider ratio control register 1	DIVR1	R/W	PWC timer 1	------00			
00007D	Reserved area ${ }^{+1}$							
00007Ен	PWC divider ratio control register 2	DIVR2	R/W	PWC timer 2	------00			
00007FH	Reserved area ${ }^{+1}$							
000080н	PWC divider ratio control register 3	DIVR3	R/W	PWC timer 3	------00			
$\begin{aligned} & \text { 000081н } \\ & \text { to 8Dн } \end{aligned}$	(Reserved area) ${ }^{+1}$							

(Continued)

MB90220 Series

Address	Register	Register name	Access	Resouce name	Initial value
00008Ен	WI control register	WICR	R/W	Write-inhibit RAM	---X----
00008FH	(Reserved area) ${ }^{+1}$				
000090н to 9Ен					
00009Fн	Delay interrupt source generation /release register	DIRR	R/W	Delay interrupt generation module	------- 0
0000A0н	Standby control register	STBYC	R/W	Low power consumption	$0001^{* * * *}$
0000АЗн	Address mid-order control register	MACR	W	External pin	\# \# \# \# \# \# \#
0000A4н	Address higher-order control register	HACR	W	External pin	\# \# \# \# \# \# \#
0000A5 ${ }^{\text {H }}$	External pin control register	EPCR	W	External pin	\# \# 0-0 \# 00
0000A8н	Watchdog timer control register	WDTC	R/W	Watchdog timer	XXXXXXXX
0000A9н	Timebase timer control register	TBTC	R/W	Timebase timer	---00000
0000BOH	Interrupt control register 00	ICR00	R/W	Interrupt controller	00000111
0000B1н	Interrupt control register 01	ICR01	R/W		00000111
0000В2н	Interrupt control register 02	ICR02	R/W		00000111
0000В3н	Interrupt control register 03	ICR03	R/W		00000111
0000B4н	Interrupt control register 04	ICR04	R/W		00000111
0000B5 ${ }^{\text {H }}$	Interrupt control register 05	ICR05	R/W		00000111
0000B6н	Interrupt control register 06	ICR06	R/W		00000111
0000B7н	Interrupt control register 07	ICR07	R/W		00000111
0000В8н	Interrupt control register 08	ICR08	R/W		00000111
	Interrupt control register 09	ICR09	R/W		00000111
0000ВАн	Interrupt control register 10	ICR10	R/W		00000111
0000ВВн	Interrupt control register 11	ICR11	R/W		00000111
0000 BCH	Interrupt control register 12	ICR12	R/W		00000111
0000BDн	Interrupt control register 13	ICR13	R/W		00000111
0000ВЕн	Interrupt control register 14	ICR14	R/W		00000111
0000BFн	Interrupt control register 15	ICR15	R/W		00000111
$\begin{aligned} & \text { 0000СОн } \\ & \text { to } \mathrm{FFH}_{\mathrm{H}} \end{aligned}$	(External area) ${ }^{2}$				
001F00н	PWC data buffer register 0	PWCRO	R/W	PWC timer 0	00000000
001F01H					00000000

(Continued)

MB90220 Series

Address	Register	Register name	Access	Resouce name	Initial value
001F02н	PWC data buffer register 1	PWCR1	R/W	PWC timer 1	00000000
001F03н					00000000
001F04н	PWC data buffer register 2	PWCR2	R/W	PWC timer 2	00000000
001F05					00000000
001F06H	PWC data buffer register 3	PWCR3	R/W	PWC timer 3	00000000
001F07н					00000000
001F08н to 1 FOFH	(Reserved area)* ${ }^{\text {+ }}$				
001F10H	OCU compare lower-order data register 00	CPR00L	R/W	Output compare 00	00000000
001F11н					00000000
001F12H	OCU compare higher-order data register 00	CPR00			00000000
001F13н					00000000
001F14H	OCU compare lower-order data register 01	CPR01L	R/W	Output compare 01	00000000
001F15					00000000
001F16н	OCU compare higher-order data register 01	CPR01			00000000
001F17H					00000000
001F18н	OCU compare lower-order data register 02	CPR02L	R/W	Output compare 02	00000000
001F19н					00000000
001F1Aн	OCU compare higher-order data register 02	CPR02			00000000
001F1Bн					00000000
001F1Cн	OCU compare lower-order data register 03	CPR03L	R/W	Output compare 03	00000000
001F1D					00000000
001F1Ен	OCU compare higher-order data register 03	CPR03			00000000
001F1FH					00000000
001F20H	OCU compare lower-order data register 04	CPR04L	R/W	Output compare 10	00000000
001F21H					00000000
001F22H	OCU compare higher-order data register 04	CPR04			00000000
001F23н					00000000
001F24н	OCU compare lower-order data register 05	CPR05L	R/W	Output compare 11	00000000
001F25н					00000000
001F26H	OCU compare higher-order data register 05	CPR05			00000000
001F27H					00000000

(Continued)

MB90220 Series

Address	Register	Register name	Access	Resouce name	Initial value
001F28н	OCU compare lower-order data register 06	CPR06L	R/W	Output compare 12	00000000
001F29н					00000000
001F2Aн	OCU compare higher-order data register 06	CPR06			00000000
001F2Bн					00000000
001F2CH	OCU compare lower-order data register 07	CPR07L	R/W	Output compare 13	00000000
001F2D					00000000
001F2Eн	OCU compare higher-order data register 07	CPR07			00000000
001F2Fн					00000000
001F30н	16-bit timer register 0	TMR0	R	16-bit reload timer 0	XXXXXXXX
001F31н					XXXXXXXX
001F32н	16-bit reload register 0	TMRLR0	W		XXXXXXXX
001F33н					XXXXXXXX
001F34	16-bit timer register 1	TMR1	R	16-bit reload timer 1	XXXXXXXX
001F35					XXXXXXXX
001F36н	16-bit timer reload register 1	TMRLR1	W		XXXXXXXX
001F37					XXXXXXXX
001F38н	16-bit timer register 2	TMR2	R	16-bit reload timer 2	XXXXXXXX
001F39н					XXXXXXXX
001F3Aн	16-bit timer reload register 2	TMRLR2	W		XXXXXXXX
001F3Bн					XXXXXXXX
001F3CH	16-bit timer register 3	TMR3	R	16-bit reload timer 3	XXXXXXXX
001F3D					XXXXXXXX
001F3Eн	16-bit timer reload register 3	TMRLR3	W		XXXXXXXX
001F3F					XXXXXXXX
001F40н	16-bit timer register 4	TMR4	R	16-bit reload timer 4	XXXXXXXX
001F41н					XXXXXXXX
001F42н	16-bit timer reload register 4	TMRLR4	W		XXXXXXXX
001F43н					XXXXXXXX
001F44H	16-bit timer register 5	TMR5	R	16-bit reload timer 0	XXXXXXXX
001F45 ${ }_{\text {H }}$					XXXXXXXX
001F46н	16-bit timer reload register 5	TMRLR5	W		XXXXXXXX
001F47H					XXXXXXXX

(Continued)

MB90220 Series

(Continued)

Address	Register	Register name	Access	Resouce name	Initial value
001F48н	PPG cycle setting register 0	PCSR0	W	16-bit PPG timer 0	XXXXXXXX
001F49н					XXXXXXXX
001F4Aн	PPG duty setting register 0	PDUT0	W		XXXXXXXX
001F4B					XXXXXXXX
001F4CH	PPG cycle setting register 1	PCSR1	W	16-bit PPG timer 1	XXXXXXXX
001F4D					
001F4Eн	PPG duty setting register 1	PDUT1	W		XXXXXXXX
001F4FH					XXXXXXXX
001F50н	ICU lower-order data register 0	ICRLO	R	Input capture 0	XXXXXXXX
001F51н					XXXXXXXX
001F52н	ICU higher-order data register 0	ICRH0	R		XXXXXXXX
001F53н					00000000
001F54н	ICU lower-order data register 1	ICRL1	R	Input capture 1	X XXXXXXX
001F55н					XXXXXXXX
001F56н	ICU higher-order data register 1	ICRH1	R		XXXXXXXX
001F57					00000000
001F58н	ICU lower-order data register 2	ICRL2	R	Input capture 2	XXXXXXXX
001F59н					XXXXXXXX
001F5Aн	ICU higher-order data register 2	ICRH2	R		XXXXXXXX
001F5Bн					00000000
001F5Cн	ICU lower-order data register 3	ICRL3	R	Input capture 3	X X X X X X X
001F5D					XXXXXXXX
001F5Eн	ICU higher-order data register 3	ICRH3	R		XXXXXXXX
001F5FH					00000000
001F60н to 1 FFFH	(Reserved area) ${ }^{+1}$				

Initial value
0 : The initial value of this bit is " 0 ".
1: The initial value of this bit is " 1 ".
X : The initial value of this bit is undefined.
-: This bit is not used. The initial value is undefined.
*: The initial value of this bit varies with the reset source.
\#: The initial value of this bit varies with the operation mode.
*1: Access prohibited
*2: Only this area is open to external access in the area below address 0000FFH (inclusive). All addresses which are not described in the table are reserved areas, and accesses to these areas are handled in the same manner as for internal areas. The access signal for the external bus is not generated.
*3: When an external bus is enable mode, never access to resisters which are not used as general ports in areas address 000000 н to 000005 н or 000010 н to 000015 н.

INTERRUPT SOURCES AND INTERRUPT VECTORS/INTERRUPT CONTROL REGISTERS

Interrupt source	EI2OS support	Interrupt vector			Interrupt control register	
		No.		Address	ICR	Address
Reset	\times	\#08	08н	FFFFDC	-	-
INT9 instruction	\times	\#09	09н	FFFFD8	-	-
Exception	\times	\#10	ОАн	FFFFD4н	-	-
External interrupt \#0	\triangle	\#11	ОВн	FFFFD0н		
External interrupt \#1	\triangle	\#12	0С ${ }_{\text {H }}$	FFFFCCH		
External interrupt \#2	\triangle	\#13	ODн	FFFFC8		
Input capture 0	\triangle	\#14	0Ен	FFFFC4н		0000B1н
PWC0 count completed/overflow	\triangle	\#15	OFH	FFFFCOH		
PWC1 count completed/overflow/input capture 1	\triangle	\#16	10 H	FFFFBCH	202	0000В2н
PWC2 count completed/overflow/input capture 2	\triangle	\#17	11H	FFFFB8 ${ }_{\text {¢ }}$		
PWC3 count completed/overflow/input capture 3	\triangle	\#18	12 H	FFFFB4		,
24-bit timer, overflow	\triangle	\#19	13H	FFFFB0 ${ }_{\text {H }}$		
24-bit timer, intermediate bit/timebase timer, interval interrupt	\triangle	\#20	14H	FFFFACH	ICR04	0000B4н
Compare 0	\triangle	\#21	15 H	FFFFA8H		
Compare 1	\triangle	\#22	16H	FFFFA4 ${ }_{\text {¢ }}$	CR05	000
Compare 2	\triangle	\#23	17 H	FFFFA0н	CR06	0000B
Compare 3	\triangle	\#24	18H	FFFF9C ${ }_{\text {H }}$	IRRO	О000В6н
Compare 4/6	\triangle	\#25	19н	FFFF98	R07	0000B7
Compare 5/7	\triangle	\#26	$1 \mathrm{AH}^{\text {}}$	FFFF94	R07	0000B7H
16-bit timer 0/1/2, overflow/PPG0	\triangle	\#27	1 BH	FFFF90н	ICR08	0000B8
16-bit timer 3/4/5, overflow/PPG1	\triangle	\#28	$1 \mathrm{CH}_{\mathrm{H}}$	FFFF8C ${ }_{\text {н }}$	ICR08	0000B8H
10-bit A/D converter count completed	\square	\#29	1訨	FFFF88н	ICR09	0000B9н
UART1 transmission completed	\triangle	\#31	1FH	FFFF80н	ICR10	0000ВАн
UART1 reception completed	\triangle	\#32	20 H	FFFF7C ${ }_{\text {¢ }}$	ICRIo	О000ВАн
UART0 (ch.1) transmission completed	\triangle	\#33	21H	FFFF78		0000BB
UART0 (ch.2) transmission completed	\triangle	\#34	22H	FFFF74	ICR11	0000BBн
UART0 (ch.1) reception completed	\bigcirc	\#35	23H	FFFF70н		
UART0 (ch.2) reception completed	\triangle	\#36	24H	FFFF6C ${ }_{\text {H }}$	ICR12	0000BCH
UART0 (ch.0) transmission completed	(${ }^{\text {a }}$	\#37	25 H	FFFF68н	ICR13	0000BD

(Continued)

MB90220 Series

(Continued)

Interrupt source	El2OS support	Interrupt vector			Interrupt control register	
		No.		Address	ICR	Address
UART0 (ch.0) reception completed	\bigcirc	\#39	27н	FFFF660	ICR14	0000ВЕн
Delay interrupt generation module	\times	\#42	2Ан	FFFF54	ICR15	0000BFн
Stack fault	\times	\#255	FFH	FFFCOOH	-	-

O: $\mathrm{El}^{2} \mathrm{OS}$ is supported (with stop request).
\square : EI2OS is supported (without stop request).
\bigcirc : El${ }^{2} \mathrm{OS}$ is supported; however, since two interrupt sources are allocated to a single ICR, in case $\mathrm{EI}^{2} \mathrm{OS}$ is used for one of the two, $\mathrm{El}^{2} \mathrm{OS}$ and ordinary interrupt are not both available for the other (with stop request).
$\triangle: E^{2} O S$ is supported; however, since two interrupt sources are allocated to a single ICR, in case $E I^{2} O S$ is used for one of the two, $\mathrm{El}^{2} \mathrm{OS}$ and ordinary interrupt are not both available for the other (without stop request).
\times : $\mathrm{EI}^{2} \mathrm{OS}$ is not supported.
Note: Since the interrupt sources having interrupt vector Nos. 15 to 18, 20, and 25 to 28 are OR'ed, respectively select them by means of the interrupt enable bits of each resource.
If $E I^{2} \mathrm{OS}$ is used with the above-mentioned interrupt sources OR'ed with the interrupt vector Nos. 15 to 18, 20 , and 25 to 28 , be sure to activate one of the interrupt sources.
Also in this case, a request flag in the same series as the one interrupt source is likely to be cleared automatically by $\mathrm{El}^{2} \mathrm{OS}$.

