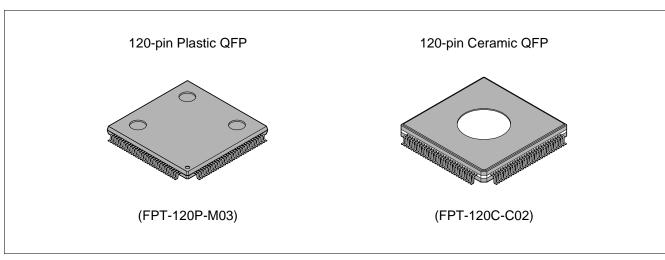
## 16-bit Proprietary Microcontroller

**CMOS** 

## F<sup>2</sup>MC-16F MB90220 Series

### MB90223/224/P224A/W224A MB90P224B/W224B/V220

#### **■** OUTLINE


The MB90220 series of general-purpose high-performance 16-bit microcontrollers has been developed primarily for applications that demand high-speed real-time processing and is suited for industrial applications, office automation equipment, process control, and other applications. The F²MC-16F CPU is based on the F²MC\*-16 Family with improved high-level language support functions and task switching functions, as well as additional addressing modes.

On-chip peripheral resources include a 4-channel PWC timer, a 4-channel ICU (Input Capture Unit), a 1-channel 24-bit timer counter, an 8-channel OCU (Output Compare Unit), a 6-channel 16-bit reload timer, a 2-channel 16-bit PPG timer, a 10-bit A/D converter with 16 inputs, and a 4-channel serial port with a UART function (one channel includes the CTS function).

The MB90P224B, MB90W224B, MB90224 is under development.

\*: F2MC stands for FUJITSU Flexible Microcontroller.

#### **■ PACKAGE**



#### **■ FEATURES**

#### F<sup>2</sup>MC-16F CPU

- Minimum execution time: 62.5 ns/16 MHz oscillation (using a duty control system)
- · Instruction sets optimized for controllers

Upward object-compatible with the F<sup>2</sup>MC-16(H)

Various data types (bit, byte, word, and long-word)

Instruction cycle improved to speed up operation

Extended addressing modes: 25 types

High coding efficiency

Access method (bank access with linear pointer)

Enhanced multiplication and division instructions (with signed instructions added)

Higher-precision operation using a 32-bit accumulator

• Extended intelligent I/O service (automatic transfer function independent of instructions)

Access area expanded to 64 Kbytes

· Enhanced instruction set applicable to high-level language (C) and multitasking

System stack pointer

Enhanced pointer-indirect instructions

Barrel shift instruction

Stack check function

- Increased execution speed: 8-byte instruction queue
- Powerful interrupt functions: 8 levels and 28 sources

#### Peripheral resources

• Mask ROM : 64 Kbytes (MB90223)

96 Kbytes (MB90224)

EPROM : 96 Kbytes (MB90W224A/W224B)One-time PROM : 96 Kbytes (MB90P224A/P224B)

RAM: 3 Kbytes (MB90223)

4.5 Kbytes (MB90224/MB90W224A/P224A/W224B/P224B)

5 Kbytes (MB90V220)

- General-purpose ports: max. 102 channels
- ICU (Input Capture Unit): 4 channels
- 24-bit timer counter: 1 channel
- OCU (Output Compare Unit): 8 channels
- PWC timer with time measurement function: 4 channels
- 10-bit A/D converter: 16 channels
- UART: 4 channels (one channel includes CTS function)
- 16-bit reload timer

Toggled output, external clock, and gate functions: 6 channels

- 16-bit PPG timer: 2 channels
- DTP/External-interrupt inputs: 8 channels (of which five have edge detection function only)
- Write-inhibit RAM: 0.5 Kbytes (1 Kbyte for MB90V220)
- Timebase counter: 18 bits
- Clock gear function
- Low-power consumption mode

Sleep mode

Stop mode

Hardware standby mode

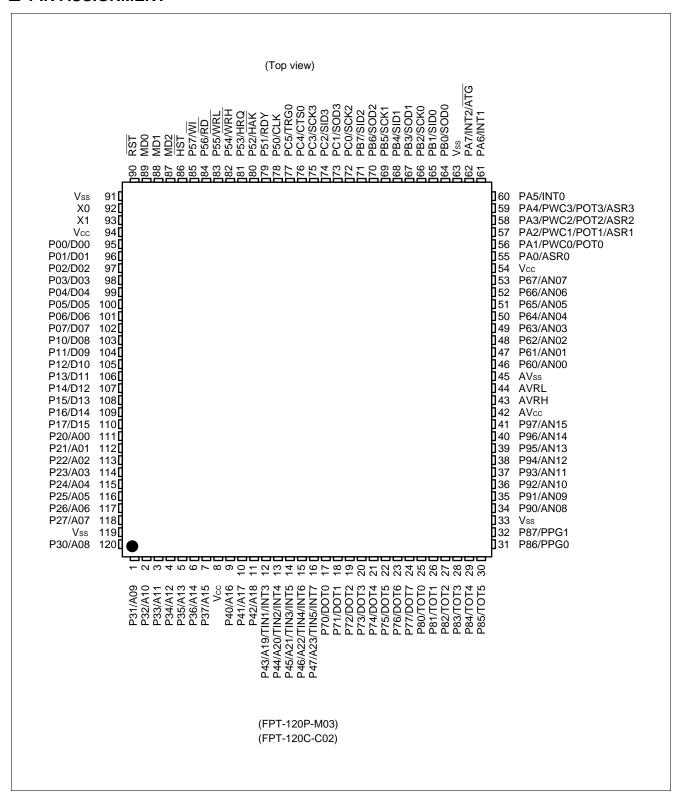
#### **Product description**

- MB90223/224 are mask ROM product.
- MB90P224A/P224B are one-time PROM products.
- MB90W224A/W224B are EPROM products. ES only.
- Operating temperature of MB90P224A/W224A is -40°C to +85°C. (However, the AC characteristics is assured in -40°C to +70°C)
- Operation clock cycle of MB90223 is 10 MHz to 12 MHz.
- MB90V220 is a evaluation device for the program development. ES only.

#### **■ PRODUCT LINEUP**

| Part number                  | MB90223                                                                                                                                                                                                                                                                                                    | MB90224                                                                                                                                                                                                                                                           | MB90P224A<br>MB90P224B                      | MB90W224A<br>MB90W224B | MB90V220          |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|-------------------|--|--|--|--|
| Classification               | Mask ROM product                                                                                                                                                                                                                                                                                           | Mask ROM product                                                                                                                                                                                                                                                  | One-time<br>PROM product                    | EPROM product          | Evaluation device |  |  |  |  |
| ROM size                     | 64 Kbytes                                                                                                                                                                                                                                                                                                  | 96 Kbytes                                                                                                                                                                                                                                                         | 96 Kbytes                                   | 96 Kbytes              | None              |  |  |  |  |
| RAM size                     | 3 Kbytes                                                                                                                                                                                                                                                                                                   | 4.5 Kbytes                                                                                                                                                                                                                                                        | 4.5 Kbytes                                  | 4.5 Kbytes             | 5 Kbytes          |  |  |  |  |
| CPU functions                | Ins<br>Ins<br>Da<br>Mi                                                                                                                                                                                                                                                                                     | ne number of instruction bit length: struction length: ata bit length: nimum execution therrupt processing                                                                                                                                                        | 8 or 16<br>1 to 7<br>1, 4, 8<br>ime: 62.5 n |                        |                   |  |  |  |  |
| Ports                        | I/C                                                                                                                                                                                                                                                                                                        | ) ports (N-ch open<br>) ports (CMOS):<br>tal:                                                                                                                                                                                                                     | -drain): 16<br>86<br>102                    |                        |                   |  |  |  |  |
| ICU<br>(Input Capture Unit)  |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   | umber of channels:<br>alling edge/both edg  |                        |                   |  |  |  |  |
| 24-bit timer counter         | Number of channels: 1 Overflow interrupt, intermediate bit interrupt                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                   |                                             |                        |                   |  |  |  |  |
| OCU<br>(Output Compare Unit) | Number of channels: 8 Pin change source (match signal causes register value transfer/general-purpose port)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                   |                                             |                        |                   |  |  |  |  |
| PWC timer                    | 16-bit pulse-widtl                                                                                                                                                                                                                                                                                         | Number of channels: 4  16-bit reload timer operation (operation clock cycle: 0.25 µs to 1.31 ms)  16-bit pulse-width count operation (Allowing continuous/one-shot measurement, H/L width measurement, inter-edge measurement, and divided-frequency measurement) |                                             |                        |                   |  |  |  |  |
| 10-bit<br>A/D converter      | Resolution: 10 bits  Number of inputs: 16  Single conversion mode (conversion of each channel)  Scan conversion mode (continuous conversion for up to 16 consecutive channels)  Continuous conversion mode (repeated conversion of specified channel)  Stop conversion mode (conversion every fixed cycle) |                                                                                                                                                                                                                                                                   |                                             |                        |                   |  |  |  |  |
| UART                         | Number of channels: 4 (1 channel with CTS function) Clock-synchronous transfer mode (full-duplex double buffering, 7 to 9-bit data length, 2400 to 62500 bps) Asynchronous transfer mode (full-duplex double buffering, 7 to 9-bit data length, 2400 to 62500 bps)                                         |                                                                                                                                                                                                                                                                   |                                             |                        |                   |  |  |  |  |
| 16-bit reload<br>timer       | 16-bit                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   | umber of channels:<br>ion (operation cloc   |                        | 1.05 s)           |  |  |  |  |

#### (Continued)


| Part number Item        | MB90223                                                                                          | MB90224                                                                                                                                                                                                                                                                     | MB90P224A<br>MB90P224B | MB90W224A<br>MB90W224B | MB90V220     |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|--------------|--|--|--|
| 16-bit PPG timer        | 1                                                                                                | Number of channels: 2<br>16-bit PPG operation (operation clock cycle: 0.25 μs to 6 s)                                                                                                                                                                                       |                        |                        |              |  |  |  |
| DTP/External interrupts | External interru                                                                                 | Number of inputs: 8 (of which five have edge detection function only) External interrupt mode (allowing interrupts to activate at four different request levels) Simple DMA transfer mode (allowing extended I <sup>2</sup> OS to activate at two different request levels) |                        |                        |              |  |  |  |
| Write-inhibited<br>RAM  | RAM size: 512 bytes (1 Kbyte for MB90V220)  RAM write-protectable with WI pin                    |                                                                                                                                                                                                                                                                             |                        |                        |              |  |  |  |
| Standby mode            | stop mode (activated by software or hardware) and sleep mode                                     |                                                                                                                                                                                                                                                                             |                        |                        |              |  |  |  |
| Gear function           | Machine clock operation frequency switching: 16 MHz, 8 MHz, 4 MHz, 1 MHz (at 16-MHz oscillation) |                                                                                                                                                                                                                                                                             |                        |                        |              |  |  |  |
| Package                 |                                                                                                  | FPT-120P-M03                                                                                                                                                                                                                                                                |                        | FPT-120C-C02           | PGA-256C-A02 |  |  |  |

Note: MB90V220 is a evaluation device, therefore, the electrical characteristics are not assured.

# ■ DIFFERENCES BETWEEN MB90223/224 (MASK ROM PRODUCT) AND MB90P224A/W224A/P224B/W224B

| Part number Item      | MB90223               | MB90224               | MB90P224A<br>MB90P224B | MB90W224A<br>MB90W224B |
|-----------------------|-----------------------|-----------------------|------------------------|------------------------|
| ROM                   | Mask ROM<br>64 Kbytes | Mask ROM<br>96 Kbytes | OTPROM<br>96 Kbytes    | EPROM<br>96 Kbytes     |
| Pin functions: pin 87 | MD2                   | 2 pin                 | MD2/\                  | / <sub>PP</sub> pin    |

#### **■ PIN ASSIGNMENT**



#### **■ PIN DESCRIPTION**

| Pin no.        |                    | Circuit |                                                                                                                                                                                                             |
|----------------|--------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QFP*           | Pin name           | type    | Function                                                                                                                                                                                                    |
| 92,<br>93      | X0,<br>X1          | А       | Crystal oscillation pins (16 MHz)                                                                                                                                                                           |
| 89 to 87       | MD0 to MD2         | D       | Operation mode specification input pins<br>Connect directly to Vcc or Vss.                                                                                                                                  |
| 90             | RST                | G       | External reset request input                                                                                                                                                                                |
| 86             | HST                | Е       | Hardware standby input pin                                                                                                                                                                                  |
| 95 to 102      | P00 to P07         | С       | General-purpose I/O ports This function is valid only in single-chip mode.                                                                                                                                  |
|                | D00 to D07         |         | Output pins for low-order 8 bits of the external address bus. This function is valid only in modes where the external bus is enabled.                                                                       |
| 103 to 110     | P10 to P17         | С       | General-purpose I/O ports This function is valid only in single-chip mode or when the external bus is enabled and the 8-bit data bus specification has been made.                                           |
|                | D08 to D15         |         | I/O pins for higher-order 8 bits of the external data bus This function is valid only when the external bus is enabled and the 16-bit bus specification has been made.                                      |
| 111 to 118     | P20 to P27         | С       | General-purpose I/O ports This function is valid only in single-chip mode.                                                                                                                                  |
|                | A00 to A07         |         | Output pins for lower-order 8 bits of the external address bus This function is valid only in modes where the external bus is enabled.                                                                      |
| 120,<br>1 to 7 | P30,<br>P31 to P37 | С       | General-purpose I/O ports This function is valid either in single-chip mode or when the address mid-order control register specification is "port".                                                         |
|                | A08,<br>A09 to A15 |         | Output pins for mid-order 8 bits of the external address bus This function is valid in modes where the external bus is enabled and the address mid-order control register specification is "address".       |
| 9 to 11        | P40 to P42         | С       | General-purpose I/O ports This function is valid either in single-chip mode or when the address high-order control register specification is "port".                                                        |
|                | A16 to A18         |         | Output pins for higher-order 8 bits of the external address bus This function is valid in modes where the external bus is enabled and the address high-order control register specification is "address".   |
| 12 to 16       | P43 to P47         | С       | General-purpose I/O ports This function is valid when either single-chip mode is enabled or the address higher-order control register specification is "port".                                              |
|                | A19 to A23         |         | Output pins for higher-order 8 bits of the external address bus This function is valid in modes where the external bus is enabled and the address higher-order control register specification is "address". |
|                | TIN1 to TIN5       |         | 16-bit reload timer input pins This function is valid when the timer input specification is "enabled". The data on the pins is read as timer input (TIN1 to TIN5).                                          |

<sup>\*:</sup> FPT-120P-M03, FPT-120C-C02

| Pin no.<br>QFP* | Pin name     | Circuit type | Function                                                                                                                                                                                                                                                                                                             |
|-----------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 to 16        | INT3 to INT7 | С            | External interrupt request input pins When external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately.                                                               |
| 78              | P50          | С            | General-purpose I/O port This function is valid in single-chip mode and when the CLK output specification is disabled.                                                                                                                                                                                               |
|                 | CLK          |              | CLK output pin This function is valid in modes where the external bus is enabled and the CLK output specification is enabled.                                                                                                                                                                                        |
| 79              | P51          | С            | General-purpose I/O port This function is valid in single-chip mode or when the ready function is disabled.                                                                                                                                                                                                          |
|                 | RDY          |              | Ready input pin This function is valid in modes where the external bus is enabled and the ready function is enabled.                                                                                                                                                                                                 |
| 80              | P52          | С            | General-purpose I/O port This function is valid in single-chip mode or when the hold function is disabled.                                                                                                                                                                                                           |
|                 | HAK          |              | Hold acknowledge output pin This function is valid in modes where the external bus is enabled and the hold function is enabled.                                                                                                                                                                                      |
| 81              | P53          | С            | General-purpose I/O port This function is valid in single-chip mode or external bus mode and when the hold function is disabled.                                                                                                                                                                                     |
|                 | HRQ          |              | Hold request input pin This function is valid in modes where the external bus is enabled and the hold function is enabled. During this operation, the input may be used suddenly at any time; therefore, it is necessary to stop output by other fuctions on this pin, except when using it for output deliberately. |
| 82              | P54          | С            | General-purpose I/O port This function is valid in single-chip mode, when the external bus is in 8-bit mode, or when WRH pin output is disabled.                                                                                                                                                                     |
|                 | WRH          |              | Write strobe output pin for the high-order 8 bits of the data bus This function is valid in modes where the external bus is enabled, the external bus is in 16-bit mode, and WRH pin output is enabled.                                                                                                              |
| 83              | P55          | С            | General-purpose I/O port This function is valid in single-chip mode or when $\overline{WRL}$ pin output is disabled.                                                                                                                                                                                                 |
|                 | WRL          |              | Write strobe output pin for the low-order 8 bits of the data bus This function is valid in modes where the external bus is enabled and WRL pin output is enabled.                                                                                                                                                    |