Assume for example that an interrupt for compare 4 of the interrupt vector No. 25 is activated at this time by ICR07, so that the compare 6 is disabled. If $\mathrm{EI}^{2} \mathrm{OS}$ is activated at this time by ICR07, so that the compare 6 interrupt takes place during generation of or simultaneously with the compare 4 interrupt, not only the interrupt flag for the compare 4 but also that for the compare 6 will be automatically cleared after $\mathrm{El}^{2} \mathrm{OS}$ is automatically transferred due to the compare 4 interrupt.

MB90220 Series

PERIPHERAL RESOURCES

1. Parallel Ports

The MB90220 series has 86 I/O pins and 16 open-drain I/O pins.
(1) Register Configuration

- Port 0 to C Data Register (PDRO to PDRC)

Register name Address
PDR0 000000 н
PDR2 000002 PDR6 000006 H PDR8 000008 н PDRA 00000Ан PDRC 00000 ${ }_{\text {н }}$

Note: There are no register bits for bits 7 and 6 of port C.

- Port 0 to C Data Register (PDR0 to PDRC)

Note: There are no register bits for bits 7 and 6 of port C.

- Port 6, 9 Analog Input Enable Register (ADER0, ADER1)

Register name	Address	bit7	bit6	bit5	bit 4	bit3	bit2	bit1	bit0	Initial value 11111111 в
ADERO		AE07	AE06	AE05	AE04	AE03	AE02	AE01	AE00	
		(R/W)								
Register name ADER1	Address $000019 \text { н }$	bit7	bit6	bit5	bit 4	bit3	bit2	bit1	bit0	Initial value
		AE15	AE14	AE13	AE12	AE11	AE10	AE09	AE08	11111111 в
		(R/W)								

MB90220 Series

(2) Block Diagram

- I/O Port (Port 0 to 5, 8, and A to C)

- I/O Ports with an Open-drain output (Port 6, and 9)

- I/O Port (Port 7)

DOTO to DOT3 (OCU)

Note: Port 7 is input port. This pin also usable as I/O port for OCU internal function.

MB90220 Series

2. 16-bit Reload Timer (with Event Count Function)

The 16-bit reload timer 1 consists of a 16-bit down counter, a 16-bit reload register, an input pin (TIN), an output pin (TOT), and a control register. The input clock can be selected from among three internal clocks and one external clock. At the output pin (TOT), the pulses in the toggled output waveform are output in the reload mode; the rectangular pulses indicating that the timer is counting are in the single-shot mode. The input pin (TIN) can be used for event input in the event count mode, and for trigger input or gate input in the internal clock mode.

The MB90220 series has six channels for this timer.

(1) Register Configuration

- Timer Control Status Register 0 to 5 (TMCSR0 to TMCSR5)

- 16-bit Timer Register 0 to 5 (TMR0 to TMR5)

- 16-bit Timer Reload Register 0 to 5 (TMRLR0 to TMRLR5)

Register name	Address
TMRLR0	001 F33
TMRLR1	001 F37
TMRLR2	001 F3B
TMRLR2	0
TMRLR3	001 F3F
TMRLLR4	001 F43
TMRLR5	$001 F 47 \mathrm{H}$

MB90220 Series

Register name	Address
TMRLR0	001F32 $н$
TMRLR1	001F36
TMRLR2	001F3A
TMR	
TMRLR3	001F3E
TMRLR4	001F42 $н$
TMRLR5	001F46

(2) Block Diagram

MB90220 Series

3. UARTO

UARTO is a serial I/O port for synchronous or asynchronous communication with external resources. It has the following features:

- Full duplex double buffer
- CLK synchronous and CLK asynchronous data transfers capable
- Multiprocessor mode support (Mode 2)
- Built-in dedicated baud-rate generator (12 rates)
- Arbitrary baud-rate setting from external clock input or internal timer
- Variable data length (7 to 9 bits (without parity bit); 6 to 8 bits (with parity bit))
- Error detection function (Framing, overrun, parity)
- Interrupt function (Two sources for transmission and reception)
- Transfer in NRZ format

The MB90220 has three of these modules on chip.

(1) Register Configuration

- Mode Control Register 0 to 2 (UMC0 to UMC2)

- Status Register 0 to 2 (USRO to USR2)

- Input Data Register 0 to 2 (UIDR0 to UIDR2)/Ouput Data Register 0 to 2 (UODR0 to UODR2)

- Rate and Data Register 0 to 2 (URDO to URD2)

- UART CTS Control Register (UCCR)

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
		-	-	-	CTE	CSP	CTSE	-	-	- 000 -- в
		(-)	(-)	(-)	R/W)	(RW)	(RW)	(-)	(-)	

MB90220 Series

(2) Block Diagram

MB90220 Series

4. UART1

The UART1 is a serial I/O port for asynchronous communications (start-stop synchronization) or CLK synchronized communications. It has the following features:

- Full-duplex double buffering
- Permits asynchronous (start-stop synchronization) and CLK synchronous communications
- Multiprocessor mode support
- Built-in dedicated baud rate generator

Asynchronous: $\quad 9615,31250,4808,2404$, and 1202 bps
CLK synchronization: 1 M, $500 \mathrm{~K}, 250 \mathrm{~K}$ bps

- Arbitray baud-rate setting from external clock input or internal timer
- Error detection function (parity errors, framing errors, and overrun errors)
- Transfer in format NRZ
- Extended supports intelligent I/O service

(1) Register Configuration

- Mode Register (SMR)

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
SMR	00002E H	MD1	MD0	CS2	CS1	CSO	BCH	SCKE	SOE	00000000в
		(R/W)								

- SCR (Control Register)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
SCR	00002F ${ }_{\text {H }}$	PEN	P	SBL	CL	A/D	REC	RXE	TXE	00000100в
		(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R)	(R/W)	(R/W)	

- Input Data Register (SIDR)/Serial Output Data Register (SODR)

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
SIDR	000030 H	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX
		(R)								
Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	ХХХХХХХХХв
SODR	000030 H	D7	D6	D5	D4	D3	D2	D1	D0	
		(W)								

- SSR (Status Register)

bit15	bit14	bit13	bit12	bit11		bit10	bit9
bit8							
PE	ORE	FRE	RDRF	TDRE	-	RIE	TIE
(R)	(R)	(R)	(R)	(R)		(R / W)	(R / W)

Initial value

00001-00в

MB90220 Series

(2) Block Diagram

MB90220 Series

5. 10-bit A/D Converter

The 10-bit A/D converter converts analog input voltage into a digital value. The features of this module are described below:

- Conversion time: $6.125 \mu \mathrm{~s} / \mathrm{channel}$ (min.) (with machine clock running at 16 MHz)
- Uses RC-type sequential comparison and conversion method with built-in sample and hold circuit
- 10-bit resolution
- Analog input can be selected by software from among 16 channels Single-conversion mode: Selects and converts one channel. Scan conversion mode: Converts several consecutive channels (up to 16 can be programmed). One-shot mode: Converts the specified channel once and terminates.
Continuous conversion mode: Repeatedly converts the specified channel.
Stop conversion mode: Pauses after converting one channel and waits until the next startup (permits synchronization of start of conversion).
- When A / D conversion is completed, an "A/D conversion complete" interrupt request can be issued to the CPU. Because the generation of this interrupt can be used to start up the EIOS and transfer the A/D conversion results to memory, this function is suitable for continuous processing.
- Startup triggers can be selected from among software, an external trigger (falling edge), and a timer (rising edge).

(1) Register Configuration

- A/D Channel Setting Register (ADCH)

This register specfies the A/D converter conversion channel.

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value 00000000 в
ADCH	000032H	ANS3	ANS2	ANS1	ANSO	ANE3	ANE2	ANE1	ANEO	
		(R/W)								

- A/D Mode Register (ADMD)

This register specfies the A/D converter operation mode and the startup source.

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value- - - Х0000 в
ADMD	000033н	-	-	-	Reserved	MOD1	MOD0	STS1	STS0	
		(-)	(-)	(-)	(W)	(R/W)	(R/W)	(R/W)	(R/W)	

Note: Program " 0 " to bit 12 when write. Read value is indeterminated.

- A/D Control Status Register (ADCS)

This register is the A/D converter control and status register.

Register name	Address000034	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCS		BUSY	INT	INTE	PAUS	-	-	STRT	Reserved	0000--00 в
		(R/W)	(R/W)	(R/W)	(R/W)	(-)	(-)	(W)	(R/W)	

- A/D Data Register (ADCD)

This register stores the A/D converter conversion data.

MB90220 Series

Register name	Address 000037н	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value 000000XX
ADCD		-	-	-	-	-	-	D9	D8	
		(R)								

(2) Block Diagram

MB90220 Series

6. PWC (Pulse Width Count) Timer

The PWC (pulse width count) timer is a 16-bit multifunction up-count timer with an input-signal pulse-width count function and a reload timer function. The hardware configuration of this module is a 16 -bit up-count timer, an input pulse divider with divide ratio control register, four count input pins, and a 16-bit control register. Using these components, the PWC timer provides the following features:

- Timer functions: An interrupt request can be generated at set time intervals. Pulse signals synchronized with the timer cycle can be output. The reference internal clock can be selected from among three internal clocks.
- Pulse-width count functions: The time between arbitrary pulse input events can be counted.

The reference internal clock can be selected from among three internal clocks. Various count modes:
"H" pulse width (\uparrow to \downarrow)/"L" pulse width (\downarrow to \uparrow)
Rising-edge cycle (\uparrow to $\uparrow /$ Falling-edge cycle (\downarrow to \downarrow)
Count between edges (\uparrow or \downarrow to \downarrow or \uparrow)
Cycle count can be performed by $2^{2 n}$ division ($n=1,2,3,4$) of the input pulse, with an 8 bit input divider.
An interrupt request can be generated once counting has been performed. The number of times counting is to be performed (once or subsequently) can be selected.

The MB90220 series has four channels for this module.

(1) Register Configuration

- PWC Control Status Register 0 to 3 (PWCSR0 to PWCSR3)

Register name PWCSR0	Address 000051 н	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value 00000000в
PWCSR1	000053 н	STRT	STOP	EDIR	EDIE	OVIR	OVIE	ERR	POUT	
PWCSR2 PWCSR3	$\begin{aligned} & 000055 \mathrm{H} \\ & 000057 \mathrm{H} \end{aligned}$	(R/W)	(R/W)	(R)	(R/W)	(R/W)	(R/W)	(R)	(R/W)	
Register name PWCSR0	Address 000050 н	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value 00000000в
PWCSR1	000052н	CKS1	CKSO	PIS1	PIS0	S/C	MOD1	MOD1	MOD0	
PWCSR2 PWCSR3	000054н 000056	(R/W)								

- PWC Data Buffer Register 0 to 3 (PWCR0 to PWCR3)

MB90220 Series

- PWC Division Ratio Control Register 0 to 3 (DIVR0 to DIVR3)

(2) Block Diagram

*: In the MB90220 series, only the module input PWC 0 of each channel is connected to the respective external pins.

Channel	POT pin
PWC ch. 0	PA 1/PWC 0/POT 0
PWC ch. 1	PA 2/PWC 1/POT 1/ASR 1
PWC ch. 2	PA 3/PWC 2/POT 2/ASR 2
PWC ch. 3	PA 4/PWC 3POT 3/ASR 3

MB90220 Series

7. DTP/External Interrupts

DTP (Data Transfer Peripheral) is located between external peripherals and the F ${ }^{2}$ MC-16F CPU. It receives a DMA request or an interrupt request generated by the external peripherals and reports it to the F²MC-16F CPU to activate the extended intelligent I/O service or interrupt handler. The user can select two request levels of " H " and "L" for extended intelligent I/O service or, and four request levels of " H, ," "L," rising edge and falling edge for external interrupt requests. In MB90220, only parts corresponding to INT2 to INT0 are usable as external interrupt/DTP request.

Parts corresponding to INT7 to INT3 cannot be used as external interrupt/DTP request, but only for edge detection at external terminals.

Note: INT7 to INT3 are not usable as DTP/external interrupts.

(1) Register Configuration

- DTP/Interrupt Enable Register (ENIR)

Register name Address ENIR 00003A

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0
(R/W)							

Initial value 00000000в

- DTP/Interrupt Source Register (EIRR)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
EIRR	00003B н	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	00000000b
		(R/W)								

- Request Level Setting Register (ELVR)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
ELVR	00003D ${ }_{\text {H }}$	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	00000000в
		(R/W)								
Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ELVR	00003C н	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	00000000B
		(R/W)								

(2) Block Diagram

MB90220 Series

8. 24-bit Timer Counter

The 24-bit timer counter consists of a 24 -bit up-counter, an 8-bit output buffer register, and a control register. The count value output by this timer counter is used to generate the base time used for input capture and output compare.
The interrupt functions provided are timer overflow interrupts and timer intermediate bit interrupts. The intermediate bit interrupt permits four time settings.
The 24-bit timer counter value is cleared to all zeroes by a reset.

(1) Register Configuration

- Free-run Timer Control Register (TCCR)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value$\mid--111111 \mathrm{~B}$
TCCR	000071 H	-	-	Reserved	Reserved	Reserved	Reserved	Reserved	PR0	
		(-)	(-)	(W)	(W)	(R/W)	(R/W)	(R/W)	(R/W)	
Register name TCCR	Address 000070 н	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value11000000в
		CLR2	CLR	IVF	IVFE	TIM	TIME	TIS1	TIS0	
		(W)	(W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	

- Free-run Timer Low-order Data Register (TCRL)

- Free-run Timer High-order Data Register (TCRH)

Register name	Address	bit15	bit8 bit7		bit0		
TCRH	$000074 \mathrm{H}$ $000075 \mathrm{H}$	-		TCRH			nitial value Access 0000000 b R

MB90220 Series

(2) Block Diagram

MB90220 Series

9. OCU (Output Compare Unit)

The OCU (Output Compare Unit) consists of a 24 -bit output compare register, a comparator, and a control register.
The match detection signal is output when the contents of the output compare register match the contents of the 24-bit timer counter. This match detection signal can be used to change the output value of the corresponding pin, or can be used to generate an interrupt. One block consists of four output compare units, and the four output compare registers use one comparator to perform time division comparisons.

(1) Register Configuration

- OCUO Control Register 00, 01 (CCR00, CCR01)

Register name	Address	bit15		bit14	bit13	bit12	bit11	bit10	bit9	$\begin{gathered} \text { Initial value } \\ ---0000 \end{gathered}$
CCR00	000061 н	-	1	1	1	,-1	,-1	-	-	
CCR02	000063н	-	-	-	-	MD3	MD2	MD1	MD0	
		(-)	(-)	(-)	(-)	(R/W)	(R/W)	(R/W)	(R/W)	
Register name	Address		bi		bi	bit	bit	bi	bit0	
CCROO	000060 ${ }_{\text {H }}$									
CCR02	000062 н	SEL3	SEL2	SEL1	SELO	CPE3	CPE2	CPE1	CPE0	11110000
		(R/W)								

- OCUO Control Register 10, 11 (CCR10, CCR11)

Register name	Address	bit15		bit14	bit13	bit12	bit11	bit10	bit9	bit8
CCR10	000069 ${ }_{\text {H }}$									
CCR11	00006B н	ICE3	ICE2	ICE1	ICE0	IC3	IC2	IC1	IC0	
		(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W	(R/W)	

Initial value
00000000

- OCU Compare Low-order Data Register 00 to 07 (CPR00L to CPR07L)

MB90220 Series

- Output Compare High-order Data Register 00 to 07 (CPR00H to CPR07H)

MB90220 Series

(2) Block Diagram

(Continued)

MB90220 Series

(Continued)
*: There are two compare units drawn as below.
Internal data bus

MB90220 Series

10. ICU (Input Capture Unit)

This module detects either the rising edge, falling edge, or both edges of an externally input waveform and holds the value of the 24 -bit timer counter at that time, while at the same time the module generates an interrupt request for the CPU. The module consists of a 24 -bit input capture data register and a control register. There are four external input pins (ASR0 to ASR3); the operation of each input is described below.

ASR0 to ASR3: Each of these input pins has a corresponding input capture register. When the specified valid edge (\uparrow or \downarrow or $\uparrow \downarrow$) is detected, the register can be used to store the 24 -bit timer counter value.

(1) Register Configuration

- ICU Control Register 0 (ICCO)

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value 00000000в
ICCO	000058 H	EG3B	EG3A	EG2B	EG2A	EG1B	EG1A	EG0B	EG0A	
		(R/W)								

- ICU Control Register 1 (ICC1)

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value 0000000
ICCI	00005A ${ }_{\text {H }}$	IRE3	IRE2	IRE1	IRE0	IR3	IR2	IR1	IR0	
		(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W	(R/W)	

- ICU Low-order Data Register (ICRLO to ICRL3)

- ICU High-order Data Register (ICRH0 to ICRH3)

MB90220 Series

(2) Block Diagram

MB90220 Series

11. 16-bit PPG Timer

This module can output a pulse synchronized with an external trigger or a software trigger. In addition, the cycle and duty ratio of the output pulse can be changed as desired by overwriting the two 16 -bit register values.
PWM function: Synchronizes pulse with trigger, and permits programming of the pulse output by overwriting the register values mentioned above.
This function permits use as a D/A converter with the addition of external circuits.
One-shot function: Detects the edge of trigger input, and permits single-pulse output. There is no trigger input for PPG1.
This module consists of a 16-bit down-counter, a prescaler, a 16-bit synchronization setting register, a 16-bit duty register, a 16-bit control register, one external trigger input pin, and one PPG output pin.

(1) Register Configuration

- PPG Control Status Register (PCNT0, PCNT1)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
PCNT0	0004D ${ }^{\text {r }}$	CNTE	STGR	MDSE	RTRG	CKS1	CKSO	PGMS	-	
PCNT	O004	(R/W)								
Overwrite during operation $\rightarrow \bigcirc$			\bigcirc	\times	\times	\times	\times	\bigcirc		
Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
PCNT0 PCNT1	0004С н	EGS1	1 EGS0	IREN	N IRQF	IRS1	IRSO	POEN	OSEL	$00000000 \text { в }$
		(R/W)	(R/W)	(R/W)	(R/W)) (R/W) (R/W) (R/W)	(R/W)	
Overwrite durin	g operation	\times	\times	\bigcirc	\bigcirc	\times	\times	\times	\times	

- PPG0, PPG1 Cycle Setting Register (PCSP0, PCSP1)

- PPG0, PPG1 Duty Setting Register (PDUT0, PDUT1)

MB90220 Series

(2) Block Diagram

MB90220 Series

12. Watchdog Timer and Timebase Timer Functions

The watchdog timer consists of a 2-bit watchdog counter using carry from an 18-bit timebase timer as the clock source, a control register, and a watchdog reset control section. The timebase timer consists of an 18 -bit timer and an interval interrupt control circuit.
(1) Register Configuration

- Watchdog Timer Control Register (WDTC)

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
WDT		PONR	STBR	WRST	ERST	SRST	WTE	WT1	WTO	
		(R)	(R)	(R)	(R)	(R)	(W)	(W)	(W)	

- Timebase Timer Control Register (TBTC)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value$---X X X X X$
TBTC	0000A9 H	-	-	-	TBIE	TBOF	TBR	TBC1	TBC0	
		(-)	(-)	(-)	(R/W)	(R/W)	(R)	(R/W)	(R/W)	

(2) Block Diagram

MB90220 Series

13. Delay Interruupt Generation Module

The delayed interrupt generation module is used to generate an interrupt task switching. Using this module allows an interrupt request to the $\mathrm{F}^{2} \mathrm{MC}$-16F CPU to generated or cancel by software.
(1) Register Configuration

- Delay Interrupt Source Generation/Cancel Register (DIRR)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	
DIRR	00009F ${ }_{\text {H }}$	-	-	-	-	-	-	-	R0	itial value
		(-)	(-)	(-)	(-)	(-)	(-)	(-)	(R/W)	

(2) Block Diagram

MB90220 Series

14. Write-inhibit RAM

The write-inhibit RAM is write-protectable with the $\overline{\mathrm{WI}}$ pin input. Maintaining the "L" level input to the $\overline{\mathrm{WI}}$ pin prevents a certain area of RAM from being written. The $\overline{\mathrm{WI}}$ pin has a 4 -machine-cycle filter.

(1) Register Configuration

- WI Control Register (WICR)

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value -- - X ---
WICR	00008E H	-	-	-	WI	-	-	-	-	
		(-)	(-)	(-)	(R/W)	(-)	(-)	(-)	(-)	

(2) Write-inhibit RAM Areas

Write-inhibit RAM areas: 000D00 to 000EFFн (MB90223)
001300н to 0014FFн (MB90224/P224A/P224B/W224A/W224B)
001500н to 0018FFн (MB90V220)
(3) Block Diagram

MB90220 Series

15. Low-power Consumption Modes, Oscillation Stabilization Delay Time, and Gear Function

The MB90220 series has three low-power consumption modes: the sleep mode, the stop mode, the hardware standby mode, and gear function.
Sleep mode is used to suspend only the CPU operation clock; the other components remain in operation. Stop mode and hardware standby mode stop oscillation, minimizing the power consumption while holding data.
The gear function divides the external clock frequency, which is used usually as it is, to provide a lower machine clock frequency. This function can therefore lower the overall operation speed without changing the oscillation frequency. The function can select the machine clock as a division of the frequency of crystal oscillation or external clock input by $1,2,4$, or 16 .

The OSC1 and OSC0 bits can be used to set the oscillation stabilization delay time for wake-up from stop mode or hardware standby mode.

(1) Register Configuration

- Standby Control Register (STBYC)

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value 0001****
STBYC	0000A0 н	STP	SLP	SPL	RST	OSC1	OSC0	CLK1	CLKO	
		(W)	(W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	

Note: The initial value (*) of bit0 to bit3 is changed by reset source.

MB90220 Series

(2) Block Diagram

MB90220 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Power supply voltage	Vcc	V cc	Vss - 0.3	Vss +7.0	V	
Program voltage	Vpp	Vpp	Vss - 0.3	13.0	V	MB90P224A/P224B MB90W224A/W224B
Analog power supply voltage	AV ${ }_{\text {cc }}$	AV ${ }_{\text {cc }}$	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	Power supply voltage for A/D converter
	AVRH AVRL	AVRH AVRL	Vss -0.3	AVcc	V	Reference voltage for A/D converter
Input voltage	$\mathrm{V}_{1}{ }^{* 1}$	-	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo	*2	Vss - 0.3	$\mathrm{V} \mathrm{cc}+0.3$	V	
"L" level output current	loL	*3	-	20	mA	Rush current
"L" level total output current	Elo	*3	-	50	mA	Total output current
"H" level output current	Іон	*2	-	-10	mA	Rush current
"H" level total output current	Гloн	*2	-	-48	mA	Total output current
Power consumption	PD	-	-	650	mW	
Operating temperature	TA	-	-40	+105	${ }^{\circ} \mathrm{C}$	MB90223/224/P224B /W224B
			-40	+85	${ }^{\circ} \mathrm{C}$	MB90P224A/W224A
Storage temperature	Tstg	-	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: V_{1} must not exceed $\mathrm{V} \mathrm{cc}+0.3 \mathrm{~V}$.
*2: Output pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, PA0 to PA7, PB0 to PB7, PC0 to PC5
*3: Output pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA7, PB0 to PB7, PC0 to PC5

WARNING:Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90220 Series

2. Recommended Operating Condition

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Power supply voltage	Vcc	Vcc	4.5	5.5	V	When operating
			3.0	5.5	V	Retains the RAM state in stop mode
Analog power supply voltage	AVcc	AV cc	4.5	V cc +0.3	V	Power supply voltage for A/D converter
	AVRH	AVRH	AVRL	AVcc	V	Reference voltage for A/D converter
	AVRL	AVRL	AVss	AVRH	V	
Clock frequency	Fc	-	10	16	MHz	MB90224/P224A/W224A MB90P224B/W224B
			10	12	MHz	MB90223
Operating temperature	TA^{*}	-	-40	+105	${ }^{\circ} \mathrm{C}$	Single-chip mode MB90223/224/P224B/ W224B
			-40	+85	${ }^{\circ} \mathrm{C}$	Single-chip mode MB90P224A/W224A
			-40	+70	${ }^{\circ} \mathrm{C}$	External bus mode

* : Excluding the temperature rise due to the heat produced.

WARNING:Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MB90220 Series

3. DC Characteristics

Single-chip mode External bus mode		MB90223/224/P224B/W224B MB90P224A/W224A		$\left(\mathrm{V}\right.$ cc $=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ $\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$ $\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$				
Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
" H " level input voltage	V_{H}	X0	-	0.7 Vcc	-	V $\mathrm{cc}+0.3$	V	CMOS level input
	$\mathrm{V}^{\text {HS }}$	*1	-	0.8 Vcc	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	Hysteresis input
	Vннм	MD0 to MD2	-	Vcc -0.3	-	Vcc +0.3	V	
"L" level input voltage	VIL	X0	-	Vss -0.3	-	0.3 Vcc	V	CMOS level input
	VILS	*1	-	Vss-0.3	-	0.2 Vcc	V	Hysteresis input
	VILM	MD0 to MD2	-	Vss-0.3	-	Vss +0.3	V	
"H" level output voltage	Vон	*2	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	Voc	V	
	Voh1	X1	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loH}=-2.0 \mathrm{~mA} \end{aligned}$	Vcc-2.5	-	Voc	V	
"L" level output voltage	Vol	*3	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	0	-	0.4	V	
	Vol1	X1	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	0	-	V $\mathrm{cc}-2.5$	V	
Input leackage current	1	*1	$\begin{aligned} & V_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}}<\mathrm{V}_{1}<0.8 \mathrm{~V} \mathrm{Cc} \end{aligned}$	-	-	± 10	$\mu \mathrm{A}$	Hysteresis input Except pins with pull-up/pulldown resistor and RST pin
	112	X0	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & 0.2 \mathrm{~V}_{\mathrm{cc}}<\mathrm{V}_{12}<0.8 \mathrm{~V} \mathrm{Cc} \end{aligned}$	-	-	± 20	$\mu \mathrm{A}$	
Pull-up resistor	Rpulu	$\overline{\mathrm{RST}}$	-	22	50	110	k Ω	MB90223/224 MB90P224A/ W224A
		MD1	-	22	50	150	$\mathrm{k} \Omega$	MB90223/224
Pull-down resistor	Rpuld	MDO MD2	-	22	50	150	k Ω	MB90223/224
Power supply voltage*8	Icc	Vcc	$\mathrm{Fc}=12 \mathrm{MHz}$	-	70*5	100	mA	MB90223
			$\mathrm{Fc}=16 \mathrm{MHz}$	-	70*5	100	mA	MB90224
			$\mathrm{Fc}=16 \mathrm{MHz}$	-	90*5	125	mA	$\begin{aligned} & \text { MB90P224A/ } \\ & \text { P224B } \\ & \text { MB90W224A/ } \\ & \text { W224B } \end{aligned}$
	Iccs	V cc	$\mathrm{fc}_{\mathrm{c}}=16 \mathrm{MHz}^{* 9}$	-	-	60	mA	At sleep mode
	Icch	V cc	-	-	5	10	$\mu \mathrm{A}$	In stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ At hardware standby