<sup>\*:</sup> FPT-120P-M03, FPT-120C-C02

| Pin no.<br>QFP* | Pin name      | Circuit type | Function                                                                                                                                                                                                                      |
|-----------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 84              | P56           | С            | General-purpose I/O port This function is valid in single-chip mode. This function is valid in modes where the external bus is valid.                                                                                         |
|                 | RD            |              | Read strobe output pin for the data bus This function is valid in modes where the external bus is enabled.                                                                                                                    |
| 85              | P57           | В            | General-purpose I/O port This function is always valid. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode. |
|                 | WI            |              | RAM write disable request input During this operation, the input may be used suddenly at any time; therefore, it is necessary to stop output by other fuctions on this pin, except when using it for output deliberately.     |
| 46 to 53        | P60 to P67    | F            | Open-drain I/O ports This function is valid when the analog input enable register specification is "port".                                                                                                                    |
|                 | AN00 to AN07  |              | 10-bit A/D converter analog input pins This function is valid when the analog input enable register specification is "analog input".                                                                                          |
| 17 to 24        | P70 to P77    | С            | General-purpose I/O ports This function is valid when the output specification for DOT0 to DOT7 is "disabled".                                                                                                                |
|                 | DOT0 to DOT7  |              | This function is valid when OCU (output compare unit) output is enabled.                                                                                                                                                      |
| 25 to 30        | P80 to P85    | С            | General-purpose I/O ports This function is valid when the output specification for TOT0 to TOT5 is "disabled".                                                                                                                |
|                 | TOT0 to TOT5  |              | 16-bit reload timer output pins (TOT0 to TOT5)                                                                                                                                                                                |
| 31,<br>32       | P86,<br>P87   | С            | General-purpose I/O ports This function is valid when the PPG0, and PPG1 output specification is "disabled".                                                                                                                  |
|                 | PPG0,<br>PPG1 |              | 16-bit PPG timer output pins This function is valid when the PPG control/status register specification is "PPG output pins".                                                                                                  |
| 34 to 41        | P90 to P97    | F            | Open-drain I/O ports This function is valid when the analog input enable register specification is "port".                                                                                                                    |
|                 | AN08 to AN15  |              | 10-bit A/D converter analog input pins This function is valid when the analog input enable register specification is "analog input".                                                                                          |

<sup>\*:</sup> FPT-120P-M03, FPT-120C-C02

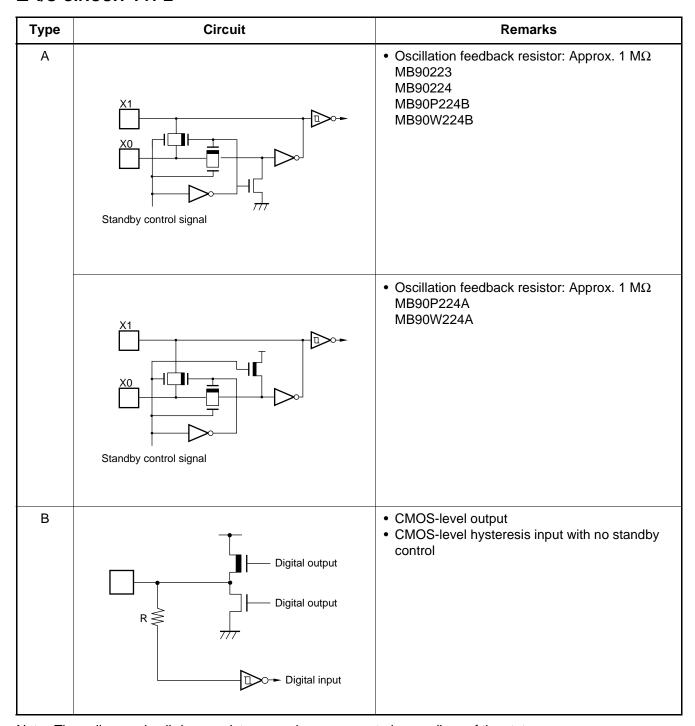
| Pin no.   | Pin name      | Circuit | Function                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QFP*      | Fill liallie  | type    | Function                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55        | PA0           | С       | General-purpose I/O port This function is always valid.                                                                                                                                                                                                                                                                                                                                                                              |
|           | ASR0          |         | ICU (input capture unit) input pin This function is valid during ICU (input capture unit) input operations.                                                                                                                                                                                                                                                                                                                          |
| 56        | PA1           | С       | General-purpose I/O port This function is always valid.                                                                                                                                                                                                                                                                                                                                                                              |
|           | PWC0          |         | PWC input pin During PWC0 input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.                                                                                                                                                                                                                     |
|           | POT0          |         | PWC output pin This function is valid during PWC output operations.                                                                                                                                                                                                                                                                                                                                                                  |
| 57 to 59  | PA2 to PA4    | С       | General-purpose I/O ports This function is always valid.                                                                                                                                                                                                                                                                                                                                                                             |
|           | PWC1 to PWC3  |         | PWC input pins This function is valid during PWC input operations. During PWC1 to PWC3 input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.                                                                                                                                                        |
|           | POT1 to POT3  |         | PWC output pins This function is valid during PWC output operations.                                                                                                                                                                                                                                                                                                                                                                 |
|           | ASR1 to ASR3  |         | ICU (input capture unit) input pins This function is valid during ICU (input capture unit) input operations.                                                                                                                                                                                                                                                                                                                         |
| 60,<br>61 | PA5,<br>PA6   | В       | General-purpose I/O ports This function is always valid. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.                                                                                                                                                                                                       |
|           | INTO,<br>INT1 |         | DTP/External interrupt request input pins When DTP/external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode. |
| 62        | PA7           | В       | General-purpose I/O port This function is always valid. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.                                                                                                                                                                                                        |

<sup>\*:</sup> FPT-120P-M03, FPT-120C-C02

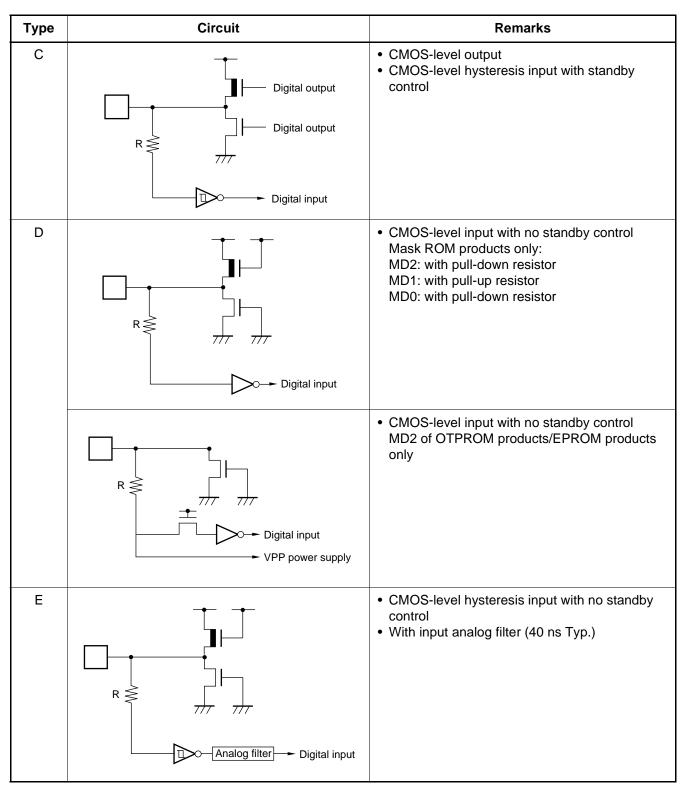
| Pin no. | Pin name    | Circuit | Function                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QFP*    | T III Haine | type    | T dilotion                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 62      | INT2        | В       | DTP/External interrupt request input pin When DTP/external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode. |
|         | ĀTG         |         | 10-bit A/D converter external trigger input pin When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.                                                                                                                                                                                                               |
| 64      | PB0         | С       | General-purpose I/O port This function is valid when the UART0 (ch.0) serial data output specification is "disabled".                                                                                                                                                                                                                                                                                                               |
|         | SOD0        |         | UART0 (ch.0) serial data output This function is valid when the UART0 (ch.0) serial data output specification is "enabled".                                                                                                                                                                                                                                                                                                         |
| 65      | PB1         | С       | General-purpose I/O port This function is always valid.                                                                                                                                                                                                                                                                                                                                                                             |
|         | SID0        |         | UART0 (ch.0) serial data input pin During UART0 (ch.0) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.                                                                                                                                                                                       |
| 66      | PB2         | С       | General-purpose output port This function is valid when the UART0 (ch.0) clock output specification is "disabled".                                                                                                                                                                                                                                                                                                                  |
|         | SCK0        |         | UART0 (ch.0) clock output pin The clock output function is valid when the UART0 (ch.0) clock output specification is "enabled". UART0 (ch.0) external clock input pin. This function is valid when the port is in input mode and the UART0 (ch.0) specification is external clock mode.                                                                                                                                             |
| 67      | PB3         | С       | General-purpose I/O port This function is valid when the UART0 (ch.1) serial data output specification is "disabled".                                                                                                                                                                                                                                                                                                               |
|         | SOD1        |         | UART0 (ch.1) serial data output pin This function is valid when the UART0 (ch.1) serial data output specification is "enabled".                                                                                                                                                                                                                                                                                                     |
| 68      | PB4         | С       | General-purpose I/O port This function is always valid.                                                                                                                                                                                                                                                                                                                                                                             |
|         | SID1        |         | UART0 (ch.1) serial data input pin During UART0 (ch.1) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.                                                                                                                                                                                       |

<sup>\*:</sup> FPT-120P-M03, FPT-120C-C02

| Pin no. | Pin name | Circuit type | Function                                                                                                                                                                                                                                                                               |
|---------|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QFP*    |          | type         |                                                                                                                                                                                                                                                                                        |
| 69      | PB5      | С            | General-purpose I/O port This function is valid when the UART0 (ch.1) clock output specification is "disabled".                                                                                                                                                                        |
|         | SCK1     |              | UART0 (ch.1) clock output pin The clock output function is valid when the UART0 (ch.1) clock output specification is "enabled". UART0 (ch.1) external clock input pin This function is valid when the port is in input mode and the UART0 (ch.1) specification is external clock mode. |
| 70      | PB6      | С            | General-purpose I/O port This function is valid when the UART0 (ch.2) serial data output specification is "disabled".                                                                                                                                                                  |
|         | SOD2     |              | UART0 (ch.2) serial data output pin This function is valid when the UART0 (ch.2) serial data output specification is "enabled".                                                                                                                                                        |
| 71      | PB7      | С            | General-purpose I/O port This function is always valid.                                                                                                                                                                                                                                |
|         | SID2     |              | UART0 (ch.2) serial data input pin During UART0 (ch.2) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.                                          |
| 72      | PC0      | С            | General-purpose I/O port This function is valid when the UART0 (ch.2) clock output specification is "disabled".                                                                                                                                                                        |
|         | SCK2     |              | UART0 (ch.2) clock output pin The clock output function is valid when the UART0 (ch.2) clock output specification is "enabled". UART0 (ch.2) external clock input pin This function is valid when the port is in input mode and the UART0 (ch.2) specification is external clock mode. |
| 73      | PC1      | С            | General-purpose I/O port This function is valid when the UART1 serial data output specification is "disabled".                                                                                                                                                                         |
|         | SOD3     |              | UART1 serial data output pin This function is valid when the UART1 serial data output specification is "enabled".                                                                                                                                                                      |
| 74      | PC2      | С            | General-purpose I/O port This function is always valid.                                                                                                                                                                                                                                |
|         | SID3     |              | UART1 serial data input pin During UART1 input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.                                                        |

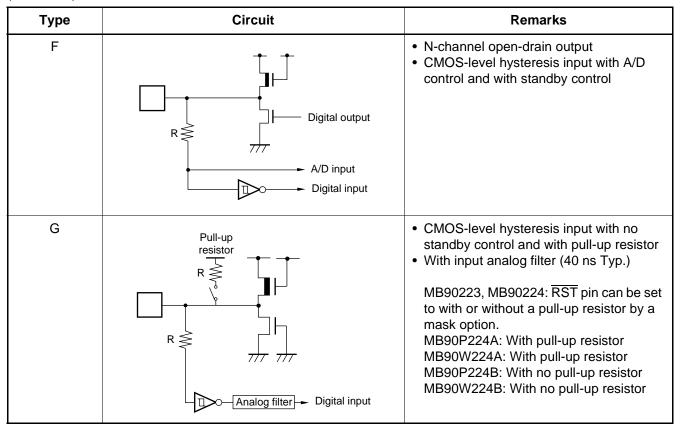

<sup>\*:</sup> FPT-120P-M03, FPT-120C-C02

#### (Continued)


| Pin no.                  | Pin name | Circuit type | Function                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QFP*                     |          |              |                                                                                                                                                                                                                                                                                                                                                                                               |
| 75                       | PC3      | С            | General-purpose I/O port This function is valid when the UART1 clock output specification is "disabled".                                                                                                                                                                                                                                                                                      |
|                          | SCK3     |              | UART1 clock output pin The clock output function is valid when the UART1 clock output specification is "enabled". UART1 external clock input pin This function is valid when the port is in input mode and the UART1 specification is external clock mode.                                                                                                                                    |
| 76                       | PC4      | С            | General-purpose I/O port This function is always valid.                                                                                                                                                                                                                                                                                                                                       |
|                          | CTS0     |              | UART0 (ch.0) Clear To Send input pin When the UART0 (ch.0) CTS function is enabled, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.                                                                                                                                      |
| 77                       | PC5      | С            | General-purpose I/O port This function is always valid.                                                                                                                                                                                                                                                                                                                                       |
|                          | TRG0     |              | 16-bit PPG timer trigger input pin This function is valid when the 16-bit PPG timer trigger input specification is enabled. The data on this pin is read as 16-bit PPG timer trigger input (TRG0). During this operation, the input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately. |
| 8,<br>54,<br>94          | Vcc      | Power supply | Power supply for digital circuitry                                                                                                                                                                                                                                                                                                                                                            |
| 33,<br>63,<br>91,<br>119 | Vss      | Power supply | Ground level for digital circuitry                                                                                                                                                                                                                                                                                                                                                            |
| 42                       | AVcc     | Power supply | Power supply for analog circuitry When turning this power supply on or off, always be sure to first apply electric potential equal to or greater than AVcc to Vcc. During normal operation AVcc should be equal to Vcc.                                                                                                                                                                       |
| 43                       | AVRH     | Power supply | Reference voltage input for analog circuitry When turning this pin on or off, always be sure to first apply electric potential equal to or greater than AVRH to AVcc.                                                                                                                                                                                                                         |
| 44                       | AVRL     | Power supply | Reference voltage input for analog circuitry                                                                                                                                                                                                                                                                                                                                                  |
| 45                       | AVss     | Power supply | Ground level for analog circuitry                                                                                                                                                                                                                                                                                                                                                             |

<sup>\*:</sup> FPT-120P-M03, FPT-120C-C02

#### **■ I/O CIRCUIT TYPE**




Note: The pull-up and pull-down resistors are always connected, regardless of the state.



Note: The pull-up and pull-down resistors are always connected, regardless of the state.

#### (Continued)



☐ ⊢ : P-type transistor ☐ ⊢ : N-type transistor

Note: The pull-up and pull-down resistors are always connected, regardless of the state.

#### **■ HANDLING DEVICES**

#### 1. Preventing Latchup

CMOS ICs may cause latchup when a voltage higher than  $V_{\text{CC}}$  or lower than  $V_{\text{SS}}$  is applied to input or output pins other than medium-and high-voltage pins, or when a voltage exceeding the rating is applied between  $V_{\text{CC}}$  and  $V_{\text{SS}}$ .

If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let any voltage exceed the maximum rating.

Also, take care to prevent the analog power supply (AVcc and AVRH) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

#### 2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

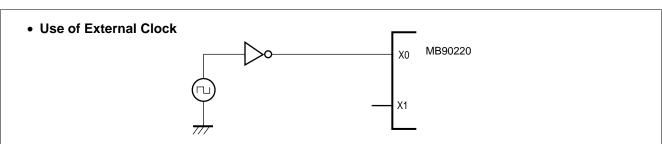
#### 3. Treatment of Pins when A/D is not Used

Connect to be AVcc = AVRH = Vcc and AVss = AVRL = Vss even if the A/D converter is not in use.

#### 4. Precautions when Using an External Input

To reset the internal circuit properly by the "L" level input to the  $\overline{RST}$  pin, the "L" level input to the  $\overline{RST}$  pin must be maintained for at least five machine cycles. Pay attention to it if the chip uses external clock input.

#### 5. Vcc and Vss Pins


Apply equal potential to the Vcc and Vss pins.

#### 6. Supply Voltage Variation

The operation assurance range for the  $V_{CC}$  supply voltage is as given in the ratings. However, sudden changes in the supply voltage can cause misoperation, even if the voltage remains within the rated range. Therefore, it is important to supply a stable voltage to the IC. The recommended power supply control guidelines are that the commercial frequency (50 to 60 Hz) ripple variation (P-P value) on  $V_{CC}$  should be less than 10% of the standard  $V_{CC}$  value and that the transient rate of change during sudden changes, such as during power supply switching, should be less than 0.1 V/ms.

#### 7. Notes on Using an External Clock

When using an external clock, drive the X0 pin as illustrated below. When an external clock is used, oscillation stabilization time is required even for power-on reset and wake-up from stop mode.



Note: When using an external clock, be sure to input external clock more than 6 machine cycles after setting the  $\overline{\text{HST}}$  pin to "L" to transfer to the hardware standby mode.

#### 8. Power-on Sequence for A/D Converter Power Supplies and Analog Inputs

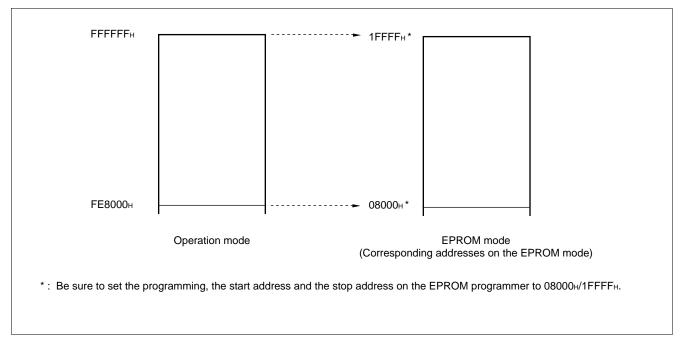
Be sure to turn on the digital power supply (Vcc) before applying voltage to the A/D converter power supplies (AVcc, AVRH, and AVRL) and analog inputs (AN00 to AN15).