(Continued)

MB90220 Series

(Continued)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Analog power supply voltage	I_{A}	AVcc	$\mathrm{fc}_{\mathrm{c}}=16 \mathrm{MHz}^{* 9}$	-	3	7	mA	
	Іан		-	-	-	5*6	$\mu \mathrm{A}$	At stop mode
Input capacitance	Cin	*7	-	-	10	-	pF	

*1: Hysteresis input pins
RST, HST, P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P80 to P87, P90 to P97, PA0 to PA7, PB0 to PB7, PC0 to PC5
*2: Ouput pins
P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, PA0 to PA7, PB0 to PB7, PC0 to PC5
*3: Output pins
P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA7, PB0 to PB7, PC0 to PC5
*4: A list of availabilities of pull-up/pull-down resistors

Pin name	MB90223/224	MB90P224A/W224A	MB90P224B/W224B
$\overline{\text { RST }}$	Availability of pull-up resistors is optionally defined.	Pull-up resistors available	Unavailable
MD1	Pull-up resistors available	Unavailable	Unavailable
MD0, MD2	Pull-up resistors available	Unavailable	Unavailable

${ }^{*} 5: ~ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Fc}=16 \mathrm{MHz}$
*6: The current value applies to the CPU stop mode with A / D converter inactive $\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=+5.5 \mathrm{~V}\right)$.
*7: Other than V_{cc}, $\mathrm{Vss}^{2}, \mathrm{AV} \mathrm{cc}$ and AV ss
*8: Measurement condition of power supply current; external clock pin and output pin are open.
Measurement condition of V_{cc}; see the table above mentioned.
*9: $\mathrm{F}_{\mathrm{C}}=12 \mathrm{MHz}$ for MB90223

MB90220 Series

4. AC Characteristics

(1) Clock Timing Standards
$\begin{array}{lll}\text { Single-chip mode } & \text { MB90223/224/P224B/W224B } & :\left(\mathrm{VCC}=+4.5 \text { to }+5.5 \mathrm{~V}, \mathrm{~V} \text { Ss }=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}\right) \\ & \text { MB90P224A/W224A } & \left(\mathrm{VCC}=+4.5 \text { to }+5.5 \mathrm{~V}, \mathrm{~V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right) \\ \text { External bus mode } & :\left(\mathrm{Vcc}=+4.5 \text { to }+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)\end{array}$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fc	X0, X1	-	10	-	16	MHz	MB90224/ P224A/P224B MB90W224A/ W224B
				10	-	12	MHz	MB90223
Clock cycle time	tc	X0, X1	-	62.5	-	100	ns	MB90224 P224A/P224B MB90W224A/ W224B
				83.4	-	100	ns	MB90223
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \text { PwL } \end{aligned}$	X0	-	0.4 to	-	0.6 to	ns	Equivalent to 60% duty ratio
Input clock rising/falling times	$\begin{aligned} & \text { tor } \\ & \mathrm{tcff}^{2} \end{aligned}$	X0	-	-	-	8	ns	tor $+\mathrm{tcf}^{\text {d }}$

tc $=1 / \mathrm{fc}$

- Clock Input Timings

- Clock Conditions

[^3]- Relationship between Clock Frequency and Supply Voltage

MB90220 Series

(2) Clock Output Timing

(External bus mode: $\mathrm{Vcc}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Machine cycle time	torc	CLK	Load condition: 80 pF	62.5	-	1600	ns	MB90224/ P224A/P224B MB90W224A/ 224B
				83.4	-	1600	ns	MB90223
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcı	CLK		tcyc/2-20	-	tcyc/2	ns	

tcrc $=\mathrm{n} / \mathrm{F}_{\mathrm{c}}, \mathrm{n}$ gear ratio (1, 2, 4, 16)

(3) Reset and Hardware Standby Input Standards

Single-chip mode MB90223/224/P224B/W224B: $\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$
MB90P224A/W224A $\quad:\left(\mathrm{V}\right.$ cc $=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$
External bus mode

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Reset input time	trsti	RST		5 tcyc	-	-	ns	
Hardware standby input time	thstı	$\overline{\text { HST }}$		5 toyc	-	-	ns	*

*: The machine cycle time (tcyc) at hardware standby is set to $1 / 16$ divided oscillation.

MB90220 Series

(4) Power on Supply Specifications (Power-on Reset)

Single-chip mode MB90223/224/P224B/W224B: $\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$
MB90P224A/W224A $\quad:\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$
External bus mode $:\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply rising time	t_{R}	Vcc	-	-	-	30	ms	*
Power supply cut-off time	toff	Vcc	-	1	-	-	ms	

*: Before power supply rising, it is required to be $\mathrm{V}_{\mathrm{cc}}<0.2 \mathrm{~V}$.
Notes: • Power-on reset assumes the above values.

- Whether the power-on reset is required or not, turn the power on according to these characteristics and trigger the power-on reset.
- There are internal registers (STBYC, etc.) which is initialized only by the power-on reset in the device.

- Power-on Reset

Note: Note on changing power supply
Even if above characteristics are not insufficient, abrupt changes in power supply voltage may cause a poweron reset. Therefore, at the time of a momentary changes such as when power is turned on, rise the power smoothly as shown below.

- Changing Power Supply

MB90220 Series

(5) Bus Read Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Valid address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavaL	A23 to A00	Load condition: 80 pF	tcyc/2-20	-	ns	
$\overline{\mathrm{RD}}$ pulse width	trlah	$\overline{\mathrm{RD}}$		tcyc - 25	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Valid data input	tridv	D15 to D00		-	tcre - 30	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data hold time	trhdx			0	-	ns	
Valid address \rightarrow Valid data input	tavov			-	3 tocc/2-40	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Address valid time	trhax	A23 to A00		tcrc/2-20	-	ns	
Valid address \rightarrow CLK \uparrow time	tavch	$\begin{aligned} & \text { A23 to A00 } \\ & \text { CLK } \end{aligned}$		tcyc/2-25	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK \downarrow time	trıcL	$\overline{\mathrm{RD}}$, CLK		tcyc/2-25	-	ns	

MB90220 Series

(6) Bus Write Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	A23 to A00	Load condition: 80 pF	tovc/2-20	-	ns	
$\overline{\text { WR pulse width }}$	twlwh	$\overline{\text { WRL, }} \overline{\text { WRH }}$		tcrc - 25	-	ns	
Valid data output $\rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovwh	D15 to D00		tcyc - 40	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Data hold time	twhox	D15 to D00		tcyc/2-20	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Address valid time	twhax	A23 to A00		toyc/2-20	-	ns	
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \downarrow time	twlcL	$\overline{\overline{W R L}},$		tcyc/2-25	-	ns	

MB90220 Series

(7) Ready Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RDY setup time	tryhs	RDY	Load condition: 80 pF	40	-	ns	
RDY hold time	trYнH	RDY		0	-	ns	

Note: Use the auto-ready function if the RDY setup time is insufficient.

(8) Hold Timing

Parameter	Symbol	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Condition	Value		Unit	Remarks
				Min.	Max.		
Pin floating \rightarrow HAK \downarrow time	txhal	HAK	Load condition: 80 pF	30	toyc	ns	
$\overline{\text { HAK }} \uparrow$ time \rightarrow pin valid time	thahv	$\overline{\text { HAK }}$		toyc	2 tcyc	ns	

Note: It takes at least one machine cycle for $\overline{\mathrm{HAK}}$ to vary after HRQ is fetched.

MB90220 Series

(9) UART Timing

Single-chip mode MB90223/2 MB90P224 External bus mode							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscrc	-	Load condition: 80 pF	8 tcyc	-	ns	Internal clock operation output pin
SCLK $\downarrow \rightarrow$ SOUT delay time	tstov	-		-80	80	ns	
Valid SIN \rightarrow SCLK \uparrow	tivs	-		100	-	ns	
SCLK $\uparrow \rightarrow$ Valid SIN hold time	tshix	-		60	-	ns	
Serial clock "H" pulse width	tshsL	-	Load condition: 80 pF	4 tcyc	-	ns	External clock operation output pin
Serial clock "L" pulse width	tsısH	-		4 tcyc	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tstov	-		-	150	ns	
Valid SIN \rightarrow SCLK \uparrow	tivsh	-		60	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	

Notes: - These AC characteristics assume in CLK synchronization mode.

- "tcyc" is the machine cycle (unit: ns).

- Internal Shift Clock Mode

- External Shift Clock Input Mode

MB90220 Series

(10) Resourse Input Timing

Single-chip mode MB90223/224/P224B/W224B: $\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$
MB90P224A/W224A $\quad:\left(\mathrm{V} c \mathrm{cc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$
External bus mode
$:\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Input pulse width	$\begin{aligned} & \text { t tiwn } \\ & \text { tTTIWL } \end{aligned}$	TIN1 to TIN5	Load condition: 80 pF	4 tcyc	-	-	ns	External event count input mode
				2 tcyc	-	-	ns	Trigger input/gate input mode
		PWC0 to PWC3		2 tovc	-	-	ns	
		ASR0 to ASR3		2 toyc	-	-	ns	
		INT0 to INT7		3 tovc	-	-	ns	
		TRG0		2 tcyc	-	-	ns	
		$\overline{\text { ATG }}$		2 tcyc	-	-	ns	
	twiwL	$\overline{\text { WI }}$		4 toyc	-	-	ns	

(11) Resourse Output Timing

Single-chip mode MB90223/224/P224B/W224B: $\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$ MB90P224A/W224A $\quad:\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$
External bus mode
$:\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
CLK $\uparrow \rightarrow$ Tout transition time	too	TOT0 to TOT5 PPG0 to PPG1 POTO to POT3 DOTO to DOT7	Load condition: 80 pF	-	-	30	ns	

MB90220 Series

5. A/D Converter Electrical Characteristics

Single-chip mode MB90223/224/P224B/W224B
$:\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{Cc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{AVRH}-\mathrm{AVRL}\right)$ MB90P224A/W224A
$:\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{AV}$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{AVRH}-\mathrm{AVRL}\right)$
External bus mode
$:\left(\mathrm{AVcc}=\mathrm{V} \mathrm{Cc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{AVRH}-\mathrm{AVRL}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	n	-	-	-	-	10	bit	
Total error	-	-	-	-	-	± 3.0	LSB	
Linearity error	-	-	-	-	-	± 2.0	LSB	
Differential linearity error	-	-	-	-	-	± 1.5	LSB	
Zero transition voltage	$\mathrm{V}_{\text {OT }}$	ANOO to AN15	-	AVRL-1.5	AVRL + 0.5	AVRL + 2.5	LSB	
Full-scale transition voltage	V $\mathrm{FST}^{\text {t }}$		-	AVRH-3.5	AVRH-1.5	AVRH + 0.5	LSB	
Conversion time*1	Tconv	-	$\begin{aligned} & \text { tcyc } \\ & =62.5 \mathrm{~ns} \end{aligned}$	6.125	-	-	$\mu \mathrm{s}$	98 machine cycles
Sampling period	Tsamp	-		3.75	-	-	$\mu \mathrm{s}$	60 machine cycles
Analog port input current	Iain	ANOO to AN15	-	-	-	± 0.1	$\mu \mathrm{A}$	
Analog input voltage	V ${ }_{\text {AIN }}$		-	AVRL	-	AVRH	V	
Analog reference voltage	-	AVRH	-	AVRL	-	AVcc	V	
		AVRL	-	AVss	-	AVRH	V	
Reference voltage supply current	IR	AVRH	-	-	200	500	$\mu \mathrm{A}$	
	IRH		-	-	-	$5^{* 2}$	$\mu \mathrm{A}$	
Variation between channels	-	ANOO to AN15	-	-	-	4	LSB	

*1: These standards in this table are for MB90224/P224A/P224B/W224A/W224B.
MB90223: Minimum conversion time is 8.17μ s and minimum sampling time is $5 \mu \mathrm{~s}$ at tcyc $=83.4 \mathrm{~ns}$.
*2: The current value applies to the CPU stop mode with the A/D converter inactive ($\mathrm{V} c \mathrm{c}=\mathrm{AVcc}=\mathrm{AVRH}=+5.5 \mathrm{~V}$).
Notes: (1) The error becomes larger as | AVRH - AVRL | becomes smaller.
(2) Use the output impedance of the external circuit for analog input under the following conditions: External circuit output impedance < approx. $10 \mathrm{k} \Omega$ (Sampling time approx. $3.75 \mu \mathrm{~s}$, tcyc $=62.5 \mathrm{~ns}$)
(3) Precision values are standard values applicable to sleep mode.
(4) If $\mathrm{V}_{\mathrm{cc}} / \mathrm{A} \mathrm{V}_{\mathrm{cc}}$ or $\mathrm{V}_{\mathrm{ss}} / \mathrm{A} V_{s s}$ is caused by a noise to drop to below the analog input volgtage, the analog input current is likely to increase. In such cases, a bypass capacitor or the like should be provided in the external circuit to suppress the noise.

MB90220 Series

- Analog Input Circuit Mode

Note: The values shown here are reference values.

6. A/D Converter Glossary

Resolution:
Total error:
Linearity error:
Analog changes that are identifiable with the A / D converter When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.
Difference between actual and logical values. This error is caused by a zero transition error, full-scale transition error, linearity error, differential linearity error, or by noise. The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110 ") from actual conversion characteristics
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

MB90220 Series

EXAMPLE CHARACTERISTICS

(1) Power Supply Current

Note: These are not assured value of characteristics but example characteristics.
(2) Output Voltage

Note: These are not assured value of characteristics but example characteristics.

MB90220 Series

(3) Pull-up/Pull-down Resistor

Note: These are not assured value of characteristics but example characteristics.
(4) Analog Filter
\square
Note: These are not assured value of characteristics but example characteristics.

INSTRUCTION SET (412 INSTRUCTIONS)

Table 1 Explanation of Items in Table of Instructions

Item	Explanation
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
\#	Indicates the number of bytes.

MB90220 Series

Table 2 Explanation of Symbols in Table of Instructions

Symbol	Explanation
A	32-bit accumulator The number of bits used varies according to the instruction. Byte: Low order 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL, AH
AH	High-order 16 bits of A
AL	Low-order 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
SPCU	Stack pointer upper limit register
SPCL	Stack pointer lower limit register
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir addr16 addr24 addr24 to 15 addr24 16 to 23	Compact direct addressing Direct addressing Physical direct addressing Bits 0 to 15 of addr24 Bits 16 to 23 of addr24
I/O area (000000H to 0000FFH)	

(Continued)
(Continued)

Symbol	
\#imm4	4-bit immediate data
\#imm8	8-bit immediate data
\#imm16	16-bit immediate data
\#mm32	32-bit immediate data
ext (imm8)	16-bit data signed and extended from 8-bit immediate data
disp8	8-bit displacement
disp16	16-bit displacement
bp	Bit offset value
vct4	Vector number (0 to 15)
vct8	Vector number (0 to 255)
()b	Bit address
rel	Branch specification relative to PC
ear	Effective addressing (codes 00 to 07)
eam	Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	Notation		Address format	$\begin{array}{c}\text { Number of bytes in } \\ \text { address extemsion* }\end{array}$
00	R0	RW0	RL0	Register direct
01	R1	RW1	(RL0)	"ea" corresponds to byte, word, and
02	R2	RW2	RL1	long-word types, starting from the

*: The number of bytes for address extension is indicated by the " + " symbol in the " $\#$ " (number of bytes) column in the Table of Instructions.

Table 4 Number of Execution Cycles for Each Form of Addressing

Code	Operand	(a)*
		Number of execution cycles for each from of addressing
00 to 07	$\begin{aligned} & \hline \mathrm{Ri} \\ & \mathrm{RWi} \\ & \mathrm{RLi} \end{aligned}$	Listed in Table of Instructions
08 to 0B	@RWj	1
0 C to 0F	@RWj +	4
10 to 17	@RWi + disp8	1
18 to 1B	@RWj + disp16	1
1 C 1 D 1 E 1 F	$\begin{aligned} & \text { @RW0 + RW7 } \\ & \text { @RW1 + RW7 } \\ & \text { @PC + dip16 } \\ & \text { @addr16 } \end{aligned}$	2 2 2 1

*: "(a)" is used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.
Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b)*		(c)*		(d)*	
	byte		word		long	
Internal register	+	0	+	0	+	0
Internal RAM even address	+	0	+	0	+	0
Internal RAM odd address	+	0	+	1	+	2
Even address not in internal RAM	+	1	+	1	+	2
Odd address not in internal RAM	+	1	+	3	+	6
External data bus (8 bits)	+	1	+	3	+	6

*: "(b)", "(c)", and "(d)" are used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

MB90220 Series

Table 6 Transfer Instructions (Byte) [50 Instructions]

	Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOV	A, dir	2	2	(b)	byte $($ A $) \leftarrow$ (dir)	Z		-	-	-			-	-	
MOV	A, addr16	3	2	(b)	byte $(A) \leftarrow$ (addr16)	Z	*	-	-	-	*	*	-	-	-
MOV	A, Ri	1	1	0	byte (A) $\leftarrow($ Ri)	Z	*	-	-	-	*	*	-	-	-
MOV	A, ear	2	+	0	byte $($ A $) \leftarrow$ (ear)	Z	*	-	-	-	*	*	-	-	-
MOV	A, eam	2+	2+ (a)	(b)	byte $(A) \leftarrow$ (eam)	Z	*	-	-	-	*	*	-	-	-
MOV	A, io	2	2	(b)	byte (A) \leftarrow (io)	Z	*	-	-	-	*	*	-	-	-
MOV	A, \#imm8	2	2	0	byte $(A) \leftarrow$ imm8	Z	*	-	-	-	*	*	-	-	-
MOV	A, @A	2	2	(b)	byte $(A) \leftarrow((A))$	Z	-	-	-	-	*	*	-	-	-
MOV	A, @RLi+disp8	3	6	(b)	byte $(\mathrm{A}) \leftarrow(($ RLi) $)+$ disp8)	Z	*	-	-	-	*	*	-	-	-
MOV	A, @SP+disp8	3	3	(b)	byte $($ A $) \leftarrow((\mathrm{SP})+$ disp8)	Z		-	-	-	*	*	-	-	-
MOVP	A, addr24	5	3	(b)	byte (A) \leftarrow (addr24)	Z	*	-	-	-	*	*	-	-	-
MOVP	A, @A	2	2	(b)	byte $(A) \leftarrow((A))$	Z	-	-	-	-	*	*	-	-	-
MOVN	A, \#imm4	1	1	0	byte $($ A) \leftarrow ¢ imm4	Z	*	-	-	-	R	*	-	-	-
MOVX	A, dir	2	2	(b)	byte (A) \leftarrow (dir)	X	*	-	-	-	*		-	-	-
MOVX	A, addr16	3	2	(b)	byte $($ A $) \leftarrow$ (addr16)	X	*	-	-	-	*		-	-	
MOVX	A, Ri	2	1	0	byte $(\mathrm{A}) \leftarrow($ Ri)	X	*	-	-	-	*		-	-	-
MOVX	A, ear	2	1	0	byte $($ A $) \leftarrow$ (ear)	X	*	-	-	-			-	-	-
MOVX	A, eam	2+	$2+(a)$	(b)	byte $(A) \leftarrow$ (eam)	X	*	-	-	-	*		-	-	-
MOVX	A, io	2	2	(b)	byte $(\mathrm{A}) \leftarrow$ (io)	X	*	-	-	-	*		-	-	-
MOVX	A, \#imm8	2	2	0	byte (A) \leftarrow imm8	X	*	-	-	-	*		-	-	-
MOVX	A, @A	2	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{A})$)	X	-	-	-	-	*	*	-	-	-
MOVX	A,@RWi+disp8	2	3	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RWi}))+$ disp8)	X	*	-	-	-			-	-	-
MOVX	A, @RLi+disp8	3	6	(b)	byte (A) $\leftarrow(($ RLi $)$)+disp8)	X	*	-	-	-			-	-	-
MOVX	A, @SP+disp8	3	3	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8)	X	*	-	-	-			-	-	
MOVPX	X A, addr24	5	3	(b)	byte (A) \leftarrow (addr24)	X	*	-	-	-			-	-	-
MOVPX	X A, @A	2	2	(b)	byte $(A) \leftarrow((A))$	X	-	-	-	-	*		-	-	-
MOV	dir, A	2	2	(b)	byte (dir) $\leftarrow(A)$	-	-	-	-	-	*		-	-	-
MOV	addr16, A	3	2	(b)	byte (addr16) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	
MOV	Ri, A	1	1	0	byte $($ Ri) $\leftarrow(A)$	-	-	-	-	-		*	-	-	-
MOV	ear, A	2	2	0	byte (ear) $\leftarrow(A)$	-	-	-	-	-	*		-	-	-
MOV	eam, A	2+	$2+$ (a)	(b)	byte (eam) $\leftarrow(A)$	-	-	-	-	-	*		-	-	-
MOV	io, A	2	2	(b)	byte (io) $\leftarrow(4)$	-	-	-	-	-	*		-	-	-
MOV	@RLi+disp8, A	3	6	(b)	byte ((RLi)) +disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	
MOV	@SP+disp8, A	3	3	(b)	byte ((SP)+disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	
MOVP	addr24, A	5	3	(b)	byte (addr24) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOV	Ri, ear	2	2	0	byte (Ri) \leftarrow (ear)	-	-	-	-	-			-	-	-
MOV	Ri, eam	$2+$	$3+$ (a)	(b)	byte $(\mathrm{Ri}) \leftarrow($ eam $)$	-	-	-	-	-			-	-	
MOVP	@A, Ri	2	3	(b)	byte $($ (A) $) \leftarrow($ Ri)	-	-	-	-	-	*		-	-	
MOV	ear, Ri	2	3	0	byte (ear) \leftarrow (Ri)	-	-	-	-	-	*		-	-	-
MOV	eam, Ri	$2+$	$3+$ (a)	(b)	byte (eam) $\leftarrow(\mathrm{Ri})$	-	-	-	-	-	*	*	-	-	-
MOV	Ri, \#imm8	2	2	0	byte (Ri) \leftarrow imm8	-	-	-	-	-	*		-	-	-
MOV	io, \#imm8	3	3	(b)	byte (io) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	dir, \#imm8	3	3	(b)	byte (dir) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	ear, \#imm8	3	2	0	byte (ear) \leftarrow imm8	-	-	-	-	-		*	-	-	-
MOV	eam, \#imm8	3+	2+ (a)	(b)	byte $($ eam $) \leftarrow$ imm8	-	-	-	-	-	-	-	-	-	-
MOV	@AL, AH	2	2	(b)	byte $((\mathrm{A})) \leftarrow(\mathrm{AH})$	-	-	-	-	-	*	*	-	-	-

(Continued)

	Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMw
XCH	A, ear	2	3	0	byte (A) \leftrightarrow (ear)	Z	-	-	-	-	-	-	-	-	-
XCH	A, eam	2+	$3+$ (a)	$2 \times$ (b)	byte (A) \leftrightarrow (eam)	Z	-	-	-	-	-	-	-	-	-
XCH	Ri, ear	2	4	0	byte (Ri) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-
XCH	Ri, eam	2+	5+ (a)	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90220 Series

Table 7 Transfer Instructions (Word) [40 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	H AH	H	S	S T	T N	N Z	V	C	RMW
MOVW A, dir	2	2	(c)	word (A)				-	-					
MOVW A, addr16	3	2	(c)	word (A) \leftarrow (addr16)		-	* -	-	-	- *	* *	-	-	
MOVW A, SP MOVW A, RW	1	2 1	0	word (A) word $(A) \leftarrow($ SP			-	-	- -	- *	* *	-		
MOVW A, ear	2	1	0	word (A) \leftarrow (ear)		-*	* -	-	- -	- *	* *	-		
MOVW A, eam	$2+$	$2+$	(c)	word $(A) \leftarrow($ eam $)$		- *	*	-	- -	*		-		-
MOVW A, io	2	2	(c)	word (A) \leftarrow (io)			*	-	- -	- *			-	
MOVW A, @A	2	2	(c)	word $(A) \leftarrow((A))$		-	-	-	- -					-
MOVW A, \#imm16	3	2	(word (A) \leftarrow imm16			*	-	-					
MOVW A, @RWi+disp8	2	3	(c)	word $(A) \leftarrow\left(\left(R W_{i}\right)+\right.$ disp8 $)$			-	-	- -					
MOVW A, @RLi+disp8	3	${ }^{6}$	(c)	word (A) $\leftarrow($ (RLi) + disp8)			* -	-	-					
MOVW A, @SP+disp8 MOVPW A, addr24	3	3 3	(c)	word (A) $\leftarrow($ (SP) $)$ disp8 word (A) (addr24)			* -	-	-	- **				-
MOVPW A, @A	2	2	(c)	word $(A) \leftarrow((A))$			-	-	-					
MOVW dir, A	2	2	(c)	word (dir) \leftarrow (A)					-					
MOVW addr16, A	3	2	(c)	word (addr16) \leftarrow (A$)$										
MOVW SP, \# imm16	4	2	0	word (SP) \leftarrow imm 16										
MOVW SP, A	1	2	0	word (SP) $\leftarrow \leftarrow(A)$			-							
MOVW RWi, A MOVW ear, A	2	1 2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	word $(\mathrm{RWi}) \leftarrow(\mathrm{A})$ word (ear) $\leftarrow(\mathrm{A})$			- -	- -	- -					
MOVW ear, A MOVW eam, A	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\stackrel{2}{2+(a)}$	(c)	$\begin{aligned} & \text { word }(\text { ear }) \leftarrow(\mathrm{A}) \\ & \text { word (eam) } \leftarrow(\mathrm{A}) \end{aligned}$		- -	- -	- -	- -	-				
MOVW io, A	2	(a)	(c)	word (io) $\leftarrow(\mathrm{A})$			-	-						
MOVW @RWi+disp8, A	2	3	(c)	word ($(\mathrm{RWW})+$ disp8) $\leftarrow(\mathrm{A})$			-	-	-					
MOVW @RLi+disp8, A	3	${ }^{6}$	(c)	word (RLLI) +disp8) $\leftarrow(\mathrm{A})$			-	-	-					
MOVW @SP+disp8, A	3	3	(c)	word ((SP) +disp8) $\leftarrow(\mathrm{A})$										
MOVPW addr24, A MOVPW @A, RWi	2	3 3	$\begin{aligned} & \text { (c) } \\ & \text { (c) } \end{aligned}$	word (addr24) $\leftarrow(\mathrm{A})$ word $(\mathrm{A})) \leftarrow(\mathrm{RWi})$		- -	- -	- -	- -					
MOVW RWi, ear	2	2	(0	word (RWi) \leftarrow (ear)				-	-	- *				
MOVW RWi, eam	$2+$	$3+$ (a)	(c)	word (RWi) $\leftarrow($ eam $)$		-	-	-	-					
MOVW ear, RWi	2	3	0	word (ear) $\leftarrow(\mathrm{RWi})$			-	-	- -					
MOVW eam, RWi	$2+$	$3+$ (a)	(c)	word (eam) $\leftarrow($ RWi)				-	-	-*				
MOVW RWi, \#imm16		2	0	word (RWi) \leftarrow imm16			- -	-	- -					
MOVW io, \#imm16	4	3	(c)	word (io) \leftarrow imm16										
	4	(a)		word (ear) \leftarrow imm16			-	-	- -			-		
MOVW eam, \#imm16	4+	2+ (a)	(c)	word (eam) \leftarrow imm16										
MOVW @AL, AH	2	2	(c)	word ((A)) $\leftarrow(\mathrm{AH})$		- -	- -	- -	- -					-
XCHW A, ear	2	3	0	word (A) $\leftrightarrow($ ear	-	-	- -	- -	- -	- -	- -	-	-	-
XCHW A, eam XCHW		$3+$ (a)	$2 \times$ (c)	word $(A) \leftrightarrow($ eam $)$			-	-			- -	-		-
XCHW RWi, ear XCHW RWi, eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	4 $5+$ (a)	$\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$	word (RWi) \leftrightarrow (ear) word (RWi) \leftrightarrow (eam)		-	- -			- -	- -	-	-	-