When turning power supplies off, turn off the A/D converter power supplies (AVcc, AVRH, and AVRL) and analog inputs (AN00 to AN15) first, then the digital power supply (Vcc).

When turning AVRH on or off, be careful not to let it exceed AVcc.

#### ■ PROGRAMMING FOR MB90P224A/P224B/W224A/W224B

In EPROM mode, the MB90P224A/P224B/W224A/W224B functions equivalent to the MBM27C1000. This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter (do not use the electronic signature mode).


#### 1. Program Mode

When shipped from Fujitsu, and after each erasure, all bits (96 K  $\times$  8 bits) in the MB90P224A/P224B/W224A/W224B are in the "1" state. Data is written to the ROM by selectively programming "0's" into the desired bit locations. Bits cannot be set to "1" electrically.

#### 2. Programming Procedure

- (1) Set the EPROM programmer to MBM27C1000.
- (2) Load program data into the EPROM programmer at 08000H to 1FFFFH.

Note that ROM addresses FE8000<sub>H</sub> to FFFFFH in the operation mode in the MB90P224A/P224B/W224A/W224B series assign to 08000<sub>H</sub> to 1FFFFH in the EPROM mode (on the EPROM programmer).



- (3) Mount the MB90P224A/P224B/W224A/W224B on the adapter socket, then fit the adapter socket onto the EPROM programmer. When mounting the device and the adapter socket, pay attention to their mounting orientations.
- (4) Start programming the program data to the device.
- (5) If programming has not successfully resulted, connect a capacitor of approx. 0.1 μF between Vcc and GND, between VPP and GND.

Note: The mask ROM products (MB90223, MB90224) does not support EPROM mode. Data cannot, therefore, be read by the EPROM programmer.

#### 3. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

| Part No.                                                |                    |                                                    | MB90P224B   |
|---------------------------------------------------------|--------------------|----------------------------------------------------|-------------|
| Package                                                 | QFP-120            |                                                    |             |
| Compatible sock<br>Sun Hayato Co.,                      | ROM-120QF-32DP-16F |                                                    |             |
| Recommended programmer manufacturer and programmer name | Advantest corp.    | R4945A<br>(main unit)<br>+<br>R49451A<br>(adapter) | Recommended |

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

Advantest Corp.: TEL: Except JAPAN (81)-3-3930-4111

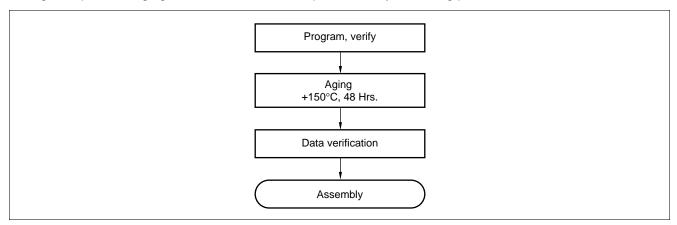
#### 4. Erase Procedure

Data written in the MB90W224A/W224B is erased (from "0" to "1") by exposing the chip to ultraviolet rays with a wavelength of 2,537 Å through the translucent cover.

Recommended irradiation dosage for exposure is 10 Wsec/cm<sup>2</sup>. This amount is reached in 15 to 20 minutes with a commercial ultraviolet lamp positioned 2 to 3 cm above the package (when the package surface illuminance is  $1200 \, \mu \text{W/cm}^2$ ).

If the ultraviolet lamp has a filter, remove the filter before exposure. Attaching a mirrored plate to the lamp increases the illuminance by a factor of 1.4 to 1.8, thus shortening the required erasure time. If the translucent part of the package is stained with oil or adhesive, transmission of ultraviolet rays is degraded, resulting in a longer erasure time. In that case, clean the translucent part using alcohol (or other solvent not affecting the package).

The above recommended dosage is a value which takes the guard band into consideration and is a multiple of the time in which all bits can be evaluated to have been erased. Observe the recommended dosage for erasure; the purpose of the guard band is to ensure erasure in all temperature and supply voltage ranges. In addition, check the life span of the lamp and control the illuminance appropriately.


Data in the MB90W224A/W224B is erased by exposure to light with a wavelength of 4,000 Å or less.

Data in the device is also erased even by exposure to fluorescent lamp light or sunlight although the exposure results in a much lower erasure rate than exposure to 2,537 Å ultraviolet rays. Note that exposure to such lights for an extended period will therefore affect system reliability. If the chip is used where it is exposed to any light with a wavelength of 4,000 Å or less, cover the translucent part, for example, with a protective seal to prevent the chip from being exposed to the light.

Exposure to light with a wavelength of 4,000 to 5,000 Å or more will not erase data in the device. If the light applied to the chip has a very high illuminance, however, the device may cause malfunction in the circuit for reasons of general semiconductor characteristics. Although the circuit will recover normal operation when exposure is stopped, the device requires proper countermeasures for use in a place exposed continuously to such light even though the wavelength is 4,000 Å or more.

#### 5. Recommended Screening Conditions

High temperature aging is recommended as the pre-assembly screening procedure.



#### 6. Programming Yeild

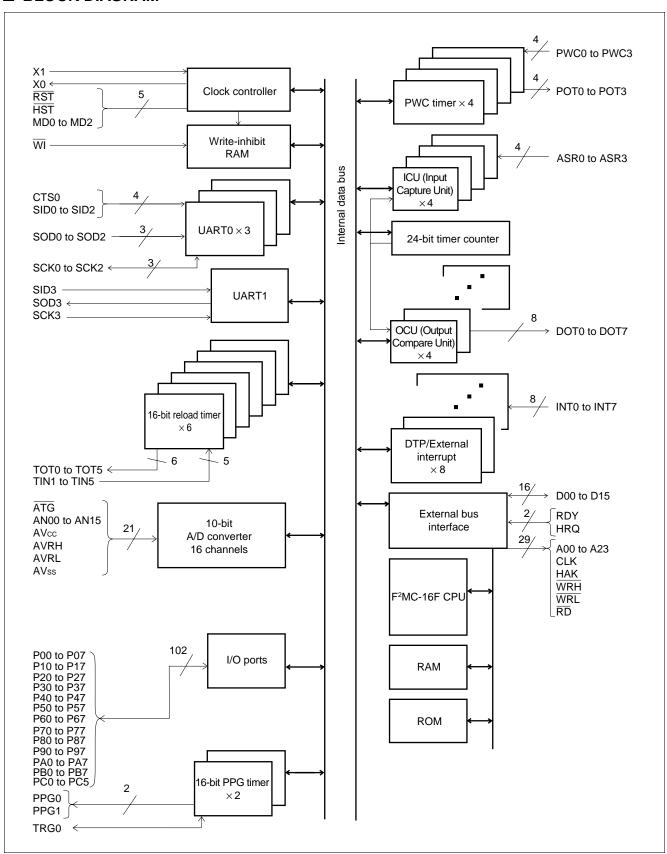
MB90P224A/P224B cannot be write-tested for all bits due to their nature. Therefore the write yield cannot always be guaranteed to be 100%.

#### 7. Pin Assignments in EPROM Mode

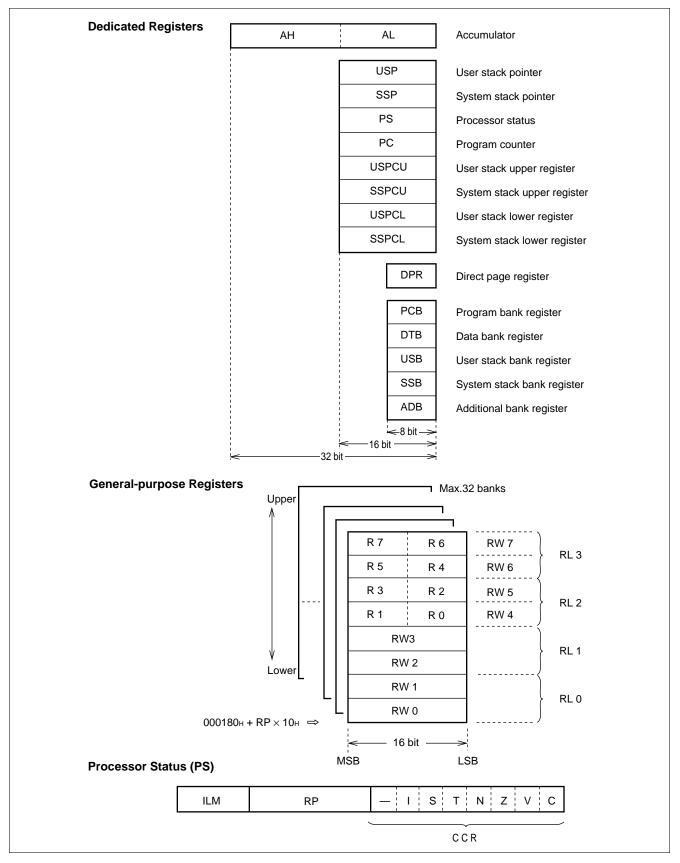
#### (1) Pins Compatible with MBM27C1000

| MBM27   | 7C1000          | MB90P224<br>MB90W224 |           |
|---------|-----------------|----------------------|-----------|
| Pin no. | Pin name        | Pin no.              | Pin name  |
| 1       | V <sub>PP</sub> | 87                   | MD2 (VPP) |
| 2       | OE              | 83                   | P55       |
| 3       | A15             | 7                    | P37       |
| 4       | A12             | 4                    | P34       |
| 5       | A07             | 118                  | P27       |
| 6       | A06             | 117                  | P26       |
| 7       | A05             | 116                  | P25       |
| 8       | A04             | 115                  | P24       |
| 9       | A03             | 114                  | P23       |
| 10      | A02             | 113                  | P22       |
| 11      | A01             | 112                  | P21       |
| 12      | A00             | 111                  | P20       |
| 13      | D00             | 95                   | P00       |
| 14      | D01             | 96                   | P01       |
| 15      | D02             | 97                   | P02       |
| 16      | GND             | 33, 63, 91,119       | Vss       |

| МВМ2    | 7C1000   |           | 4A/P224B/<br>4A/W224B |
|---------|----------|-----------|-----------------------|
| Pin no. | Pin name | Pin no.   | Pin name              |
| 32      | Vcc      | 8, 54, 94 | Vcc                   |
| 31      | PGM      | 84        | P56                   |
| 30      | N.C.     | _         | _                     |
| 29      | A14      | 6         | P36                   |
| 28      | A13      | 5         | P35                   |
| 27      | A08      | 120       | P30                   |
| 26      | A09      | 1         | P31                   |
| 25      | A11      | 3         | P33                   |
| 24      | A16      | 9         | P40                   |
| 23      | A10      | 2         | P32                   |
| 22      | CE       | 82        | P54                   |
| 21      | D07      | 102       | P07                   |
| 20      | D06      | 101       | P06                   |
| 19      | D05      | 100       | P05                   |
| 18      | D04      | 99        | P04                   |
| 17      | D03      | 98        | P03                   |


#### (2) Power Supply and GND Connection Pins

| Туре         | Pin no.                                       | Pin name                                 |
|--------------|-----------------------------------------------|------------------------------------------|
| Power supply | 89<br>88<br>86<br>8, 54, 94                   | MD0<br>MD1<br>HST<br>Vcc                 |
| GND          | 33, 63, 91, 119<br>44<br>45<br>80<br>81<br>90 | Vss<br>AVRL<br>AVss<br>P52<br>P53<br>RST |


#### (3) Pins other than MBM27C1000-compatible Pins

| Pin no.                                                                                                         | Pin name                                                                                                                                 | Treatment                                                 |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 92                                                                                                              | X0                                                                                                                                       | Pull up with 4.7 K $\Omega$ resistor                      |
| 93                                                                                                              | X1                                                                                                                                       | OPEN                                                      |
| 109 110 10 to 16 42 43 46 47 48 to 53 17 to 24 25 to 32 34 to 41 55 to 61 63 to 70 71 to 76 78 79 85 103 to 108 | P16 P17 P41 to P47 AVcc AVRH P60 P61 P62 to P67 P70 to P77 P80 to P82 P90 to P97 PA0 to PA7 PB0 to PB7 PC0 to PC5 P50 P51 P57 P10 to P15 | Connect pull-up resistor of about 1 $M\Omega$ to each pin |


#### **■ BLOCK DIAGRAM**



#### **■ PROGRAMMING MODEL**



#### **■ MEMORY MAP**



#### ■ I/O MAP

| Address               | Register                                         | Register name   | Access    | Resouce name  | Initial value |
|-----------------------|--------------------------------------------------|-----------------|-----------|---------------|---------------|
| 000000H <sub>*3</sub> | Port 0 data register                             | PDR0            | R/W       | Port 0        | XXXXXXX       |
| 000001н*3             | Port 1 data register                             | PDR1            | R/W       | Port 1        | XXXXXXX       |
| 000002н*3             | Port 2 data register                             | PDR2            | R/W       | Port 2        | XXXXXXX       |
| 000003н*3             | Port 3 data register                             | PDR3            | R/W       | Port 3        | XXXXXXX       |
| 000004н*3             | Port 4 data register                             | PDR4            | R/W       | Port 4        | XXXXXXX       |
| 000005н*3             | Port 5 data register                             | PDR5            | R/W       | Port 5        | XXXXXXX       |
| 000006н               | Port 6 data register                             | PDR6            | R/W       | Port 6        | 11111111      |
| 000007н               | Port 7 data register                             | PDR7            | R         | Port 7        | XXXXXXX       |
| 000008н               | Port 8 data register                             | PDR8            | R/W       | Port 8        | XXXXXXX       |
| 000009н               | Port 9 data register                             | PDR9            | R/W       | Port 9        | 11111111      |
| 00000Ан               | Port A data register                             | PDRA            | R/W       | Port A        | XXXXXXX       |
| 00000Вн               | Port B data register                             | PDRB            | R/W       | Port B        | XXXXXXX       |
| 00000Сн               | Port C data register                             | PDRC            | R/W       | Port C        | XXXXXX        |
| 00000Dн<br>to 0Fн     |                                                  | (Reserved       | l area)*1 |               |               |
| 000010н*3             | Port 0 data direction register                   | DDR0            | R/W       | Port 0        | 0000000       |
| 000011н*3             | Port 1 data direction register                   | DDR1            | R/W       | Port 1        | 0000000       |
| 000012н*3             | Port 2 data direction register                   | DDR2            | R/W       | Port 2        | 0000000       |
| 000013н*3             | Port 3 data direction register                   | DDR3            | R/W       | Port 3        | 0000000       |
| 000014н*3             | Port 4 data direction register                   | DDR4            | R/W       | Port 4        | 0000000       |
| 000015н*3             | Port 5 data direction register                   | DDR5            | R/W       | Port 5        | 0000000       |
| 000016н               | Port 6 analog input enable register              | ADER0           | R/W       | Port 6        | 11111111      |
| 000017н               | Port 7 data direction register                   | DDR7            | R/W       | Port 7        | 11111111      |
| 000018н               | Port 8 data direction register                   | DDR8            | R/W       | Port 8        | 0000000       |
| 000019н               | Port 9 analog input enable register              | ADER1           | R/W       | Port 9        | 11111111      |
| 00001Ан               | Port A data direction register                   | DDRA            | R/W       | Port A        | 0000000       |
| 00001Вн               | Port B data direction register                   | DDRB            | R/W       | Port B        | 00000000      |
| 00001Сн               | Port C data direction register                   | DDRC            | R/W       | Port C        | 000000        |
| 00001Dн<br>to 1Fн     |                                                  | (Reserved       | l area)*1 |               |               |
| 000020н               | Mode control register 0                          | UMC0            | R/W       |               | 00000100      |
| 000021н               | Status register 0                                | USR0            | R/W       | UART 0 (ch.0) | 00010000      |
| 000022н               | Input data register 0<br>/output data register 0 | UIDR0<br>/UODR0 | R/W       | 3, 3 (613)    | xxxxxxx       |

| Address           | Register                                      | Register name   | Access    | Resouce name         | Initial value |
|-------------------|-----------------------------------------------|-----------------|-----------|----------------------|---------------|
| 000023н           | Rate and data register 0                      | URD0            | R/W       | UART0 (ch.0)         | 000000X       |
| 000024н           | Mode control register 1                       | UMC1            | R/W       |                      | 00000100      |
| 000025н           | Status register 1                             | USR1            | R/W       |                      | 00010000      |
| 000026н           | Input data register 1 /output data register 1 | UIDR1<br>/UODR1 | R/W       | UART0 (ch.1)         | xxxxxxx       |
| 000027н           | Rate and data register 1                      | URD1            | R/W       |                      | 000000X       |
| 000028н           | Mode control register 2                       | UMC2            | R/W       |                      | 00000100      |
| 000029н           | Status register 2                             | USR2            | R/W       |                      | 00010000      |
| 00002Ан           | Input data register 2 /output data register 2 | UIDR2<br>/UODR2 | R/W       | UART0 (ch.2)         | xxxxxxx       |
| 00002Вн           | Rate and data register 2                      | URD2            | R/W       |                      | 000000X       |
| 00002Сн           | UART CTS control register                     | UCCR            | R/W       | UART0 (ch.0)         | 0000          |
| 00002Dн           |                                               | (Reserved       | l area)*1 |                      |               |
| 00002Ен           | Mode register                                 | SMR             | R/W       |                      | 0000000       |
| 00002Fн           | Control register                              | SCR             | R/W       | UART1                | 00000100      |
| 000030н           | Input data register /output data register     | SIDR<br>/SODR   | R/W       |                      | xxxxxxx       |
| 000031н           | Status register                               | SSR             | R/W       |                      | 00001-00      |
| 000032н           | A/D channel setting register                  | ADCH            | R/W       |                      | 0000000       |
| 000033н           | A/D mode register                             | ADMD            | R/W       | 10-bit A/D converter | X0000         |
| 000034н           | A/D control status register                   | ADCS            | R/W       |                      | 000000        |
| 000035н           |                                               | (Reserved       | l area)*1 |                      |               |
| 000036н           | A/D data register                             | ADCD            | R         | 10-bit A/D           | XXXXXXX       |
| 000037н           | A/D data register                             | ADCD            | K         | converter            | 00000XX       |
| 000038н           |                                               | (Reserved       | Laroa\*1  |                      |               |
| 000039н           |                                               | (Reserved       | i alea)   |                      |               |
| 00003Ан           | DTP/interrupt enable register                 | ENIR            | R/W       |                      | 0000000       |
| 00003Вн           | DTP/interrupt source register                 | EIRR            | R/W       | DTP/external         | 0000000       |
| 00003Сн           | Paguast laval satting register                | EI V/D          | R/W       | interrupt            | 00000000      |
| 00003Dн           | Request level setting register                | ELVR            | r./ VV    |                      | 00000000      |
| 00003Ен<br>to 3Fн |                                               | (Reserved       | l area)*1 |                      |               |
| 000040н           | Timor control status register 0               | TMCSR0          | R/W       | 16-bit reload        | 00000000      |
| 000041н           | Timer control status register 0               | TIVICSKU        | rt/VV     | timer 0              | 0000          |