Note: For an explanation of "(a)" and "(c)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 8 Transfer Instructions (Long Word) [11 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVL A, ear	2	1	0	long $(A) \leftarrow$ (ear)	-	-	-	-	-		*	-	-	-
MOVL A, eam	2+	$3+(a)$	(d)	long $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	-	-	-
MOVL A, \# imm32	5	3	0	long (A) \leftarrow imm32	-	-	-	-	-	*	*	-	-	-
MOVL A, @SP + disp8	3	4	(d)	long $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8)	-	-	-	-	-	*	*	-	-	-
MOVPL A, addr24	5	4	(d)	long $(\mathrm{A}) \leftarrow$ (addr 24)	-	-	-	-	-	*	*	-	-	-
MOVPL A, @A	2	3	(d)	long $(A) \leftarrow((A))$	-	-	-	-	-	*	*	-	-	-
MOVPL @A, RLi	2	5	(d)	long $((A)) \leftarrow(\mathrm{RLi})$	-	-	-	-	-	*	*	-	-	-
MOVL @SP + disp8, A	3	4	(d)	long $((\mathrm{SP})+$ disp8 $) \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVPL addr24, A	5	4	(d)	long (addr24) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVL ear, A	2	2	0	long (ear) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOVL eam, A	2+	$3+(\mathrm{a})$	(d)	long (eam) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90220 Series

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
ADD A, \#imm8	2	2	0	byte $(A) \leftarrow(A)+$ imm8	Z	-	-	-	-					
ADD A, dir	2	3	(b)	byte $(A) \leftarrow(A)+$ (dir)	Z	-	-	-	-	*		*	*	-
ADD A, ear		2	0	byte $(A) \leftarrow(A)+$ (ear)	Z	-	-	-	-	*			*	-
ADD A, eam	$2+$	3+ (a)	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	-	*		*	*	-
ADD ear, A	2	(0	byte (ear) \leftarrow (ear) + (A)	-	-	-	-	-	*		*	*	
ADD eam, A	$2+$	$3+$ (a)	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)+(\mathrm{A})$	Z	-	-	-	-	*		*		
ADDC A	1	(a)	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$	Z	-	-	-	-	*		*	*	-
ADDC A, ear	2	2	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{ear})+(\mathrm{C})$	Z	-	-	-	-	*	*	*	*	-
ADDC A, eam	$2+$	$3+$ (a)	(b)	byte $(A) \leftarrow(A)+($ eam $)+(C)$	Z	-	-	-	-	*	*		*	
ADDDC A	1	(a)	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})($ Decimal $)$	Z	-	-	-	-	*	*			
SUB A, \#imm8	2	2	0	byte $(A) \leftarrow(A)$-imm8	Z	-	-	-	-					-
SUB A, dir	2	3	(b)	byte $(A) \leftarrow(A)-$ (dir)	Z	-	-	-	-					
SUB A, ear	2	2	0	byte $(A) \leftarrow(A)-$ (ear)	Z	-	-	-	-	*				-
SUB A, eam	$2+$	3+ (a)	(b)	byte $(A) \leftarrow(A)-($ eam $)$	Z	-	-	-	-					-
SUB ear, A	2	2	0	byte (ear) \leftarrow (ear) - (A)	-		-	-	-					
SUB eam, A	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-					
SUBC A	+	+	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$	Z	-	-	-	-	*		*	*	-
SUBC A, ear	2	2	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-$ (ear) - (C)	Z	-	-	-	-	*	*	*	*	-
SUBC A, eam	2+	$3+$ (a)	(b)	byte $(A) \leftarrow(A)-($ eam $)-(C)$	Z	-	-	-	-	*	*	*	*	-
SUBDC A	1	3	0	byte $(A) \leftarrow(A H)-(A L)-(C)($ Decimal $)$	Z	-	-	-	-					
ADDW A	1	2	0	word $(A) \leftarrow(A H)+(A L)$	-	-	-	-	-					-
ADDW A, ear	2	2	0	word $(A) \leftarrow(A)+($ ear $)$	-		-	-	-					-
ADDW A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)+($ eam $)$	-		-	-	-					-
ADDW A, \#imm16	3	(a)	0	word $(A) \leftarrow(A)+$ imm 16	-		-	-	-					-
ADDW ear, A	2	2	0	word (ear) \leftarrow (ear) + (A)	-	-	-	-	-	*				
ADDW eam, A	2+	$3+$ (a)	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)+(A)$	-		-	-	-	*	*	*		
ADDCW A, ear	2	2	0	word $(A) \leftarrow(A)+($ ear $)+(C)$	-	-	-	-	-	*	*			
ADDCW A, eam	2+	3+ (a)	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-	-	-	-	-	*				-
SUBW A	1	2	0	word $(A) \leftarrow(A H)-(A L)$	-	-	-	-	-					-
SUBW A, ear	2	2	0	word $(A) \leftarrow(A)-($ ear $)$	-	-	-	-	-	*	*	*	*	-
SUBW A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)$ - (eam)	-		-	-	-	*		*		
SUBW A, \#imm16	3	2	0	word $(A) \leftarrow(A)-$-imm16	-		-	-	-			*		
SUBW ear, A	2	2	0	word (ear) \leftarrow (ear) - (A)	-		-	-	-	*		*		
SUBW eam, A	2+	3+ (a)	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ - (A)	-		-	-	-	*	*	*		
SUBCW A, ear	2	2	0	word $(A) \leftarrow(A)-(e a r)-(C)$	-	-	-	-	-	*	*	*		-
SUBCW A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)-(e a m)-(C)$	-	-	-	-	-					-
ADDL A, ear	2	5	0	long $(A) \leftarrow(A)+$ (ear)	-		-	-						-
ADDL A, eam	$2+$	6+ (a)	(d)	long $(A) \leftarrow(A)+($ eam $)$	-		-	-	-			*		-
ADDL A, \#imm32	5	4	0	long $(A) \leftarrow(A)+i m m 32$	-	-	-	-	-					-
SUBL A, ear	2	5	0	long $(A) \leftarrow(A)-($ ear $)$	-		-	-	-					-
SUBL A, eam	$2+$	6+ (a)	(d)	long $(A) \leftarrow(A)-($ eam $)$	-		-	-	-	*	*	*		-
SUBL A, \#imm32	5	4	0	long $(A) \leftarrow(A)$-imm32	-	-	-	-	-	*	*	*		-

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
CMP A	1	2	0	byte (AH) - (AL)	-	-	-	-	-		*	*	*	-
CMP A, ear	2	2	0	byte (A) - (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	2+ (a)	(b)	byte (A) - (eam)	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	byte (A) - imm8	-	-	-	-	-	*	*	*	*	-
CMPW A	1	2	0	word (AH) - (AL)	-	-	-	-	-	*	*		*	-
CMPW A, ear	2	2	0	word (A) - (ear)	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	2+ (a)	(c)	word (A) - (eam)	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	word (A) - imm16	-	-	-	-	-	*	*	*	*	-
CMPL A, ear	2	3	0	long (A) - (ear)	-	-	-	-	-	*	*	*	*	-
CMPL A, eam	2+	4+ (a)	(d)	long (A) - (eam)	-	-	-	-	-	*	*	*	*	-
CMPL A, \#imm32	5	3	0	long (A) - imm32	-	-	-	-	-	*	*	*		-

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90220 Series

Table 12 Unsigned Multiplication and Division Instructions (Word/Long Word) [11 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
DIVU A	1	*1	0	word (AH) /byte (AL)	-	-	-	-	-	-	-			-
DIVU A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear)	-	-	-	-	-	-	-	*	*	-
				Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)										
DIVU A, eam	2+	*3	*6	word (A)/byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW A, ear	2	*4	0	Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam) long (A)/word (ear)	-	-	-	-	-	-	-	*	*	-
				Quotient \rightarrow word (A) Remainder \rightarrow word (ear)										
DIVUW A, eam	2+	*5	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU A	1	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU A, ear	2	*9	0	byte (A) \times byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU A, eam	2+	*10	(b)	byte (A) \times byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW A	1	*11	0	word (AH) \times word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW A, ear	2	*12	0	word (A) \times word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW A, eam	2+	*13	(c)	word (A) \times word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

For an explanation of "(b)" and "(c), refer to Table 5, "Correction Values for Number of Cycle Used to Calculate Number of Actual Cycles."
*1: 3 when dividing into zero, 6 when an overflow occurs, and 14 normally.
*2: 3 when dividing into zero, 5 when an overflow occurs, and 13 normally.
*3: $5+$ (a) when dividing into zero, $7+$ (a) when an overflow occurs, and $17+(\mathrm{a})$ normally.
*4: 3 when dividing into zero, 5 when an overflow occurs, and 21 normally.
*5: $4+$ (a) when dividing into zero, $7+$ (a) when an overflow occurs, and $25+$ (a) normally.
*6: (b) when dividing into zero or when an overflow occurs, and $2 \times$ (b) normally.
*7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not 0 .
*9: 3 when byte (ear) is zero, and 7 when byte (ear) is not 0 .
*10: $4+$ (a) when byte (eam) is zero, and $8+$ (a) when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not 0 .
*12: 3 when word (ear) is zero, and 11 when word (ear) is not 0.
*13: $4+(\mathrm{a})$ when word (eam) is zero, and $12+(\mathrm{a})$ when word (eam) is not 0 .

Table 13 Signed Multiplication and Division Instructions (Word/Long Word) [11 Insturctions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMw
DIV A	2	${ }^{*}$	0	word (AH) /byte (AL)	Z	-	-	-	-	-	-	*	,	-
DIV A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear)	Z	-	-	-	-	-	-	*	*	-
DIV A, eam	2+	*3	*6	Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear) word (A)/byte (eam)	Z	-	-	-	-	-	-	*	*	-
				Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)										
DIVWA, ea	2	*4	0	long (A)/word (ear)	-	-	-	-	-	-	-			-
DIVWA, eam	2+	*5	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MUL A	2	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MUL A, ear	2	*9	0	byte (A) \times byte (ear) \rightarrow word (A)	-		-	-	-	-	-	-	-	-
MUL A, eam	2+	*10	(b)	byte (A) \times byte (eam) \rightarrow word (A)	-		-	-	-	-	-	-	-	-
MULW A	2	*11	0	word (AH) \times word (AL) \rightarrow long (A)	-		-	-	-	-	-	-	-	-
MULW A, ear	2	*12	0	word (A) \times word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULW A, eam	2+	*13	(b)	word (A) \times word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

For an explanation of "(b)" and "(c)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when dividing into zero, 8 or 18 when an overflow occurs, and 18 normally.
*2: 3 when dividing into zero, 10 or 21 when an overflow occurs, and 22 normally.
*3: $4+$ (a) when dividing into zero, $11+$ (a) or $22+$ (a) when an overflow occurs, and $23+$ (a) normally.
*4: When the dividend is positive: 4 when dividing into zero, 10 or 29 when an overflow occurs, and 30 normally. When the dividend is negative: 4 when dividing into zero, 11 or 30 when an overflow occurs, and 31 normally.
*5: When the dividend is positive: $4+$ (a) when dividing into zero, $11+$ (a) or $30+(\mathrm{a})$ when an overflow occurs, and $31+$ (a) normally.
When the dividend is negative: $4+(a)$ when dividing into zero, $12+(a)$ or $31+(a)$ when an overflow occurs, and $32+$ (a) normally.
*6: (b) when dividing into zero or when an overflow occurs, and $2 \times$ (b) normally.
*7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10: $4+(a)$ when byte (eam) is zero, $13+(a)$ when the result is positive, and $14+(a)$ when the result is negative.
*11: 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12: 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13: $4+(a)$ when word (eam) is zero, $17+(a)$ when the result is positive, and $20+(a)$ when the result is negative.
Note: Which of the two values given for the number of execution cycles applies when an overflow error occurs in a DIV or DIVW instruction depends on whether the overflow was detected before or after the operation.

MB90220 Series

Table 14 Logical 1 Instructions (Byte, Word) [39 Instructions]

Mnemonic		\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
AND	A, \#imm8	2	2	0	byte $(A) \leftarrow(A)$ and imm8	-	-	-	-	-			R	-	-
AND	A, ear	2	2	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
AND	A, eam	2+	$3+$ (a)	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-		*	R	-	-
AND	ear, A	2	(a)	0	byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-		*	R	-	
AND	eam, A	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow (eam) and (A)	-	-	-	-	-	*		R	-	*
OR	A, \#imm8	2	2	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ or imm8	-	-	-	-	-	*		R	-	-
OR	A, ear	2	2	0	byte $($ A $) \leftarrow(\mathrm{A})$ or (ear)	-	-	-	-	-	*	*	R	-	-
OR	A, eam	2+	$3+$ (a)	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
OR	ear, A	2	(a)	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	
OR	eam, A	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) $\leftarrow($ eam) or (A)	-			-	-			R	-	
XOR	A, \#imm 8	2	2	0	byte $(A) \leftarrow(A)$ xor imm8	-		-	-	-	*		R	-	
XOR	A, ear	2	2	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor (ear)	-	-	-	-	-			R	-	-
XOR	A, eam	2+	$3+$ (a)	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor (eam)	-	-	-	-	-			R	-	-
XOR	ear, A	2	3	0	byte (ear) \leftarrow (ear) xor (A)	-	-	-	-	-			R	-	
XOR	eam, A	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow (eam) xor (A)	-	-	-	-	-			R	-	
NOT	A	1	2	0	byte $(A) \leftarrow \operatorname{not}(A)$	-	-	-	-	-	*	*	R	-	-
NOT	ear	2	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	
NOT	eam	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow not (eam)	-	-	-	-	-	*		R	-	
ANDW	A	1	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ and (A)	-	-	-	-	-			R	-	-
ANDW	A, \#imm16	3	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{A})$ and imm16	-	-	-	-	-	*		R	-	
ANDW	A, ear	2	2	0	word (A) $\leftarrow(A)$ and (ear)	-	-	-	-	-	*		R	-	
ANDW	A, eam	$2+$	$3+$ (a)	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*		R	-	-
ANDW	ear, A	2	3	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*		R	-	
ANDW	eam, A	2+	$3+$ (a)	$2 \times$ (c)	word (eam) \leftarrow (eam) and (A)	-	-	-	-	-	*		R	-	
ORW	A	1	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ or (A)	-		-	-	-	*		R	-	-
ORW	A, \#imm16	3	2	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-	*		R	-	-
ORW	A, ear	2	2	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORW	A, eam	$2+$	$3+$ (a)	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*		R	-	-
ORW	ear, A	2	3	0	word (ear) \leftarrow (ear) or (A)	-		-	-	-	*		R	-	
ORW	eam, A	2+	$3+$ (a)	$2 \times$ (c)	word (eam) \leftarrow (eam) or (A)	-			-	-			R	-	
XORW		1	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ xor (A)	-		-	-	-	*		R	-	
XORW	A, \#imm16	3	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor imm16	-		-	-	-	*		R	-	-
XORW	A, ear	2	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor (ear)	-		-	-	-	*		R	-	-
XORW	A, eam	$2+$	$3+$ (a)	(c)	word $(A) \leftarrow(A)$ xor (eam)	-		-	-	-	*		R	-	-
XORW	ear, A	2	3	0	word (ear) \leftarrow (ear) xor (A$)$	-		-	-	-	*		R	-	*
XORW	eam, A	2+	$3+$ (a)	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ xor (A)	-	-	-	-	-	*		R	-	*
NOTW	A		2	0	word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-	*		R	-	-
NOTW	ear	2	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	*
NOTW	eam	2+	$3+$ (a)	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-	-	-	-	*		R	-	*

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic		\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
ANDL	A, ear	2	5	0	long $(\mathrm{A}) \leftarrow(\mathrm{A})$ and (ear)	-	-	-	-	-		*	R	-	-
ANDL	A, eam	2+	6+ (a)	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-		*	R	-	-
ORL	A, ear	2	5	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORL	A, eam	2+	6+ (a)	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
XORL	A, ear	2	5	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORL	A, eam	2+	6+ (a)	(d)	long $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic		\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
NEG	A	1	2	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*	*	
$\begin{array}{\|l} \mathrm{NEG} \\ \mathrm{NEG} \end{array}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 2 \\ 3+(a) \end{gathered}$	$\stackrel{0}{2 \times(b)}$	byte (ear) $\leftarrow 0$ - (ear) byte $($ eam $) \leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	*	*	*
NEGW		1	2	0	word $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*	*	*	*	-
NEGW NEGW		$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 2 \\ 3+(a) \end{gathered}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$	word (ear) $\leftarrow 0-$ (ear) word $($ eam $) \leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	*	*	*

For an explanation of "(a)", "(b)" and "(c)" and refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Absolute Value Instructions (Byte/Word/Long Word) [3 Insturctions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
ABS A	2	2	0	byte (A) \leftarrow absolute value (A)	Z	-	-	-	-	*	*	*	-	-
ABSW A	2	2	0	word (A) \leftarrow absolute value (A)	-	-	-	-	-	*	*	*	-	-
ABSL A	2	4	0	long (A) \leftarrow absolute value (A)	-	-	-	-	-	*	*	*	-	-

Table 18 Normalize Instructions (Long Word) [1 Instruction]

Mnemonic	\#	cycles	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMw
NRML A, R0	2	$*$	0	long $($ A $) \leftarrow$ Shifts to the position at which "1" was set first byte (R0) \leftarrow current shift count	-	-	-	-	$*$	-	-	-	-	-

[^4]
MB90220 Series

Table 19 Shift Instructions (Byte/Word/Long Word) [27 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
RORC A	2	2	0	byte $(\mathrm{A}) \leftarrow$ Right rotation with carry	-		-	-	-			-		-
ROLC A	2	2	0	byte (A) \leftarrow Left rotation with carry	-	-	-	-	-	*		-		
RORC ear	2	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	
RORC eam	$2+$	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC ear	2	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC eam	$2+$	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow Left rotation with carry	-		-	-	-	*		-	*	*
ASR A, R0	2	${ }^{*}$	0	byte $(A) \leftarrow$ Arithmetic right barrel shift ($A, R 0$)	-	-	-	-	*			-		-
LSR A, R0	2	*1	0	byte (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSL A, RO	2	*1	0	byte $(A) \leftarrow$ Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-		-
ASR A, \#imm8	3	*3	0	byte (A) \leftarrow Arithmetic right barrel shift (A, imm8)	-	-	-	-				-		-
LSR A, \#imm8	3	*3	0	byte (A) \leftarrow Logical right barrel shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSL A, \#imm8	3	*3	0	byte (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	-	-	-			-	*	-
ASRW A	1	2	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	-	-	-	-				-		-
LSRW A/SHRW A	1	2	0	word (A) \leftarrow Logical right shift (A, 1 bit)	-	-	-	-	*	R	*	-		-
LSLW A/SHLW A	1	2	0	word (A) \leftarrow Logical left shift (A, 1 bit)	-	-	-	-	-		*	-	*	
ASRW A, R0	2	${ }^{*}$	0	word (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	-	-	-	*			-		-
LSRW A, R0	2	*1	0	word (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-			*	-		-
LSLW A, RO	2	*1	0	word (A) \leftarrow Logical left barrel shift (A, RO)	-	-	-	-	-			-		-
ASRW A, \#imm8	3	*3	0	word $(A) \leftarrow$ Arithmetic right barrel shift (A , imm8)	-		-	-			*	-	*	-
LSRW A, \#imm8	3	*3	0	word (A) \leftarrow Logical right barrel shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSLW A, \#imm8	3	*3	0	word (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	-	-	-	*		-	*	-
ASRL A, R0	2	*2	0	long (A) \leftarrow Arithmetic right shift (A, RO)	-	-	-	-						-
LSRL A, R0	2	*2		long (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-				-		-
LSLL A, RO	2	*2	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*		-	*	-
ASRL A, \#imm8	3	*4	0	long (A) \leftarrow Arithmetic right shift (A , imm8)	-	-	-	-	*	*	*	-		-
LSRL A, \#imm8	3	*4	0	long $(A) \leftarrow$ Logical right barrel shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSLL A, \#imm8	3	*4	0	long (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	-	-	-	*	*	-	*	-

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when R0 is $0,3+(R 0)$ in all other cases.
*2: 3 when R0 is $0,4+(R 0)$ in all other cases.
*3: 3 when imm8 is $0,3+$ (imm8) in all other cases.
*4: 3 when imm8 is $0,4+(\mathrm{imm} 8)$ in all other cases.

Table 20 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
BZ/BEQ rel	2	*1	0	Branch when (Z) = 1	-	-	-	-	-	-	-	-	-	-
BNZ/BNE rel	2	*1	0	Branch when $(Z)=0$	-	-	-	-	-	-	-	-	-	-
BC/BLO rel	2	*1	0	Branch when (C) $=1$	-	-	-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	Branch when (C) $=0$	-	-	-	-	-	-	-	-	-	-
BN rel	2	*1	0	Branch when (N) = 1	-	-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	Branch when (N) $=0$	-	-	-	-	-	-	-	-	-	-
BV rel	2	*1	0	Branch when (V) $=1$	-	-	-	-	-	-	-	-	-	-
BNV rel	2	*1	0	Branch when (V) $=0$	-	-	-	-	-	-	-	-	-	-
BT rel	2	${ }^{*}$	0	Branch when (T) = 1	-	-	-	-	-	-	-	-	-	-
BNT rel	2	*1	0	Branch when (T) $=0$	-	-	-	-	-	-	-	-	-	-
BLT rel	2	*1	0	Branch when (V) xor (N) $=1$	-	-	-	-	-	-	-	-	-	
BGE rel	2	*1	0	Branch when (V) xor (N) $=0$	-	-	-	-	-	-	-	-	-	
BLE rel	2	*1	0	((V) $\operatorname{xor}(\mathrm{N})$) or (Z) = 1	-	-	-	-	-	-	-	-	-	
BGT rel	2	*1	0	((V) $\operatorname{xor}(\mathrm{N})$) or (Z) $=0$	-	-	-	-	-	-	-	-	-	-
BLS rel	2	*1	0	Branch when (C) or (Z) $=1$	-	-	-	-	-	-	-	-	-	
BHI rel	2	*1	0	Branch when (C) or $(\mathrm{Z})=0$	-	-	-	-	-	-	-	-	-	
BRA rel	2	*	0	Branch unconditionally	-	-	-	-	-	-	-	-	-	-
JMP @A	1	2	0	word (PC) \leftarrow (A$)$	-	-	-	-	-	-	-	-	-	-
JMP addr16	3	2	0	word $(\mathrm{PC}) \leftarrow$ addr16	-	-	-	-	-	-	-	-	-	
JMP @ear	2	+	0	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	-
JMP @eam	2+	4+ (a)	(c)	word (PC) \leftarrow (eam)	-	-	-	-	-	-	-	-	-	-
JMPP @ear*3	2	3	0	word $(\mathrm{PC}) \leftarrow($ ear) , (PCB) \leftarrow (ear +2)	-	-	-	-	-	-	-	-	-	-
JMPP @eam*3	2+	$4+$ (a)	(d)	word (PC) $\leftarrow($ eam), $(\mathrm{PCB}) \leftarrow($ eam +2$)$	-	-	-	-	-	-	-	-	-	-
JMPP addr24	4	3	0	word $(\mathrm{PC}) \leftarrow$ ad24 0 to 15 $(\mathrm{PCB}) \leftarrow \operatorname{ad} 2416$ to 23	-	-	-	-	-	-	-	-	-	-
CALL @ear*4	2	4	(c)	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	
CALL @eam*4	$2+$	$5+$ (a)	$2 \times(\mathrm{c})$	word (PC) $\leftarrow($ eam)	-	-	-	-	-	-	-	-	-	
CALL addr16*5	3	5	(c)	word (PC) \leftarrow addr16	-	-	-	-	-	-	-	-	-	-
CALLV \#vct4*5	1	7	$2 \times$ (c)	Vector call linstruction	-	-	-	-	-	-	-	-	-	-
CALLP @ear *6	2	7	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15 , $(\mathrm{PCB}) \leftarrow($ ear $) 16$ to 23	-	-	-	-	-	-	-	-	-	-
CALLP @eam *6	2+	$8+(\mathrm{a})$	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15 , $(\mathrm{PCB}) \leftarrow$ (eam) 16 to 23	-	-	-	-	-	-	-	-	-	-
CALLP addr24*7	4	7	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow \operatorname{addr} 0$ to 15, (PCB) \leftarrow addr 16 to 23	-	-	-	-	-	-	-	-	-	-

For an explanation of "(a)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when branching, 2 when not branching.
*2: $3 \times(\mathrm{c})+(\mathrm{b})$
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: Read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: Read (long word) branch address.
*7: Save (long word) to stack.