| Address | Register                                        | Register name | Access    | Resouce name                | Initial value |  |  |
|---------|-------------------------------------------------|---------------|-----------|-----------------------------|---------------|--|--|
| 000042н | Times control atotus register 1                 | TMCSR1        | R/W       | 16-bit reload               | 0000000       |  |  |
| 000043н | Timer control status register 1                 | TWCSKT        | K/VV      | timer 1                     | 0000          |  |  |
| 000044н | Timer control status register 2                 | TMCSR2        | R/W       | 16-bit reload               | 0000000       |  |  |
| 000045н | Timer control status register 2                 | TWCSRZ        | K/VV      | timer 2                     | 0000          |  |  |
| 000046н | Times as attacked at a true was into a 2        | TMCCD2        | DAM       | 16-bit reload               | 0000000       |  |  |
| 000047н | Timer control status register 3                 | TMCSR3        | R/W       | timer 3                     | 0000          |  |  |
| 000048н | Times acoustical atomic register 4              | TMCCD4        | DAM       | 16-bit reload               | 0000000       |  |  |
| 000049н | Timer control status register 4                 | TMCSR4        | R/W       | timer 4                     | 0000          |  |  |
| 00004Ан | Times a control atotics we sister 5             | TMCCDC        | DAM       | 16-bit reload               | 0000000       |  |  |
| 00004Вн | Timer control status register 5                 | TMCSR5        | R/W       | timer 5                     | 0000          |  |  |
| 00004Сн | DDO and all all and a second                    | DONTO         | DAM       | 16-bit PPG                  | 0000000       |  |  |
| 00004Dн | PPG control status register 0                   | PCNT0         | R/W       | timer 0                     | 0000000       |  |  |
| 00004Ен | 550                                             | DON'T4        | D 444     | 16-bit PPG                  | 0000000       |  |  |
| 00004Fн | PPG control status register 1                   | PCNT1         | R/W       | timer 1                     | 0000000       |  |  |
| 000050н | 5340                                            | DIMOODO       | D 444     | PWC timer 0                 | 0000000       |  |  |
| 000051н | PWC control status register 0                   | PWCSR0        | R/W       |                             | 0000000       |  |  |
| 000052н | DIMO and all all all all all all all all all al | DW00D4        |           | DIMO Control                | 0000000       |  |  |
| 000053н | PWC control status register 1                   | PWCSR1        | R/W       | PWC timer 1                 | 0000000       |  |  |
| 000054н | DWC seeded status as sister 0                   | DWCCDC        | DAM       | DIMO time and               | 0000000       |  |  |
| 000055н | PWC control status register 2                   | PWCSR2        | R/W       | PWC timer 2                 | 0000000       |  |  |
| 000056н | DMC control otatus no sistem 0                  | DWCCDO        | DAM       | DIA/O time a n O            | 0000000       |  |  |
| 000057н | PWC control status register 3                   | PWCSR3        | R/W       | PWC timer 3                 | 0000000       |  |  |
| 000058н | ICU control register 0                          | ICC0          | R/W       | ICU (Input<br>Capture Unit) | 0000000       |  |  |
| 000059н |                                                 | (Reserved     | l area)*1 | 1                           |               |  |  |
| 00005Ан | Input capture control register 1                | ICC1          | R/W       | ICU (Input<br>Capture Unit) | 0000000       |  |  |
| 00005Вн |                                                 |               |           | 1                           |               |  |  |
| 00005Сн |                                                 |               |           |                             |               |  |  |
| 00005Dн | (Reserved area) <sup>*1</sup>                   |               |           |                             |               |  |  |
| 00005Ен |                                                 |               |           |                             |               |  |  |
| 00005Fн |                                                 |               |           |                             |               |  |  |
| 000060н | OOLI santusi va siista - OO                     | 00000         | DAM       | OCU (Output                 | 11110000      |  |  |
| 000061н | OCU control register 00                         | CCR00         | R/W       | Compare Unit)               | 0000          |  |  |

| Address           | Register                             | Register name | Access    | Resouce name  | Initial value |  |  |  |
|-------------------|--------------------------------------|---------------|-----------|---------------|---------------|--|--|--|
| 000062н           | OCLIO control register 01            | CCR01         | R/W       | OCU (Output   | 11110000      |  |  |  |
| 000063н           | OCU0 control register 01             | CCRUI         | K/VV      | Compare Unit) | 0000          |  |  |  |
| 000064н           |                                      |               |           |               |               |  |  |  |
| 000065н           | (Reserved area)⁺¹                    |               |           |               |               |  |  |  |
| 000066н           |                                      | (Neserved     | i alea)   |               |               |  |  |  |
| 000067н           |                                      |               |           |               |               |  |  |  |
| 000068н           | OCU0 control register 10             | CCR10         | R/W       |               | 0000          |  |  |  |
| 000069н           | OCOU control register 10             | CCKTO         | IN/VV     | OCU (Output   | 00000000      |  |  |  |
| 00006Ан           | OCU0 control register 11             | CCR11         | R/W       | Compare Unit) | 0000          |  |  |  |
| 00006Вн           | OCOU control register 11             | CONTI         | IN/VV     |               | 00000000      |  |  |  |
| 00006Сн           |                                      |               |           |               |               |  |  |  |
| 00006Dн           |                                      |               |           |               |               |  |  |  |
| 00006Ен           |                                      | (Reserved     | i area)   |               |               |  |  |  |
| 00006Fн           |                                      |               |           |               |               |  |  |  |
| 000070н           | Free run times central register      | TCCR          | R/W       |               | 11000000      |  |  |  |
| 000071н           | Free-run timer control register      | TOOK          | R/VV      |               | 111111        |  |  |  |
| 000072н           | Free-run timer lower-order data      | TCRL          |           | 24-bit timer  | 0000000       |  |  |  |
| 000073н           | register                             | ICKL          | R         | counter       | 00000000      |  |  |  |
| 000074н           | Free-run timer upper-order data      | TCRH          | K         |               | 00000000      |  |  |  |
| 000075н           | register                             | ICKH          |           |               | 0000000       |  |  |  |
| 000076н           |                                      | ,             | 1         | ,             |               |  |  |  |
| 000077н           |                                      | (December     | d oroo\*1 |               |               |  |  |  |
| 000078н           |                                      | (Reserved     | i area) ' |               |               |  |  |  |
| 000079н           |                                      |               |           |               |               |  |  |  |
| 00007Ан           | PWC divider ratio control register 0 | DIVR0         | R/W       | PWC timer 0   | 00            |  |  |  |
| 00007Вн           | Reserved area*1                      | +             |           | •             | -1            |  |  |  |
| 00007Сн           | PWC divider ratio control register 1 | DIVR1         | R/W       | PWC timer 1   | 00            |  |  |  |
| 00007Dн           | Reserved area*1                      | ı             | I         | 1             | 1             |  |  |  |
| 00007Ен           | PWC divider ratio control register 2 | DIVR2         | R/W       | PWC timer 2   | 00            |  |  |  |
| 00007Fн           | Reserved area <sup>*1</sup>          | <u> </u>      | 1         | 1             | 1             |  |  |  |
| 000080н           | PWC divider ratio control register 3 | DIVR3         | R/W       | PWC timer 3   | 00            |  |  |  |
| 000081н<br>to 8Dн |                                      | (Reserved     | d area)*1 |               | 1             |  |  |  |

| Address           | Register                                            | Register name | Access  | Resouce name                            | Initial value |  |  |
|-------------------|-----------------------------------------------------|---------------|---------|-----------------------------------------|---------------|--|--|
| 00008Ен           | WI control register                                 | WICR          | R/W     | Write-inhibit<br>RAM                    | X             |  |  |
| 00008Fн           |                                                     | 1             | I       | ,                                       |               |  |  |
| 000090н<br>to 9Ен | (Reserved area)*1                                   |               |         |                                         |               |  |  |
| 00009Fн           | Delay interrupt source generation /release register | DIRR          | R/W     | Delay interrupt<br>generation<br>module | 0             |  |  |
| 0000А0н           | Standby control register                            | STBYC         | R/W     | Low power consumption                   | 0001***       |  |  |
| 0000АЗн           | Address mid-order control register                  | MACR          | W       | External pin                            | #######       |  |  |
| 0000А4н           | Address higher-order control register               | HACR          | W       | External pin                            | #######       |  |  |
| 0000А5н           | External pin control register                       | EPCR          | W       | External pin                            | ##0-0#00      |  |  |
| 0000А8н           | Watchdog timer control register                     | WDTC          | R/W     | Watchdog<br>timer                       | xxxxxxx       |  |  |
| 0000А9н           | Timebase timer control register                     | ТВТС          | R/W     | Timebase timer                          | 00000         |  |  |
| 0000В0н           | Interrupt control register 00                       | ICR00         | R/W     |                                         | 00000111      |  |  |
| 0000В1н           | Interrupt control register 01                       | ICR01         | R/W     |                                         | 00000111      |  |  |
| 0000В2н           | Interrupt control register 02                       | ICR02         | R/W     |                                         | 00000111      |  |  |
| 0000ВЗн           | Interrupt control register 03                       | ICR03         | R/W     |                                         | 00000111      |  |  |
| 0000В4н           | Interrupt control register 04                       | ICR04         | R/W     |                                         | 00000111      |  |  |
| 0000В5н           | Interrupt control register 05                       | ICR05         | R/W     |                                         | 00000111      |  |  |
| 0000В6н           | Interrupt control register 06                       | ICR06         | R/W     |                                         | 00000111      |  |  |
| 0000В7н           | Interrupt control register 07                       | ICR07         | R/W     | Interrupt                               | 00000111      |  |  |
| 0000В8н           | Interrupt control register 08                       | ICR08         | R/W     | controller                              | 00000111      |  |  |
| 0000В9н           | Interrupt control register 09                       | ICR09         | R/W     |                                         | 00000111      |  |  |
| 0000ВАн           | Interrupt control register 10                       | ICR10         | R/W     |                                         | 00000111      |  |  |
| 0000ВВн           | Interrupt control register 11                       | ICR11         | R/W     |                                         | 00000111      |  |  |
| 0000ВСн           | Interrupt control register 12                       | ICR12         | R/W     |                                         | 00000111      |  |  |
| 0000ВДн           | Interrupt control register 13                       | ICR13         | R/W     |                                         | 00000111      |  |  |
| 0000ВЕн           | Interrupt control register 14                       | ICR14         | R/W     |                                         | 00000111      |  |  |
| 0000ВFн           | Interrupt control register 15                       | ICR15         | R/W     |                                         | 00000111      |  |  |
| 0000С0н<br>to FFн |                                                     | (External     | area)*2 |                                         |               |  |  |
| 001F00н           | DWC data buffer register 0                          | DWCDO         | DAM     | DIVIC times 0                           | 00000000      |  |  |
| 001F01н           | PWC data buffer register 0                          | PWCR0         | R/W     | PWC timer 0                             | 00000000      |  |  |

| Address             | Register                      | Register name | Access    | Resouce name | Initial value |         |
|---------------------|-------------------------------|---------------|-----------|--------------|---------------|---------|
| 001F02н             | DMC data buffer register 1    | PWCR1         | R/W       | PWC timer 1  | 0000000       |         |
| 001F03н             | PWC data buffer register 1    | PWCRI         | R/VV      | PWC timer i  | 0000000       |         |
| 001F04н             | DWC data buffor register 2    | PWCR2         | R/W       | PWC timer 2  | 0000000       |         |
| 001F05н             | PWC data buffer register 2    | PVVCRZ        | K/VV      | PVVC timer 2 | 0000000       |         |
| 001F06н             | DWC data buffer register 2    | PWCR3         | R/W       | PWC timer 3  | 0000000       |         |
| 001F07н             | PWC data buffer register 3    | PVVCRS        | K/VV      | PWC timer 3  | 0000000       |         |
| 001F08н<br>to 1F0Fн |                               | (Reserved     | d area)*1 |              |               |         |
| 001F10н             | OCU compare lower-order data  | CDDOOL        |           |              | 0000000       |         |
| 001F11н             | register 00                   | CPR00L        | DAM       | Output       | 0000000       |         |
| 001F12н             | OCU compare higher-order data | CDDOO         | R/W       | compare 00   | 0000000       |         |
| 001F13н             | register 00                   | CPR00         |           |              | 0000000       |         |
| 001F14н             | OCU compare lower-order data  | ODDOM         |           |              | 0000000       |         |
| 001F15н             | register 01                   | CPR01L        | R/W       | Output       | 0000000       |         |
| 001F16н             | OCU compare higher-order data | CDD04         | 17/77     | compare 01   | 0000000       |         |
| 001F17н             | register 01                   | CPR01         |           |              | 0000000       |         |
| 001F18н             | OCU compare lower-order data  | CDDOOL        |           |              | 0000000       |         |
| 001F19н             | register 02                   | CPR02L        | R/W       | Output       | 0000000       |         |
| 001F1Ан             | OCU compare higher-order data | CDDOO         | R/VV      | compare 02   | 0000000       |         |
| 001F1Bн             | register 02                   | CPR02         |           |              | 0000000       |         |
| 001F1Сн             | OCU compare lower-order data  | CDD03I        |           |              | 0000000       |         |
| 001F1Dн             | register 03                   | CPR03L        | DAM       | Output       | 0000000       |         |
| 001F1Ен             | OCU compare higher-order data | CDD00         | R/W       | compare 03   | 0000000       |         |
| 001F1Fн             | register 03                   | CPR03         |           |              | 0000000       |         |
| 001F20н             | OCU compare lower-order data  | CDD04I        |           |              | 0000000       |         |
| 001F21н             | register 04                   | CPR04L        | R/W       | Output       | 0000000       |         |
| 001F22н             | OCU compare higher-order data | CDD04         | FK/VV     | compare 10   | 0000000       |         |
| 001F23н             | register 04                   | CPR04         |           |              | 0000000       |         |
| 001F24н             | OCU compare lower-order data  | CDDOEL        |           |              | 0000000       |         |
| 001F25н             | register 05                   | CPR05L        | D 444     |              | Output        | 0000000 |
| 001F26н             | OCU compare higher-order data | CDDOE         | R/W       | compare 11   | 0000000       |         |
| 001F27н             | register 05                   | CPR05         |           |              | 0000000       |         |

| Address | Register                             | Register name | Access | Resouce name             | Initial value |
|---------|--------------------------------------|---------------|--------|--------------------------|---------------|
| 001F28н | OCU compare lower-order data         | CPR06L        |        |                          | 0000000       |
| 001F29н | register 06                          | CPRUOL        | R/W    | Output                   | 0000000       |
| 001F2Aн | OCU compare higher-order data        | CPR06         | IN/ VV | compare 12               | 0000000       |
| 001F2Bн | register 06                          | CFR00         |        |                          | 0000000       |
| 001F2Cн | OCU compare lower-order data         | CPR07L        |        |                          | 0000000       |
| 001F2Dн | register 07                          | CFRUIL        | R/W    | Output                   | 0000000       |
| 001F2Ен | OCU compare higher-order data        | CPR07         | IN/ VV | compare 13               | 0000000       |
| 001F2Fн | register 07                          | CPRUI         |        |                          | 0000000       |
| 001F30н | 16-bit timer register 0              | TMR0          | R      |                          | XXXXXXX       |
| 001F31н | To-bit timer register o              | TIVIKU        | K      | 16-bit reload            | XXXXXXX       |
| 001F32н | 16 hit relead register 0             | TMRLR0        | W      | timer 0                  | XXXXXXX       |
| 001F33н | - 16-bit reload register 0           | TIVIRLE       | VV     |                          | XXXXXXX       |
| 001F34н | 10 hit times a register 1            | TMD4          | 6      |                          | XXXXXXX       |
| 001F35н | 16-bit timer register 1              | TMR1          | R      | 16-bit reload<br>timer 1 | XXXXXXX       |
| 001F36н | 40 hit time on male and manifest and | TMDLD4        | W      |                          | XXXXXXX       |
| 001F37н | - 16-bit timer reload register 1     | TMRLR1        | VV     |                          | XXXXXXX       |
| 001F38н | 16 hit timer register 2              | TMR2          | D      |                          | XXXXXXX       |
| 001F39н | 16-bit timer register 2              | IIVIKZ        | R      | 16-bit reload            | XXXXXXX       |
| 001F3Ан | 16 hit times relead register 2       | TMDI DO       | 10/    | timer 2                  | XXXXXXX       |
| 001F3Вн | 16-bit timer reload register 2       | TMRLR2        | W      |                          | XXXXXXX       |
| 001F3Сн | 16 hit timer register 2              | TMD2          | D      |                          | XXXXXXX       |
| 001F3Dн | - 16-bit timer register 3            | TMR3          | R      | 16-bit reload            | XXXXXXX       |
| 001F3Ен | 10 hit times relead register 2       | TMDI Do       | 107    | timer 3                  | XXXXXXX       |
| 001F3Fн | 16-bit timer reload register 3       | TMRLR3        | W      |                          | XXXXXXX       |
| 001F40н | 40 hit time as no mintage 4          | TMD 4         |        |                          | XXXXXXX       |
| 001F41н | 16-bit timer register 4              | TMR4          | R      | 16-bit reload            | XXXXXXX       |
| 001F42н | 16 bit timer relead register 4       | TMDI D4       | \^/    | timer 4                  | XXXXXXX       |
| 001F43н | - 16-bit timer reload register 4     | TMRLR4        | W      |                          | XXXXXXXX      |
| 001F44н | 16 hit timer register 5              | TMDE          | D.     |                          | XXXXXXX       |
| 001F45н | - 16-bit timer register 5            | TMR5          |        | 16-bit reload            | XXXXXXXX      |
| 001F46н | 40 hit times relead to a list of     | TMDIDE        | 107    | timer 0                  | XXXXXXX       |
| 001F47н | 16-bit timer reload register 5       | TMRLR5        | W      |                          | XXXXXXX       |