Table 21 Branch 2 Instructions [20 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
CBNE A, \#imm8, rel	3	${ }^{* 1}$	0	Branch when byte (A) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CWBNE A, \#imm16, rel	4	*1	0	Branch when byte $(A) \neq$ imm16	-	-	-	-	-	*	*	*	*	-
CBNE ear, \#imm8, rel	4	*1	0	Branch when byte (ear) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CBNE eam, \#imm8, rel	4+	*1	(b)	Branch when byte (eam) \neq imm8	-	-	-	-	-	*	*	*	*	-
CWBNE ear, \#imm16, rel	5	*3	0	Branch when word (ear) $=$ imm16	-	-	-	-	-	*	*	*	*	-
CWBNE eam, \#imm16, rel	5+	*2	(c)	Branch when word (eam) $=$ imm16	-	-	-	-	-	*	*	*	*	-
DBNZ ear, rel	3	*4	0	Branch when byte (ear) =	-	-	-	-	-	*	*	*	-	-
				(ear) - 1, and (ear) $\neq 0$										
DBNZ eam, rel	$3+$	*2	$2 \times$ (b)	Branch when byte (ear) = (eam) -1 , and $($ eam $) \neq 0$	-	-	-	-	-	*	*	*	-	*
DWBNZ ear, rel	3	*4	0	Branch when word (ear) =	-	-	-	-	-	*	*	*	-	-
DWBNZ eam, rel	3+	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$2 \times$ (c)	(ear) -1 , and (ear) $\neq 0$ Branch when word (eam) = (eam) - 1, and (eam) $\neq 0$	-	-	-	-	-	*	*	*	-	*
INT \#vct8	2	13	$8 \times$ (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
INT addr16	3	14	6× (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
INTP addr24	4	9	6× (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
INT9	1	11	$8 \times$ (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
RETI	1		6× (c)	Return from interrupt	-	-	*	*	*	*	*	*		-
RETIQ *6	2	6	*5	Return from interrupt	-	-	*	*	*	*	*	*	*	-
LINK \#imm8	2		(c)	At constant entry, save old frame pointer to stack, set new	-	-	-	-	-	-	-	-	-	-
		5		frame pointer, and allocate local pointer area										
UNLINK	1	4	(c)	At constant entry, retrieve old frame pointer from stack.	-	-	-	-	-	-	-	-	-	-
RET *7		5	(c)			-								
RETP *8	1		(d)	Return from subroutine	-	-	-	-	-	-	-	-	-	-

For an explanation of "(b)", "(c)" and "(d)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 4 when branching, 3 when not branching
*2: 5 when branching, 4 when not branching
*3: $5+$ (a) when branching, $4+$ (a) when not branching
*4: $6+$ (a) when branching, $5+$ (a) when not branching
*5: $3 \times(\mathrm{b})+2 \times$ (c) when an interrupt request is generated, $6 \times$ (c) when returning from the interrupt.
*6: High-speed interrupt return instruction. When an interrupt request is detected during this instruction, the instruction branches to the interrupt vector without performing stack operations when the interrupt is generated.
*7: Return from stack (word)
*8: Return from stack (long word)

Table 22 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
PUSHW A	1	3	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
PUSHW AH		3	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{AH})$	-	-	-	-	-	-	-	-	-	-
PUSHW PS		3	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{PS})$	-	-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-	-	-	-	-	-	-	-	-
POPW A	1	3	(c)	word $(A) \leftarrow((S P)),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	*	-	-	-	-	-	-	-	-
POPW AH	1	3	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})$), (SP) $\leftarrow(\mathrm{SP})+2$	-	-	-	-	-	-	-	-	-	-
POPW PS		3	(c)	word $(\mathrm{PS}) \leftarrow((\mathrm{SP})$), (SP) $\leftarrow(\mathrm{SP})+2$	-	-	*	*	*	*	*	*	*	-
POPW rlst	2	*2	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})$	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	9	6× (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ and imm8	-	-	*		*	*			*	-
OR CCR, \#imm8	2	3	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ or imm8	-	-	*	*	*	*				-
MOV RP, \#imm8	2	2	0	byte (RP) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	byte (ILM) ↔-imm8	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2	3	0	word (RWi) \leftarrow ear	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, eam	2+	$2+$ (a)	0	word (RWi) \leftarrow eam	-	-	-	-	-	-	-	-	-	-
MOVEA A, ear	2	2	0	word $(\mathrm{A}) \leftarrow$ ear	-		-	-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+$ (a)	0	word $(A) \leftarrow$ eam	-	*	-	-	-	-	-	-	-	
ADDSP \#imm8	2	3	0	word (SP) \leftarrow ext (imm8)	-	-	-	-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	word (SP) \leftarrow imm16	-	-	-	-	-	-	-	-	-	
MOV A, brgl	2	*1	0	byte $(\mathrm{A}) \leftarrow$ (brgl)	Z	*	-	-	-	*		-	-	-
MOV brg2, A	2	1	0	byte (brg2) $\leftarrow(A)$	-	-	-	-	-	*		-		-
MOV brg2, \#imm8	3	2	0	byte (brg2) \leftarrow imm8	-	-	-	-	-	*		-	-	-
NOP	1	1	0	No operation	-	-	-	-	-	-	-	-		-
ADB	1	1	0	Prefix code for AD space access	-	-	-	-	-	-	-	-	-	-
DTB	,	1	0	Prefix code for DT space access	-	-	-	-	-	-	-	-	-	-
PCB	1	1	0	Prefix code for PC space access	-	-	-	-	-	-	-	-	-	-
SPB	1		0	Prefix code for SP space access	-	-	-	-	-	-	-	-	-	-
NCC	1	1	0	Prefix code for no flag change	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	Prefix code for the common register bank	-	-	-	-	-	-	-	-	-	-
MOVW SPCU, \#imm16	4	2	0	word (SPCU) $\leftarrow($ imm16)	-	-	-	-	-	-	-	-		-
MOVW SPCL, \#imm16	4	2	0	word (SPCL) $\leftarrow($ imm16)	-	-	-	-	-	-	-	-	-	-
SETSPC	2	2	0	Stack check ooperation enable	-	-	-	-	-	-	-	-	-	-
CLRSPC	2	2	0	Stack check ooperation disable	-	-	-	-	-	-	-	-	-	-
BTSCN A	2	*5	0	byte (A) < position of "1" bit in word (A)	Z	-	-	-	-	-		-	-	-
BTSCNS A	2	*6	0	byte (A) ¢ position of "1" bit in word (A) $\times 2$	Z	-	-	-	-	-	*	-	-	-
BTSCND A	2	*7	0	byte (A) \leftarrow position of "1" ${ }^{\text {bit in in word (}}$ ($\times 4$	Z	-	-	-	-	-	*	-	-	-

For an explanation of "(a)" and "(c)", refer to Tables 4 and 5.
*1: PCB, ADB, SSB, USB, and SPB: 1 cycle DTB: 2 cycles DPR: 3 cycles
*2: $3+4 \times$ (pop count)
*3: $3+4 \times$ (push count)
*4: Pop count \times (c), or push count \times (c)
*5: 3 when AL is 0,5 when AL is not 0 .
*6: 4 when AL is 0,6 when AL is not 0 .
*7: 5 when AL is 0,7 when $A L$ is not 0 .

MB90220 Series

Table 23 Bit Manipulation Instructions [21 Instructions]

For an explanation of "(b)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 5 when branching, 4 when not branching
*2: 7 when condition is satisfied, 6 when not satisfied
*3: Undefined count
*4: Until condition is satisfied

Table 24 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
SWAP	1	3	0	byte (A) 0 to $7 \leftarrow \rightarrow$ (A) 8 to 15	-	-	-	-	-	-	-	-	-	
SWAPW	1	2	0	word (AH) $\leftarrow \rightarrow$ (AL)	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	Byte code extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	Word code extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	Byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	2	0	Word zero extension	-	Z	-	-	-	R	*	-	-	-

Table 25 String Instructions [10 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMw
MOVS/MOVSI	2	*2	*3	Byte transfer @AH+↔@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*3	Byte transfer @AH- ¢@AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*4	Byte retrieval @AH+-AL, counter = RWo	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*4	Byte retrieval @AH--AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILS/FILSI	2	$5 \mathrm{~m}+3$	*5	Byte filling @AH $+\leftarrow \mathrm{AL}$, counter = RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	* 6	Word transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*6	Word transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*7	Word retrieval @AH+-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	*1	*7	Word retrieval @AH--AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$5 \mathrm{~m}+3$	*8	Word filling @AH $+\leftarrow$ AL, counter = RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
*1: 3 when RW0 is $0,2+6 \times($ RW 0) for count out, and $6 n+4$ when match occurs
*2: 4 when RW0 is $0,2+6 \times($ RW0) in any other case
*3: (b) $\times($ RW0 $)$
*4: (b) $\times n$
*5: (b) $\times($ RW0 $)$
*6: (c) $\times($ RW0 $)$
*7: (c) $\times n$
*8: (c) $\times($ RW0 $)$

Table 26 Multiple Data Transfer Instructions [18 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
MOVM @A, @RLi, \#imm8	3	*1	*3	Multiple data trasfer byte $((\mathrm{A})) \leftarrow((\mathrm{RLi})$)	-	-	-	-	-	-	-	-	-	-
MOVM @A, eam, \#imm8	$3+$	*2	*3	Multiple data trasfer byte $((\mathrm{A})) \leftarrow$ (eam)	-	-	-	-	-	-	-	-	-	-
MOVM addr16, @RLi, \#imm8	5	*1	*3	Multiple data trasfer byte (addr16) $\leftarrow(($ RLi) $)$	-	-	-	-	-	-	-	-	-	-
MOVM addr16, eam, \#imm8	5+	*2	*3	Multiple data trasfer byte (addr16) $\leftarrow($ eam)	-	-	-	-	-	-	-	-	-	-
MOVMW @A, @RLi, \#imm8	3	${ }^{*}$	*4	Multiple data trasfer word $((\mathrm{A})) \leftarrow(($ RLi) $)$	-	-	-	-	-	-	-	-	-	-
MOVMW @A, eam, \#imm8	3+	*2	*4	Multiple data trasfer word $((\mathrm{A})) \leftarrow$ (eam)	-	-	-	-	-	-	-	-	-	-
MOVMWaddr16, @RLi,\#imm8	5	*1	*4	Multiple data trasfer word (addr16) $\leftarrow(($ RLi) $)$	-	-	-	-	-	-	-	-	-	-
MOVMWaddr16, eam, \#imm8	5+	*2	*4	Multiple data trasfer word (addr16) \leftarrow (eam)	-	-	-	-	-	-	-	-	-	-
MOVM @RLi, @A, \#imm8	3	*1	*3	Multiple data trasfer byte $((\mathrm{RLi})) \leftarrow((\mathrm{A}))$	-	-	-	-	-	-	-	-	-	-
MOVM eam, @A, \#imm8	3+	*2	*3	Multiple data trasfer byte (eam) $\leftarrow((\mathrm{A})$)	-	-	-	-	-	-	-	-	-	-
MOVM @RLi, addr16, \#imm8	5	${ }^{*}$	*3	Multiple data transfer byte ((RLi)) \leftarrow (addr16)	-	-	-	-	-	-	-	-	-	-
MOVM eam, addr16, \#imm8	5+	*2	*3	Multiple data transfer byte (eam) \leftarrow (addr16)	-	-	-	-	-	-	-	-	-	-
MOVMW @RLi, @A, \#imm8	3	*1	*4	Multiple data trasfer word $((\mathrm{RLi})) \leftarrow((\mathrm{A}))$	-	-	-	-	-	-	-	-	-	-
MOVMW eam, @A, \#imm8	$3+$	*2	*4	Multiple data trasfer word (eam) $\leftarrow((\mathrm{A}))$	-	-	-	-	-	-	-	-	-	-
MOVMW@RLi, addr16, \#imm8	5	*1	*4	Multiple data transfer word $((\mathrm{RL} \mathrm{L})) \leftarrow$ (addr16)	-	-	-	-	-	-	-	-	-	-
MOVMWeam, addr16, \#imm8	5+	*2	*4	Multiple data transfer word (eam) \leftarrow (addr16)	-	-	-	-	-	-	-	-	-	-
MOVM bnk:addr16, *5 bnk : addr16, \#imm8	7	*1	*3	Multiple data transfer byte (bnk:addr16) \leftarrow (bnk:addr16)	-	-	-	-	-	-	-	-	-	-
MOVMW bnk:addr16, *5 bnk: addr16, \#imm8	7	*1	*4	Multiple data transfer word (bnk:addr16) \leftarrow (bnk:addr16)	-	-	-	-	-	-	-	-	-	-

*1: $5+$ imm8 $\times 5$, 256 times when imm8 is zero.
*2: $5+\mathrm{imm} 8 \times 5+$ (a), 256 times when imm8 is zero.
*3: Number of transfers $\times(\mathrm{b}) \times 2$
*4: Number of transfers $\times(\mathrm{c}) \times 2$
*5: The bank register specified by "bnk" is the same as for the MOVS instruction.

MB90220 Series

ORDERING INFORMATION

Part number	Type	Package	Remarks
MB90224	MB90224PF	120-pin Plastic QFP	
MB90223	MB90223PF	(FPT-120P-M03)	
MB90224A	MB90P24PF	MB90P224BPF	MB90W224ZF
MB90P224B	MB90W224BZF	120-pin Ceramic QFP (FPT-120C-C02)	ES level only
MB90W224A			
MB90W224B	MB90V220CR	256-pin Ceramic PGA (PGA-256C-A02)	For evaluation
MB90V220			

PACKAGE DIMENSIONS

120-pin Plastic QFP
 (FPT-120P-M03)

© 1994 FUJITSU LIMITED F120004S-3C-2

Dimensions in mm (inches)

120-pin Ceramic QFP
 (FPT-120C-C02)

Note: See to the latest version of Package Data Book for official package dimensions.

FUJITSU LIMITED

For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
\section*{F9710}
© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

[^0]: *:FPT-120P-M03, FPT-120C-C02

[^1]: *:FPT-120P-M03, FPT-120C-C02

[^2]: *:FPT-120P-M03, FPT-120C-C02

[^3]: $\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mathrm{pF}$
 Select the optimum capacity value for the resonator

[^4]: * $: 5$ when the contents of the accumulator are all zeroes, $5+(\mathrm{RO})$ in all other cases.