#### (Continued)

| Address             | Register                          | Register name | Access | Resouce name       | Initial value |  |
|---------------------|-----------------------------------|---------------|--------|--------------------|---------------|--|
| 001F48н             | PPG cycle setting register 0      | PCSR0         | W      |                    | XXXXXXX       |  |
| 001F49н             | FFG Cycle Settling register 0     | PCSRU         | VV     | 16-bit PPG         | XXXXXXX       |  |
| 001F4Ан             | PPG duty setting register 0       | PDUT0         | W      | timer 0            | XXXXXXX       |  |
| 001F4Вн             | FFG duty setting register 0       | PDUIU         | VV     |                    | XXXXXXX       |  |
| 001F4Сн             | PPG cycle setting register 1      | PCSR1         | W      |                    | XXXXXXX       |  |
| 001F4Dн             | FFG cycle setting register i      | POSKI         | VV     | 16-bit PPG         | XXXXXXX       |  |
| 001F4Ен             | PPG duty setting register 1       | PDUT1         | W      | timer 1            | XXXXXXX       |  |
| 001F4Fн             | FFG duty setting register 1       | PDUII         | VV     |                    | XXXXXXX       |  |
| 001F50н             | ICU lower-order data register 0   | ICRL0         | R      |                    | XXXXXXX       |  |
| 001F51н             | 1 ICO lower-order data register o | ICKLU         | K      | Input capture 0    | XXXXXXX       |  |
| 001F52н             | ICII higher order data register 0 | ICRH0         | R      | - Input capture 0  | XXXXXXX       |  |
| 001F53н             | ICU higher-order data register 0  | ICKHU         | K      |                    | 0000000       |  |
| 001F54н             | ICU lower-order data register 1   | ICRL1         | R      |                    | XXXXXXX       |  |
| 001F55н             | 100 lower-order data register 1   | ICKLI         | K      | Input capture 1    | XXXXXXX       |  |
| 001F56н             | ICU higher-order data register 1  | ICRH1         | R      | Input capture 1    | XXXXXXX       |  |
| 001F57н             | 100 Higher-order data register 1  | ICKITI        | K      |                    | 00000000      |  |
| 001F58н             | ICI Llower order data register 2  | ICRL2         | R      |                    | XXXXXXX       |  |
| 001F59н             | ICU lower-order data register 2   | ICKLZ         | K      | Input capture 2    | XXXXXXX       |  |
| 001F5Ан             | ICU higher-order data register 2  | ICRH2         | R      | Input capture 2    | XXXXXXX       |  |
| 001F5Вн             | 100 Higher-order data register 2  | ICKIIZ        | K      |                    | 0000000       |  |
| 001F5Cн             | ICI Llower order data register 2  | ICDL 2        | D      |                    | XXXXXXX       |  |
| 001F5Dн             | ICU lower-order data register 3   | ICRL3         | R      | Innut as at a con- | XXXXXXX       |  |
| 001F5Ен             | ICII higher order data register 2 | ICRH3         | R      | Input capture 3    | XXXXXXX       |  |
| 001F5Fн             | ICU higher-order data register 3  | IUKIIS        | , r    |                    | 00000000      |  |
| 001F60н<br>to 1FFFн | (Reserved area)*1                 |               |        |                    |               |  |

#### Initial value

- 0: The initial value of this bit is "0".
- 1: The initial value of this bit is "1".
- X: The initial value of this bit is undefined.
- -: This bit is not used. The initial value is undefined.
- \*: The initial value of this bit varies with the reset source.
- #: The initial value of this bit varies with the operation mode.
- \*1: Access prohibited
- \*2: Only this area is open to external access in the area below address 0000FF<sub>H</sub> (inclusive). All addresses which are not described in the table are reserved areas, and accesses to these areas are handled in the same manner as for internal areas. The access signal for the external bus is not generated.
- \*3: When an external bus is enable mode, never access to resisters which are not used as general ports in areas address 000000<sub>H</sub> to 000005<sub>H</sub> or 000010<sub>H</sub> to 000015<sub>H</sub>.

## ■ INTERRUPT SOURCES AND INTERRUPT VECTORS/INTERRUPT CONTROL REGISTERS

| Interrupt source                                                  | El <sup>2</sup> OS | In  | terrup | t vector            | Interrupt control register |          |  |
|-------------------------------------------------------------------|--------------------|-----|--------|---------------------|----------------------------|----------|--|
| ·                                                                 | support            | No. |        | Address             | ICR                        | Address  |  |
| Reset                                                             | ×                  | #08 | 08н    | FFFFDCH             | _                          | _        |  |
| INT9 instruction                                                  | ×                  | #09 | 09н    | FFFFD8 <sub>H</sub> | _                          | _        |  |
| Exception                                                         | ×                  | #10 | ОАн    | FFFFD4 <sub>H</sub> | _                          | _        |  |
| External interrupt #0                                             | Δ                  | #11 | 0Вн    | FFFFD0 <sub>H</sub> | ICR00                      | 0000В0н  |  |
| External interrupt #1                                             | Δ                  | #12 | 0Сн    | FFFFCCH             | ICIXOO                     | ООООВОН  |  |
| External interrupt #2                                             | Δ                  | #13 | 0Дн    | FFFFC8 <sub>H</sub> | ICR01                      | 0000В1н  |  |
| Input capture 0                                                   | Δ                  | #14 | 0Ен    | FFFFC4 <sub>H</sub> | ICKUI                      | UUUUD IH |  |
| PWC0 count completed/overflow                                     | Δ                  | #15 | 0Гн    | FFFFC0 <sub>H</sub> | ICR02                      | 0000В2н  |  |
| PWC1 count completed/overflow/input capture 1                     | Δ                  | #16 | 10н    | FFFFBC <sub>H</sub> | ICR02                      | 0000BZH  |  |
| PWC2 count completed/overflow/input capture 2                     | Δ                  | #17 | 11н    | FFFFB8 <sub>H</sub> | ICR03                      | 0000ВЗн  |  |
| PWC3 count completed/overflow/input capture 3                     | Δ                  | #18 | 12н    | FFFFB4 <sub>H</sub> | ICKUS                      |          |  |
| 24-bit timer, overflow                                            | Δ                  | #19 | 13н    | FFFFB0 <sub>H</sub> |                            | 0000В4н  |  |
| 24-bit timer, intermediate bit/timebase timer, interval interrupt | Δ                  | #20 | 14н    | FFFACH              | ICR04                      |          |  |
| Compare 0                                                         | Δ                  | #21 | 15н    | FFFFA8 <sub>H</sub> | ICR05                      | 0000В5н  |  |
| Compare 1                                                         | Δ                  | #22 | 16н    | FFFFA4 <sub>H</sub> | ICINOS                     |          |  |
| Compare 2                                                         | Δ                  | #23 | 17н    | FFFFA0 <sub>H</sub> | ICR06                      | 0000В6н  |  |
| Compare 3                                                         | Δ                  | #24 | 18н    | FFFF9C <sub>H</sub> | ICKOO                      |          |  |
| Compare 4/6                                                       | Δ                  | #25 | 19н    | FFFF98 <sub>H</sub> | ICR07                      | 0000В7н  |  |
| Compare 5/7                                                       | Δ                  | #26 | 1Ан    | FFFF94 <sub>H</sub> | ICKUI                      | 0000D7H  |  |
| 16-bit timer 0/1/2, overflow/PPG0                                 | Δ                  | #27 | 1Вн    | FFFF90 <sub>H</sub> | ICR08                      | 000000   |  |
| 16-bit timer 3/4/5, overflow/PPG1                                 | Δ                  | #28 | 1Сн    | FFFF8C <sub>H</sub> | ICKU                       | 0000В8н  |  |
| 10-bit A/D converter count completed                              |                    | #29 | 1Dн    | FFFF88 <sub>H</sub> | ICR09                      | 0000В9н  |  |
| UART1 transmission completed                                      | Δ                  | #31 | 1Fн    | FFFF80 <sub>H</sub> | ICD40                      | 000000   |  |
| UART1 reception completed                                         | Δ                  | #32 | 20н    | FFFF7C <sub>H</sub> | ICR10                      | 0000ВАн  |  |
| UART0 (ch.1) transmission completed                               | Δ                  | #33 | 21н    | FFFF78 <sub>H</sub> | ICD44                      | 000000   |  |
| UART0 (ch.2) transmission completed                               | Δ                  | #34 | 22н    | FFFF74 <sub>H</sub> | ICR11                      | 0000ВВн  |  |
| UART0 (ch.1) reception completed                                  | 0                  | #35 | 23н    | FFFF70 <sub>H</sub> | IOD40                      | 000000   |  |
| UART0 (ch.2) reception completed                                  | Δ                  | #36 | 24н    | FFFF6C <sub>H</sub> | ICR12                      | 0000ВСн  |  |
| UART0 (ch.0) transmission completed                               | 0                  | #37 | 25н    | FFFF68 <sub>H</sub> | ICR13                      | 0000ВДн  |  |

#### (Continued)

| Interrupt source                  | El <sup>2</sup> OS<br>support | Interrupt vector |     |                     | Interrupt control register |         |
|-----------------------------------|-------------------------------|------------------|-----|---------------------|----------------------------|---------|
|                                   |                               | N                | 0.  | Address             | ICR                        | Address |
| UART0 (ch.0) reception completed  | 0                             | #39              | 27н | FFFF60 <sub>H</sub> | ICR14                      | 0000ВЕн |
| Delay interrupt generation module | ×                             | #42              | 2Ан | FFFF54 <sub>H</sub> | ICR15                      | 0000ВFн |
| Stack fault                       | ×                             | #255             | FFн | FFFC00 <sub>H</sub> | _                          | _       |

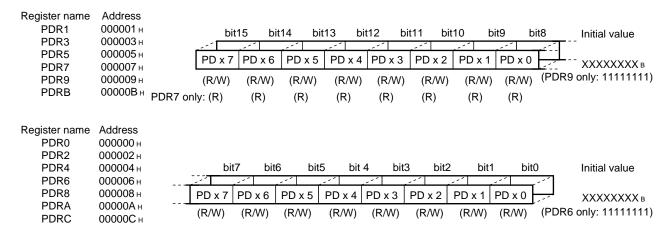
- ©: El<sup>2</sup>OS is supported (with stop request).
- $\square$ : El<sup>2</sup>OS is supported (without stop request).
- O: El<sup>2</sup>OS is supported; however, since two interrupt sources are allocated to a single ICR, in case El<sup>2</sup>OS is used for one of the two, El<sup>2</sup>OS and ordinary interrupt are not both available for the other (with stop request).
- △: El²OS is supported; however, since two interrupt sources are allocated to a single ICR, in case El²OS is used for one of the two, El²OS and ordinary interrupt are not both available for the other (without stop request).
- $\times$ : El<sup>2</sup>OS is not supported.

Note: Since the interrupt sources having interrupt vector Nos. 15 to 18, 20, and 25 to 28 are OR'ed, respectively, select them by means of the interrupt enable bits of each resource.

If El<sup>2</sup>OS is used with the above-mentioned interrupt sources OR'ed with the interrupt vector Nos. 15 to 18, 20, and 25 to 28, be sure to activate one of the interrupt sources.

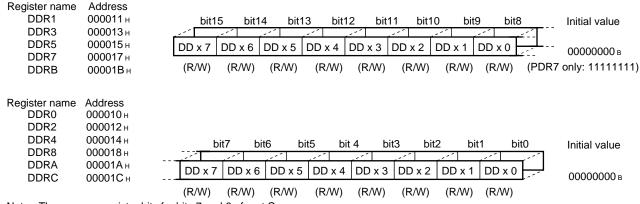
Also in this case, a request flag in the same series as the one interrupt source is likely to be cleared automatically by El<sup>2</sup>OS.

Assume for example that an interrupt for compare 4 of the interrupt vector No. 25 is activated at this time by ICR07, so that the compare 6 is disabled. If El<sup>2</sup>OS is activated at this time by ICR07, so that the compare 6 interrupt takes place during generation of or simultaneously with the compare 4 interrupt, not only the interrupt flag for the compare 4 but also that for the compare 6 will be automatically cleared after El<sup>2</sup>OS is automatically transferred due to the compare 4 interrupt.


#### **■ PERIPHERAL RESOURCES**

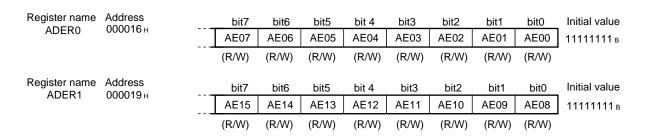
#### 1. Parallel Ports

The MB90220 series has 86 I/O pins and 16 open-drain I/O pins.

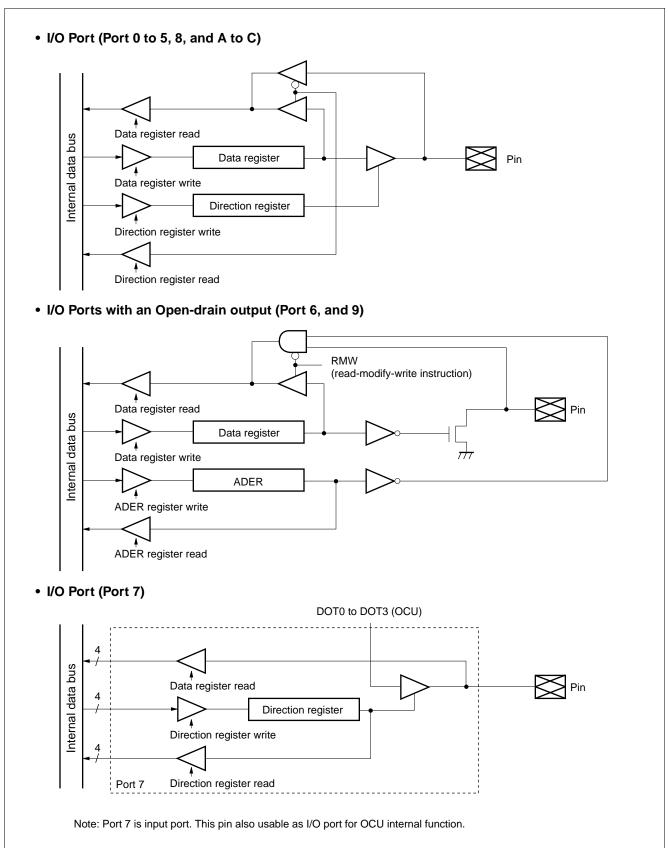

#### (1) Register Configuration

#### Port 0 to C Data Register (PDR0 to PDRC)




Note: There are no register bits for bits 7 and 6 of port C.

#### Port 0 to C Data Register (PDR0 to PDRC)



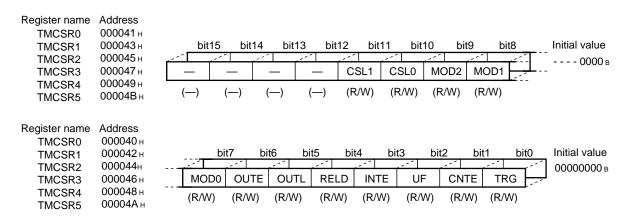

Note: There are no register bits for bits 7 and 6 of port C.

#### • Port 6, 9 Analog Input Enable Register (ADER0, ADER1)

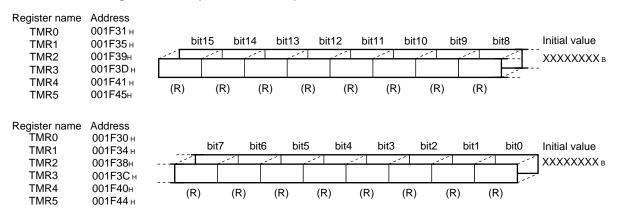


#### (2) Block Diagram

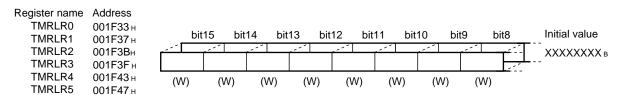



### 2. 16-bit Reload Timer (with Event Count Function)

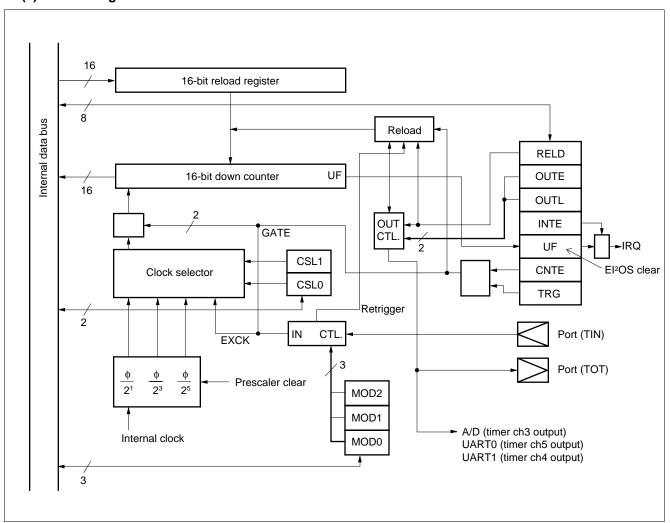
The 16-bit reload timer 1 consists of a 16-bit down counter, a 16-bit reload register, an input pin (TIN), an output pin (TOT), and a control register. The input clock can be selected from among three internal clocks and one external clock. At the output pin (TOT), the pulses in the toggled output waveform are output in the reload mode; the rectangular pulses indicating that the timer is counting are in the single-shot mode. The input pin (TIN) can be used for event input in the event count mode, and for trigger input or gate input in the internal clock mode.


The MB90220 series has six channels for this timer.

#### (1) Register Configuration


## • Timer Control Status Register 0 to 5 (TMCSR0 to TMCSR5)




#### 16-bit Timer Register 0 to 5 (TMR0 to TMR5)



#### 16-bit Timer Reload Register 0 to 5 (TMRLR0 to TMRLR5)

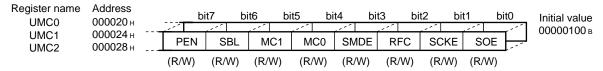




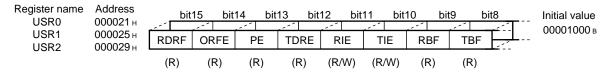


#### **3. UARTO**

UART0 is a serial I/O port for synchronous or asynchronous communication with external resources. It has the following features:


- Full duplex double buffer
- CLK synchronous and CLK asynchronous data transfers capable
- Multiprocessor mode support (Mode 2)
- Built-in dedicated baud-rate generator (12 rates)
- · Arbitrary baud-rate setting from external clock input or internal timer
- Variable data length (7 to 9 bits (without parity bit); 6 to 8 bits (with parity bit))
- Error detection function (Framing, overrun, parity)
- Interrupt function (Two sources for transmission and reception)
- Transfer in NRZ format

The MB90220 has three of these modules on chip.


#### (1) Register Configuration

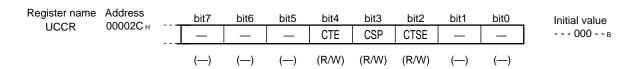
## • Mode Control Register 0 to 2 (UMC0 to UMC2)

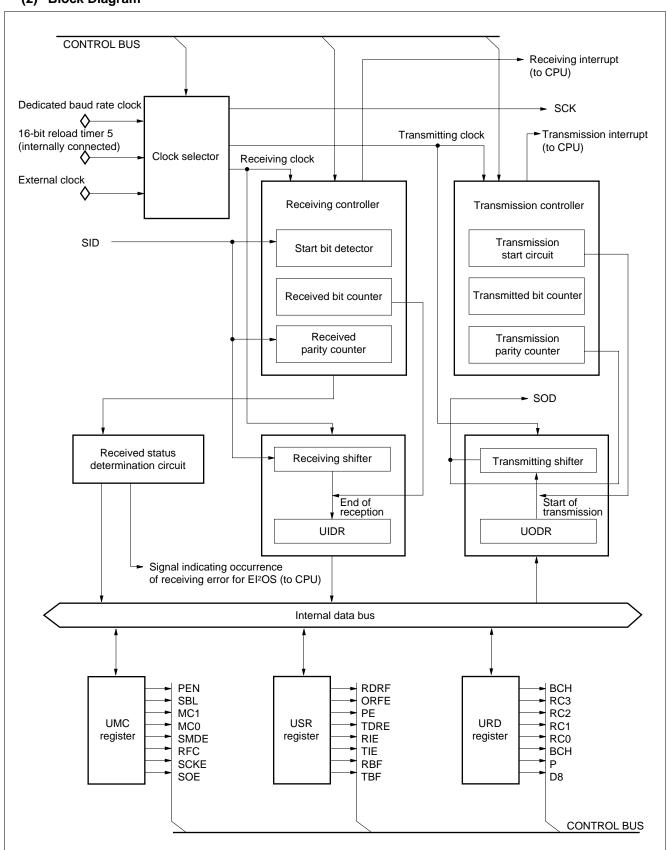

Serial mode control register



#### Status Register 0 to 2 (USR0 to USR2)




#### Input Data Register 0 to 2 (UIDR0 to UIDR2)/Ouput Data Register 0 to 2 (UODR0 to UODR2)




#### Rate and Data Register 0 to 2 (URD0 to URD2)



#### • UART CTS Control Register (UCCR)





### 4. UART1

The UART1 is a serial I/O port for asynchronous communications (start-stop synchronization) or CLK synchronized communications. It has the following features:

- Full-duplex double buffering
- Permits asynchronous (start-stop synchronization) and CLK synchronous communications
- Multiprocessor mode support
- Built-in dedicated baud rate generator

Asynchronous:

9615, 31250, 4808, 2404, and 1202 bps

CLK synchronization: 1 M, 500 K, 250 K bps

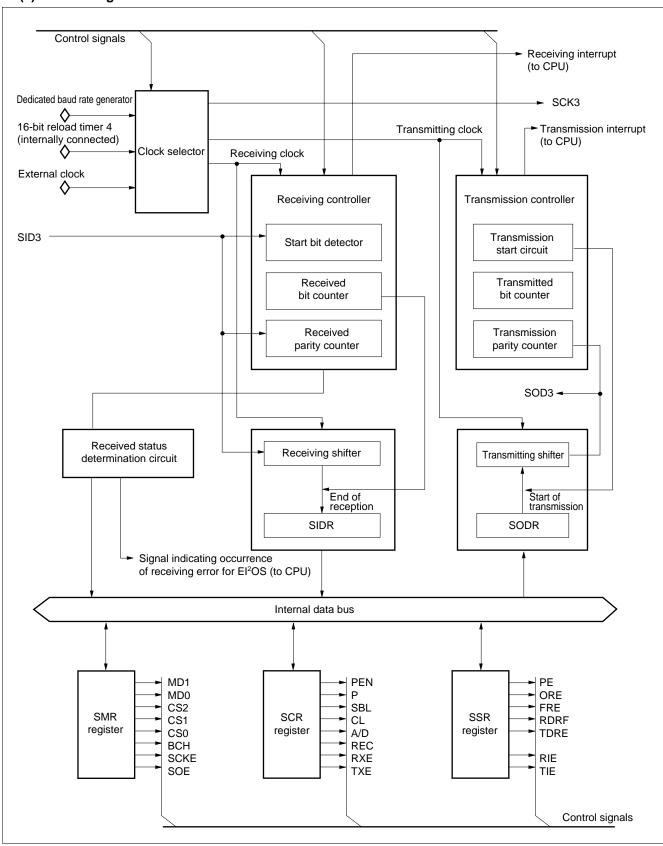
- · Arbitray baud-rate setting from external clock input or internal timer
- Error detection function (parity errors, framing errors, and overrun errors)
- Transfer in format NRZ
- Extended supports intelligent I/O service

## (1) Register Configuration

## Mode Register (SMR)

| Register name | Address  | bit7  | bit6  | bit5  | bit4  | bit3  | bit2  | bit1  | bit0  | Initial value |
|---------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| SMR           | 00002Е н | MD1   | MD0   | CS2   | CS1   | CS0   | всн   | SCKE  | SOE   | 0000000В      |
|               | •        | (R/W) | •             |

## • SCR (Control Register)


| Register name | Address  | bit15 | bit14 | bit13 | bit12 | bit11 | bit10 | bit9  | bit8  | Initial value |
|---------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| SCR           | 00002F н | PEN   | Р     | SBL   | CL    | A/D   | REC   | RXE   | TXE   | 00000100в     |
|               | •        | (R/W) | (R/W) | (R/W) | (R/W) | (R/W) | (R)   | (R/W) | (R/W) |               |

## • Input Data Register (SIDR)/Serial Output Data Register (SODR)

| Register name | Address  | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | Initial value |
|---------------|----------|------|------|------|------|------|------|------|------|---------------|
| SIDR          | 000030 н | D7   | D6   | D5   | D4   | D3   | D2   | D1   | D0   | XXXXXXXXB     |
|               |          | (R)  |               |
| Register name | Address  | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 |               |
| SODR          | 000030 н | D7   | D6   | D5   | D4   | D3   | D2   | D1   | D0   | XXXXXXXXB     |
|               |          | (W)  | •             |

#### • SSR (Status Register)

| Register name Address |   | bit15 | bit14 | bit13 | bit12 | bit11 | bit10 | bit9  | bit8  | Initial value |
|-----------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| SSR 000031            | Н | PE    | ORE   | FRE   | RDRF  | TDRE  | _     | RIE   | TIE   | 00001-00в     |
|                       | • | (R)   | (R)   | (R)   | (R)   | (R)   |       | (R/W) | (R/W) | •             |



#### 5. 10-bit A/D Converter

The 10-bit A/D converter converts analog input voltage into a digital value. The features of this module are described below:

Conversion time: 6.125 μs/channel (min.) (with machine clock running at 16 MHz)

· Uses RC-type sequential comparison and conversion method with built-in sample and hold circuit

• 10-bit resolution

Analog input can be selected by software from among 16 channels
 Single-conversion mode:
 Selects and converts one channel.

Scan conversion mode: Converts several consecutive channels (up to 16 can be programmed).

One-shot mode: Converts the specified channel once and terminates.

Continuous conversion mode: Repeatedly converts the specified channel.

Stop conversion mode: Pauses after converting one channel and waits until the next startup (permits

synchronization of start of conversion).

When A/D conversion is completed, an "A/D conversion complete" interrupt request can be issued to the CPU.
 Because the generation of this interrupt can be used to start up the El<sup>2</sup>OS and transfer the A/D conversion results to memory, this function is suitable for continuous processing.

• Startup triggers can be selected from among software, an external trigger (falling edge), and a timer (rising edge).

#### (1) Register Configuration

#### A/D Channel Setting Register (ADCH)

This register specfies the A/D converter conversion channel.

| Register name | Address | bit7  | bit6  | bit5  | bit4  | bit3  | bit2  | bit1  | bit0  | Initial value |
|---------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| ADCH          | 000032н | ANS3  | ANS2  | ANS1  | ANS0  | ANE3  | ANE2  | ANE1  | ANE0  | 00000000 в    |
|               |         | (R/W) |               |

### • A/D Mode Register (ADMD)

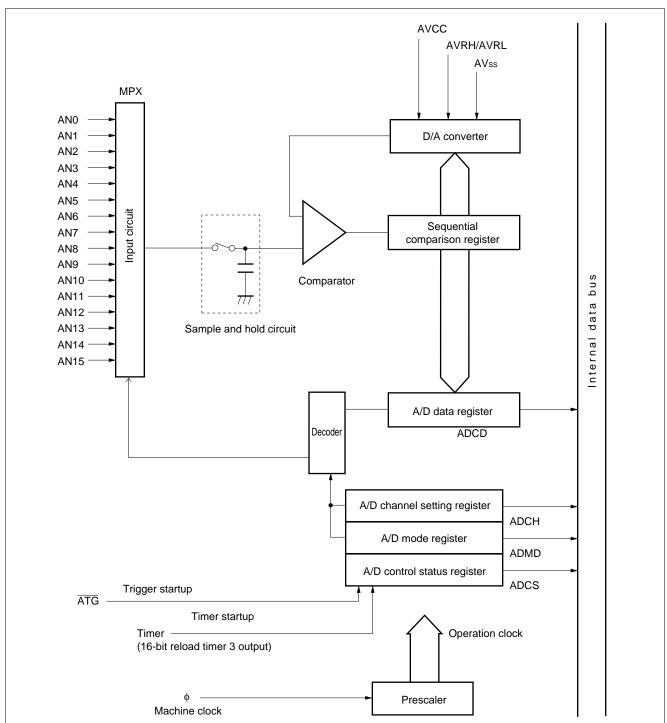
This register specfies the A/D converter operation mode and the startup source.

| Register name | Address | bit15 | bit14 | bit13 | bit12    | bit11 | bit10 | bit9  | bit8  | Initial value |
|---------------|---------|-------|-------|-------|----------|-------|-------|-------|-------|---------------|
| ADMD          | 000033н | _     |       | -     | Reserved | MOD1  | MOD0  | STS1  | STS0  | Х0000 в       |
|               |         | (—)   | (—)   | (—)   | (W)      | (R/W) | (R/W) | (R/W) | (R/W) |               |

Note: Program "0" to bit 12 when write. Read value is indeterminated.

#### A/D Control Status Register (ADCS)

This register is the A/D converter control and status register.


| Register name |         | bit7  | bit6  | bit5  | bit4  | bit3 | bit2 | bit1 | bit0     | Initial value |
|---------------|---------|-------|-------|-------|-------|------|------|------|----------|---------------|
| ADCS          | 000034н | BUSY  | INT   | INTE  | PAUS  | _    | _    | STRT | Reserved | 0000 00 в     |
|               |         | (R/W) | (R/W) | (R/W) | (R/W) | (—)  | (—)  | (W)  | (R/W)    |               |

#### A/D Data Register (ADCD)

This register stores the A/D converter conversion data.

| Register name | Address | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | Initial value |
|---------------|---------|------|------|------|------|------|------|------|------|---------------|
| ADCD          | 000036н | D7   | D6   | D5   | D4   | D3   | D2   | D1   | D0   | XXXXXXXX B    |
|               |         | (R)  | •             |

| Register name | Address | bit15 | bit14 | bit13 | bit12 | bit11 | bit10 | bit9 | bit8 | Initial value |
|---------------|---------|-------|-------|-------|-------|-------|-------|------|------|---------------|
| ADCD          | 000037н | _     | _     | _     | _     | _     | _     | D9   | D8   | 000000ХХ в    |
|               |         | (R)   | (R)   | (R)   | (R)   | (R)   | (R)   | (R)  | (R)  |               |



### 6. PWC (Pulse Width Count) Timer

The PWC (pulse width count) timer is a 16-bit multifunction up-count timer with an input-signal pulse-width count function and a reload timer function. The hardware configuration of this module is a 16-bit up-count timer, an input pulse divider with divide ratio control register, four count input pins, and a 16-bit control register. Using these components, the PWC timer provides the following features:

• Timer functions: An interrupt request can be generated at set time intervals.

Pulse signals synchronized with the timer cycle can be output.

The reference internal clock can be selected from among three internal clocks.

Pulse-width count functions: The time between arbitrary pulse input events can be counted.

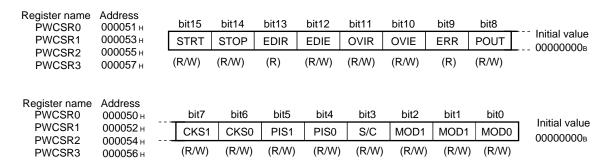
The reference internal clock can be selected from among three internal clocks.

Various count modes:

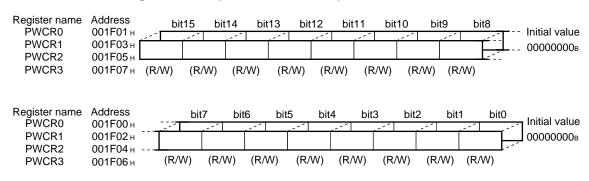
"H" pulse width ( $\uparrow$  to  $\downarrow$ )/"L" pulse width ( $\downarrow$  to  $\uparrow$ ) Rising-edge cycle ( $\uparrow$  to  $\uparrow$ /Falling-edge cycle ( $\downarrow$  to  $\downarrow$ )

Count between edges ( $\uparrow$  or  $\downarrow$  to  $\downarrow$  or  $\uparrow$ )

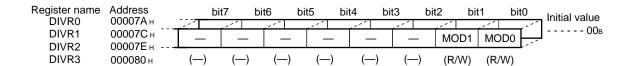
Cycle count can be performed by  $2^{2n}$  division (n = 1, 2, 3, 4) of the input

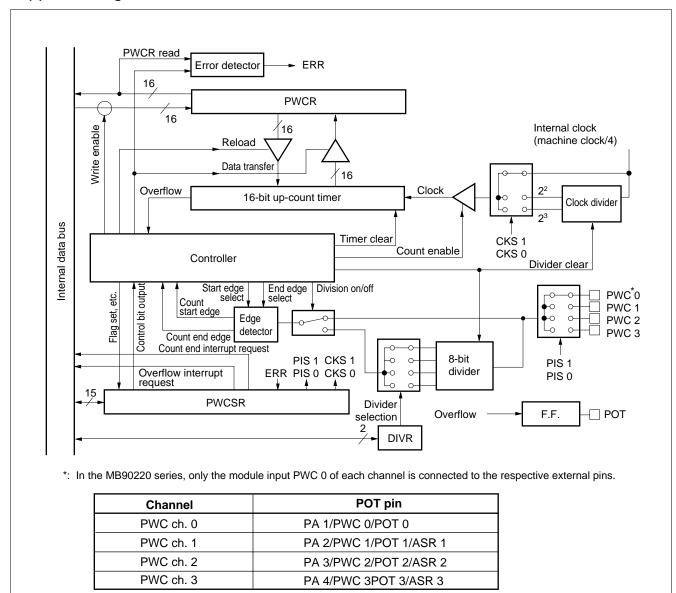

pulse, with an 8 bit input divider.

An interrupt request can be generated once counting has been performed. The number of times counting is to be performed (once or subsequently) can be selected.


The MB90220 series has four channels for this module.

#### (1) Register Configuration


#### PWC Control Status Register 0 to 3 (PWCSR0 to PWCSR3)




#### PWC Data Buffer Register 0 to 3 (PWCR0 to PWCR3)



### • PWC Division Ratio Control Register 0 to 3 (DIVR0 to DIVR3)





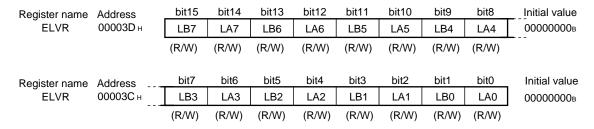
### 7. DTP/External Interrupts

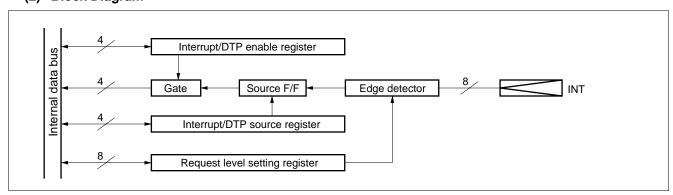
DTP (Data Transfer Peripheral) is located between external peripherals and the F²MC-16F CPU. It receives a DMA request or an interrupt request generated by the external peripherals and reports it to the F²MC-16F CPU to activate the extended intelligent I/O service or interrupt handler. The user can select two request levels of "H" and "L" for extended intelligent I/O service or, and four request levels of "H," "L," rising edge and falling edge for external interrupt requests. In MB90220, only parts corresponding to INT2 to INT0 are usable as external interrupt/DTP request.

Parts corresponding to INT7 to INT3 cannot be used as external interrupt/DTP request, but only for edge detection at external terminals.

Note: INT7 to INT3 are not usable as DTP/external interrupts.

#### (1) Register Configuration


### • DTP/Interrupt Enable Register (ENIR)


| Register name | Address  | <br>bit7  | bit6  | bit5  | bit4  | bit3  | bit2  | bit1  | bit0  | Initial value |
|---------------|----------|-----------|-------|-------|-------|-------|-------|-------|-------|---------------|
| ENIR          | 00003А н | EN7       | EN6   | EN5   | EN4   | EN3   | EN2   | EN1   | EN0   | 00000000В     |
|               |          | <br>(R/W) | (R/W) |               |

#### DTP/Interrupt Source Register (EIRR)

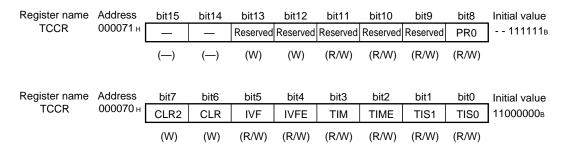
| Register name | Address  | bit15 | bit14 | bit13 | bit12 | bit11 | bit10 | bit9  | bit8  | Initial value |
|---------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| EIRR          | 00003В н | ER7   | ER6   | ER5   | ER4   | ER3   | ER2   | ER1   | ER0   | 00000000в     |
|               | •        | (R/W) |               |

#### Request Level Setting Register (ELVR)





### 8. 24-bit Timer Counter

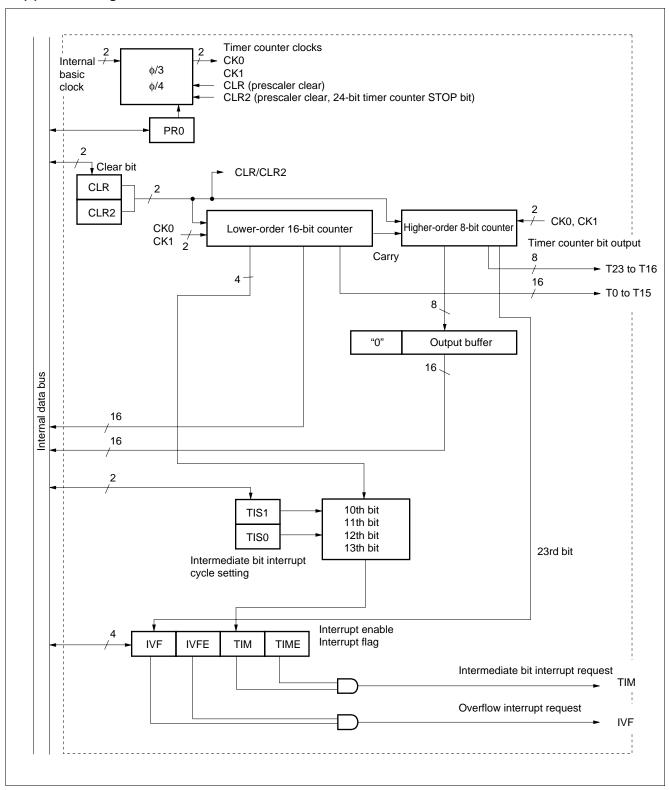

The 24-bit timer counter consists of a 24-bit up-counter, an 8-bit output buffer register, and a control register. The count value output by this timer counter is used to generate the base time used for input capture and output compare.

The interrupt functions provided are timer overflow interrupts and timer intermediate bit interrupts. The intermediate bit interrupt permits four time settings.

The 24-bit timer counter value is cleared to all zeroes by a reset.

#### (1) Register Configuration

#### Free-run Timer Control Register (TCCR)



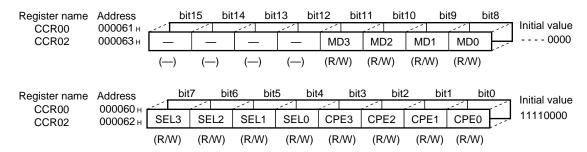

#### • Free-run Timer Low-order Data Register (TCRL)



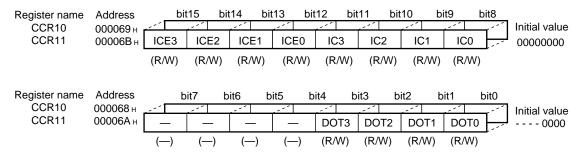
#### • Free-run Timer High-order Data Register (TCRH)



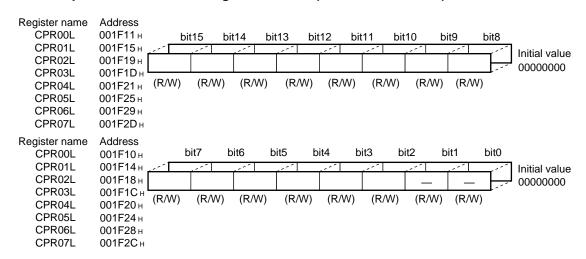



## 9. OCU (Output Compare Unit)

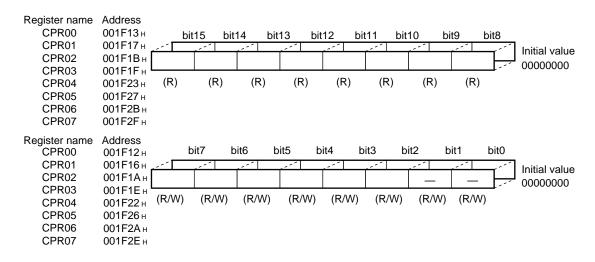
The OCU (Output Compare Unit) consists of a 24-bit output compare register, a comparator, and a control register.

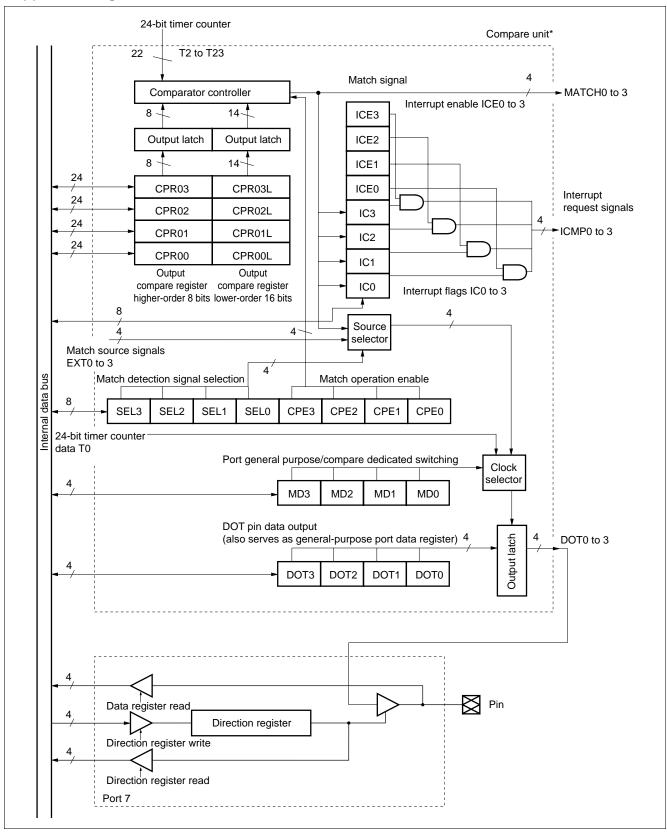

The match detection signal is output when the contents of the output compare register match the contents of the 24-bit timer counter. This match detection signal can be used to change the output value of the corresponding pin, or can be used to generate an interrupt. One block consists of four output compare units, and the four output compare registers use one comparator to perform time division comparisons.

#### (1) Register Configuration

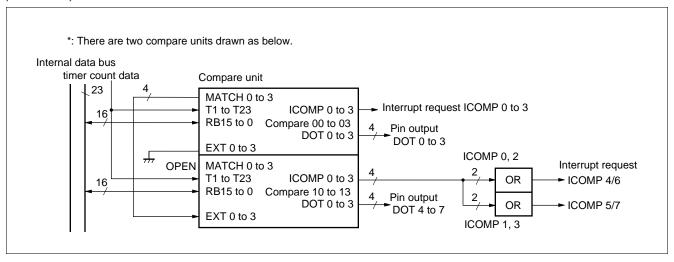

#### • OCUO Control Register 00, 01 (CCR00, CCR01)




#### OCUO Control Register 10, 11 (CCR10, CCR11)




#### OCU Compare Low-order Data Register 00 to 07 (CPR00L to CPR07L)




### • Output Compare High-order Data Register 00 to 07 (CPR00H to CPR07H)





### (Continued)

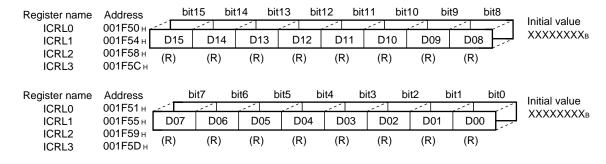


## 10. ICU (Input Capture Unit)

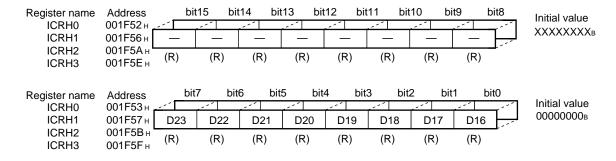
This module detects either the rising edge, falling edge, or both edges of an externally input waveform and holds the value of the 24-bit timer counter at that time, while at the same time the module generates an interrupt request for the CPU. The module consists of a 24-bit input capture data register and a control register. There are four external input pins (ASR0 to ASR3); the operation of each input is described below.

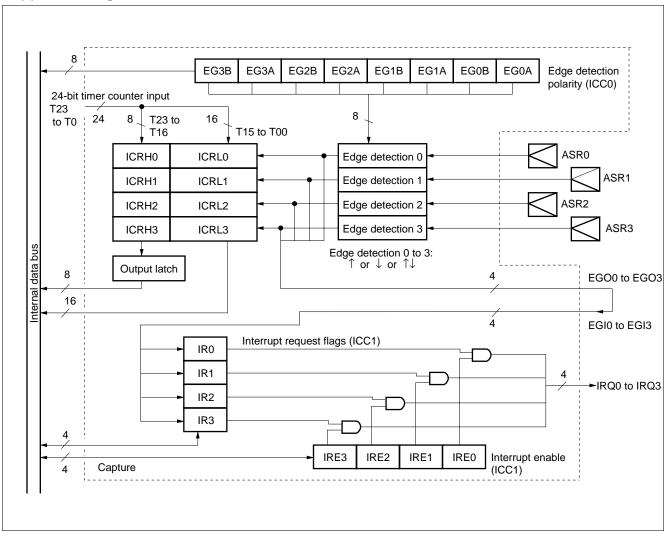
ASR0 to ASR3: Each of these input pins has a corresponding input capture register. When the specified valid edge ( $\uparrow$  or  $\downarrow$  or  $\uparrow \downarrow$ ) is detected, the register can be used to store the 24-bit timer counter value.

#### (1) Register Configuration


#### • ICU Control Register 0 (ICC0)

| Register name | Address  | bit7  | bit6  | bit5  | bit4  | bit3  | bit2  | bit1  | bit0  | . laitialala           |
|---------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| ıcco          | 000058 н | EG3B  | EG3A  | EG2B  | EG2A  | EG1B  | EG1A  | EG0B  | EG0A  | Initial value 00000008 |
|               | ,        | (R/W) |                        |


#### ICU Control Register 1 (ICC1)


| Register name | Address  | bit7  | bit6  | bit5  | bit4  | bit3  | bit2  | bit1  | bit0  | Initial value |
|---------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| ıccı          | 00005А н | IRE3  | IRE2  | IRE1  | IRE0  | IR3   | IR2   | IR1   | IR0   | 00000000B     |
|               |          | (R/W) |               |

#### ICU Low-order Data Register (ICRL0 to ICRL3)



#### ICU High-order Data Register (ICRH0 to ICRH3)





### 11. 16-bit PPG Timer

This module can output a pulse synchronized with an external trigger or a software trigger. In addition, the cycle and duty ratio of the output pulse can be changed as desired by overwriting the two 16-bit register values.

PWM function: Synchronizes pulse with trigger, and permits programming of the pulse output by

overwriting the register values mentioned above.

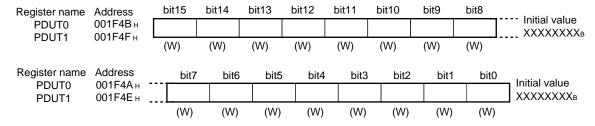
This function permits use as a D/A converter with the addition of external circuits.

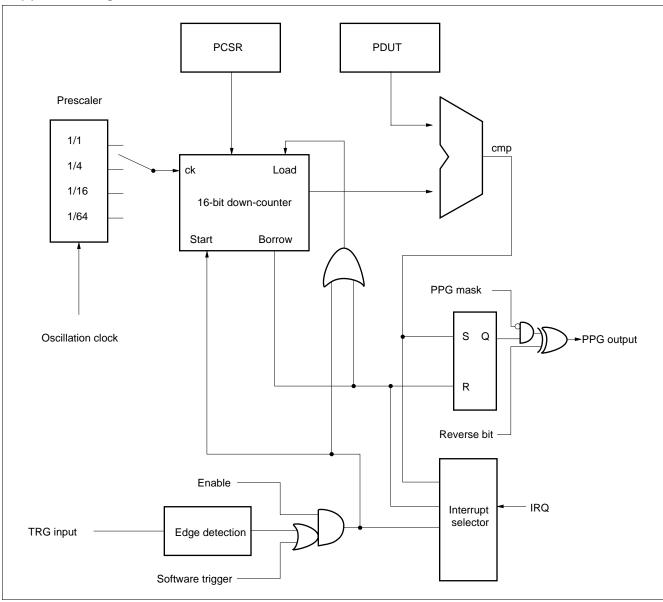
One-shot function: Detects the edge of trigger input, and permits single-pulse output. There is no

trigger input for PPG1.

This module consists of a 16-bit down-counter, a prescaler, a 16-bit synchronization setting register, a 16-bit duty register, a 16-bit control register, one external trigger input pin, and one PPG output pin.

#### (1) Register Configuration


### • PPG Control Status Register (PCNT0, PCNT1)


| Register name   | Address             | b             | it15     | bit14   | b   | it13 | bit12    | t    | it11     | bit1     | 0        | bit9    | b  | it8      |    | Initial value |
|-----------------|---------------------|---------------|----------|---------|-----|------|----------|------|----------|----------|----------|---------|----|----------|----|---------------|
| PCNT0           | 0004D н             | С             | NTE      | STGF    | М   | DSE  | RTRG     | C    | KS1      | CKS      | 0 P      | GMS     | -  | _ ]      |    | . 00000000в   |
| PCNT1           | 0004Fн <sup>1</sup> | (R            | :/W)     | (R/W)   | (F  | R/W) | (R/W     | ) (  | R/W)     | (R/V     | V) (     | (R/W)   |    |          |    |               |
| Overwrite durin | g operation-        | <b>&gt;</b>   | 0        | $\circ$ |     | ×    | $\times$ |      | $\times$ | $\times$ |          | $\circ$ |    |          |    |               |
|                 |                     |               |          |         |     |      |          |      |          |          |          |         |    |          |    |               |
| Register name   | Address             |               | bit7     | 7 k     | it6 | bit5 | t        | it4  | bit      | 3        | bit2     | bit     | 1  | bitC     | )  | Initial value |
| PCNT0<br>PCNT1  | 0004Сн<br>0004Ен    |               | EGS      | 31 E    | GS0 | IRE  | N IR     | QF.  | IRS      | 1 I      | RS0      | POE     | N  | OSE      | L  | 00000000      |
|                 |                     |               | (R/W     | ) (R    | /W) | (R/W | ) (F     | :/W) | (R/V     | V) (     | (R/W)    | (R/\    | N) | (R/W     | /) |               |
| Overwrite durin | g operation-        | $\rightarrow$ | $\times$ |         | ×   | 0    | (        | C    | X        |          | $\times$ | X       |    | $\times$ |    |               |

#### PPG0, PPG1 Cycle Setting Register (PCSP0, PCSP1)

| Register name  | Address              | bit1 | 5    | bit14 | bit13 | b    | it12 | bit11 | b    | it10 | bit9 |      | bit8 | <del></del> | · Initial value |
|----------------|----------------------|------|------|-------|-------|------|------|-------|------|------|------|------|------|-------------|-----------------|
| PCSP0<br>PCSP1 | 001F49 н<br>001F4D н |      |      |       |       |      |      |       |      |      |      |      |      |             | XXXXXXXX        |
| PCSP1          | 001F4DH              | (W)  |      | (W)   | (W)   | (    | W)   | (W)   | (    | W)   | (W)  |      | (W)  |             |                 |
| Register name  | Address              |      | bit7 | bite  | 6 I   | oit5 | bit4 | . b   | oit3 | bit2 |      | bit1 | I    | bit0        | Initial value   |
| PCSP0<br>PCSP1 | 001F48 н             |      |      |       |       |      |      |       |      |      |      |      |      |             | XXXXXXXXXB      |
| FUSPI          | 001F4Сн              |      | (W)  | (W)   | (     | W)   | (W)  | (\    | W)   | (W)  |      | (W)  | (    | W)          |                 |

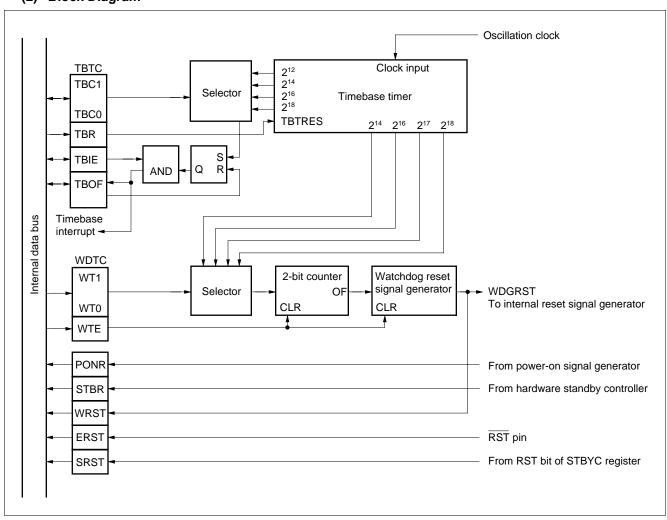
### • PPG0, PPG1 Duty Setting Register (PDUT0, PDUT1)





## 12. Watchdog Timer and Timebase Timer Functions

The watchdog timer consists of a 2-bit watchdog counter using carry from an 18-bit timebase timer as the clock source, a control register, and a watchdog reset control section. The timebase timer consists of an 18-bit timer and an interval interrupt control circuit.


### (1) Register Configuration

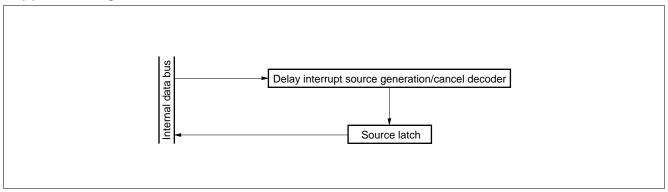
#### Watchdog Timer Control Register (WDTC)

| Register name | Address  | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | Initial value                           |
|---------------|----------|------|------|------|------|------|------|------|------|-----------------------------------------|
| WDTC          | 0000А8 н | PONR | STBR | WRST | ERST | SRST | WTE  | WT1  | WT0  | XXXXXXXX                                |
|               |          | (R)  | (R)  | (R)  | (R)  | (R)  | (W)  | (W)  | (W)  | , , , , , , , , , , , , , , , , , , , , |

### • Timebase Timer Control Register (TBTC)

| Register name |          | bit15 | bit14 | bit13 | bit12 | bit11 | bit10 | bit9  | bit8  | Initial value |
|---------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| TBTC          | 0000А9 н | _     | _     | _     | TBIE  | TBOF  | TBR   | TBC1  | TBC0  |               |
|               |          | (—)   | (—)   | (—)   | (R/W) | (R/W) | (R)   | (R/W) | (R/W) |               |



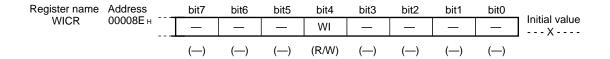

## 13. Delay Interruupt Generation Module

The delayed interrupt generation module is used to generate an interrupt task switching. Using this module allows an interrupt request to the F<sup>2</sup>MC-16F CPU to generated or cancel by software.

### (1) Register Configuration

• Delay Interrupt Source Generation/Cancel Register (DIRR)



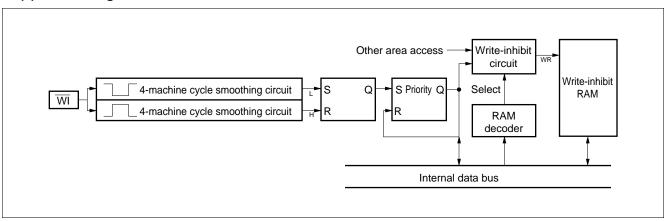



### 14. Write-inhibit RAM

The write-inhibit RAM is write-protectable with the  $\overline{WI}$  pin input. Maintaining the "L" level input to the  $\overline{WI}$  pin prevents a certain area of RAM from being written. The  $\overline{WI}$  pin has a 4-machine-cycle filter.

#### (1) Register Configuration

### • WI Control Register (WICR)




### (2) Write-inhibit RAM Areas

Write-inhibit RAM areas: 000D00H to 000EFFH (MB90223)

001300н to 0014FFн (MB90224/P224A/P224B/W224A/W224B)

001500н to 0018FFн (MB90V220)

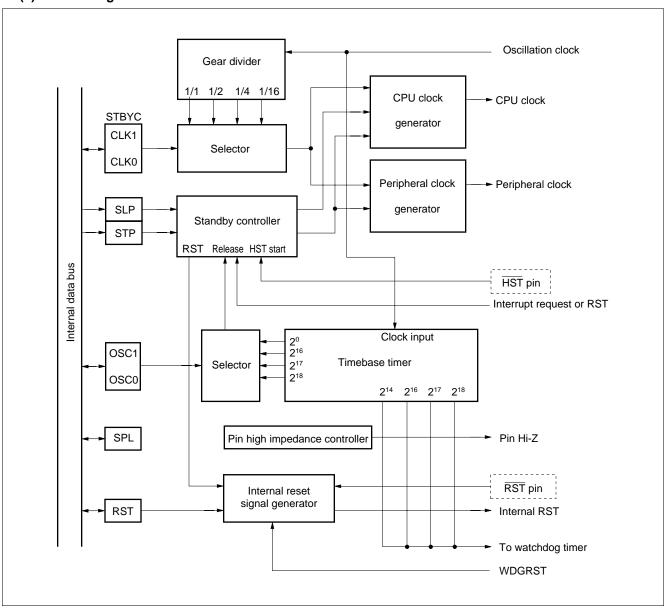


### 15. Low-power Consumption Modes, Oscillation Stabilization Delay Time, and Gear Function

The MB90220 series has three low-power consumption modes: the sleep mode, the stop mode, the hardware standby mode, and gear function.

Sleep mode is used to suspend only the CPU operation clock; the other components remain in operation. Stop mode and hardware standby mode stop oscillation, minimizing the power consumption while holding data.

The gear function divides the external clock frequency, which is used usually as it is, to provide a lower machine clock frequency. This function can therefore lower the overall operation speed without changing the oscillation frequency. The function can select the machine clock as a division of the frequency of crystal oscillation or external clock input by 1, 2, 4, or 16.


The OSC1 and OSC0 bits can be used to set the oscillation stabilization delay time for wake-up from stop mode or hardware standby mode.

#### (1) Register Configuration

#### Standby Control Register (STBYC)

| Register name | Address  | bit7 | bit6 | bit5  | bit4  | bit3  | bit2  | bit1  | bit0  | Initial value |
|---------------|----------|------|------|-------|-------|-------|-------|-------|-------|---------------|
| STBYC         | 0000А0 н | STP  | SLP  | SPL   | RST   | OSC1  | OSC0  | CLK1  | CLK0  | 0001***       |
|               |          | (W)  | (W)  | (R/W) | (R/W) | (R/W) | (R/W) | (R/W) | (R/W) |               |

Note: The initial value (\*) of bit0 to bit3 is changed by reset source.



## **■ ELECTRICAL CHARACTERISTICS**

## 1. Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

| Poromotor                      | Symbol       | Pin name     | Va          | lue       | Unit | Remarks                                |
|--------------------------------|--------------|--------------|-------------|-----------|------|----------------------------------------|
| Parameter                      | Symbol       | Pin name     | Min.        | Max.      | Unit | Remarks                                |
| Power supply voltage           | Vcc          | Vcc          | Vss - 0.3   | Vss + 7.0 | V    |                                        |
| Program voltage                | VPP          | VPP          | Vss - 0.3   | 13.0      | V    | MB90P224A/P224B<br>MB90W224A/W224B     |
|                                | AVcc         | AVcc         | Vss - 0.3   | Vcc + 0.3 | V    | Power supply voltage for A/D converter |
| Analog power supply voltage    | AVRH<br>AVRL | AVRH<br>AVRL | Vss - 0.3   | AVcc      | V    | Reference voltage for A/D converter    |
| Input voltage                  | Vı*1         | _            | Vss - 0.3   | Vcc + 0.3 | V    |                                        |
| Output voltage                 | Vo           | *2           | Vss - 0.3   | Vcc + 0.3 | V    |                                        |
| "L" level output current       | loL          | *3           | _           | 20        | mA   | Rush current                           |
| "L" level total output current | ΣΙοι         | *3           | _           | 50        | mA   | Total output current                   |
| "H" level output current       | Іон          | *2           | _           | -10       | mA   | Rush current                           |
| "H" level total output current | ΣІон         | *2           | _           | -48       | mA   | Total output current                   |
| Power consumption              | PD           | _            | _           | 650       | mW   |                                        |
| Operating temperature          | TA           | _            | -40         | +105      | °C   | MB90223/224/P224B<br>/W224B            |
|                                |              |              | -40         | +85       | °C   | MB90P224A/W224A                        |
| Storage temperature            | Tstg         | _            | <b>-</b> 55 | +150      | °C   |                                        |

<sup>\*1:</sup> V<sub>1</sub> must not exceed Vcc + 0.3 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

<sup>\*2:</sup> Output pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, PA0 to PA7, PB0 to PB7, PC0 to PC5

<sup>\*3:</sup> Output pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA7, PB0 to PB7, PC0 to PC5

## 2. Recommended Operating Condition

(Vss = AVss = 0.0 V)

| Parameter             | Symbol           | Pin  | Va   | lue       | Unit  | Remarks                                         |
|-----------------------|------------------|------|------|-----------|-------|-------------------------------------------------|
| Farameter             | Symbol           | name | Min. | Max.      | Offic | Nemarks                                         |
|                       |                  |      | 4.5  | 5.5       | V     | When operating                                  |
| Power supply voltage  | Vcc              | Vcc  | 3.0  | 5.5       | V     | Retains the RAM state in stop mode              |
| Analog power supply   | AVcc             | AVcc | 4.5  | Vcc + 0.3 | V     | Power supply voltage for A/D converter          |
| voltage               | AVRH             | AVRH | AVRL | AVcc      | V     | Reference voltage for A/D                       |
|                       | AVRL             | AVRL | AVss | AVRH      | V     | converter                                       |
| Clock frequency       | Fc               | _    | 10   | 16        | MHz   | MB90224/P224A/W224A<br>MB90P224B/W224B          |
|                       |                  |      | 10   | 12        | MHz   | MB90223                                         |
|                       |                  |      | -40  | +105      | °C    | Single-chip mode<br>MB90223/224/P224B/<br>W224B |
| Operating temperature | T <sub>A</sub> * |      | -40  | +85       | °C    | Single-chip mode<br>MB90P224A/W224A             |
|                       |                  |      | -40  | +70       | °C    | External bus mode                               |

<sup>\* :</sup> Excluding the temperature rise due to the heat produced.

WARNING:Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

## 3. DC Characteristics

Single-chip mode MB90223/224/P224B/W224B : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V,  $T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$ ) MB90P224A/W224A : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V,  $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ )

External bus mode :  $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40 ^{\circ}\text{C to } +70 ^{\circ}\text{C})$ 

| Parameter                 |                   | D.         | ,                                                                      |           | Value | V 55 - U.U |                                                         |                                                                          |
|---------------------------|-------------------|------------|------------------------------------------------------------------------|-----------|-------|------------|---------------------------------------------------------|--------------------------------------------------------------------------|
| Parameter                 | Symbol            | Pin name   | Condition                                                              | Min.      | Тур.  | Max.       | Unit                                                    | Remarks                                                                  |
|                           | VIH               | X0         | _                                                                      | 0.7 Vcc   | _     | Vcc + 0.3  | V                                                       | CMOS level input                                                         |
| "H" level input voltage   | VIHS              | *1         | _                                                                      | 0.8 Vcc   | _     | Vcc + 0.3  | V                                                       | Hysteresis input                                                         |
| voltage                   | VIHM              | MD0 to MD2 | _                                                                      | Vcc - 0.3 | _     | Vcc + 0.3  | V                                                       |                                                                          |
|                           | VIL               | X0         | _                                                                      | Vss - 0.3 | _     | 0.3 Vcc    | V                                                       | CMOS level input                                                         |
| "L" level input voltage   | VILS              | *1         | _                                                                      | Vss - 0.3 | -     | 0.2 Vcc    | V                                                       | Hysteresis input                                                         |
| voltage                   | VILM              | MD0 to MD2 | _                                                                      | Vss - 0.3 |       | Vss + 0.3  | V                                                       |                                                                          |
| "H" level                 | Vон               | *2         | $V_{CC} = 4.5 \text{ V}$<br>$I_{OH} = -4.0 \text{ mA}$                 | Vcc - 0.5 |       | Vcc        | ٧                                                       |                                                                          |
| output voltage            | V <sub>OH1</sub>  | X1         | $V_{CC} = 4.5 \text{ V}$<br>$I_{OH} = -2.0 \text{ mA}$                 | Vcc – 2.5 | 1     | Vcc        | ٧                                                       |                                                                          |
| "L" level                 | Vol               | *3         | $V_{CC} = 4.5 \text{ V}$<br>$I_{OL} = 4.0 \text{ mA}$                  | 0         | -     | 0.4        | V                                                       |                                                                          |
| output voltage            | V <sub>OL1</sub>  | X1         | $V_{CC} = 4.5 \text{ V}$<br>$I_{OL} = 2.0 \text{ mA}$                  | 0         | 1     | Vcc - 2.5  | ٧                                                       |                                                                          |
| Input leackage<br>current | lı                | *1         | Vcc = 5.5 V<br>0.2 Vcc < Vı < 0.8 Vcc                                  |           | -     | ±10        | μΑ                                                      | Hysteresis input Except pins with pull-up/pull-down resistor and RST pin |
|                           | <b>I</b> 12       | X0         | $V_{CC} = 5.5 \text{ V}$<br>0.2 $V_{CC} < V_{12} < 0.8 \text{ V}_{CC}$ | _         | _     | ±20        | μΑ                                                      |                                                                          |
| Pull-up resistor          | RpulU             | RST        | _                                                                      | 22        | 50    | 110        | kΩ                                                      | *4<br>MB90223/224<br>MB90P224A/<br>W224A                                 |
|                           |                   | MD1        | _                                                                      | 22        | 50    | 150        | kΩ                                                      | *4<br>MB90223/224                                                        |
| Pull-down resistor        | R <sub>pulD</sub> | MD0<br>MD2 | _                                                                      | 22        | 50    | 150        | kΩ                                                      | *4<br>MB90223/224                                                        |
|                           |                   |            | Fc = 12 MHz                                                            |           | 70*5  | 100        | mΑ                                                      | MB90223                                                                  |
|                           |                   |            | Fc = 16 MHz                                                            | _         | 70*5  | 100        | mA                                                      | MB90224                                                                  |
| Power supply voltage*8    | Icc               | Vcc        | Fc = 16 MHz                                                            | _         | 90*5  | 125        | mA                                                      | MB90P224A/<br>P224B<br>MB90W224A/<br>W224B                               |
|                           | Iccs              | Vcc        | fc = 16 MHz*9                                                          |           | _     | 60         | mA                                                      | At sleep mode                                                            |
| Іссн Vcc                  |                   | _          | _                                                                      | 5         | 10    | μΑ         | In stop mode T <sub>A</sub> = +25°C At hardware standby |                                                                          |

(Continued)

#### (Continued)

| Parameter Symbo   |             | Pin name     | Condition     |      | Value |                 | Unit  | Remarks      |
|-------------------|-------------|--------------|---------------|------|-------|-----------------|-------|--------------|
| Farameter         | Symbol      | riii iiaiiie | Condition     | Min. | Тур.  | Max.            | Oilit | Remarks      |
| Analog power      | lΑ          | <b>AV</b> cc | fc = 16 MHz*9 | _    | 3     | 7               | mA    |              |
| supply voltage    | <b>I</b> AH | AVCC         | _             | _    | _     | 5* <sup>6</sup> | μΑ    | At stop mode |
| Input capacitance | Cin         | *7           | _             | _    | 10    | _               | pF    |              |

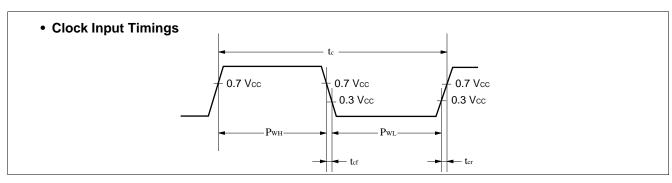
- \*1: Hysteresis input pins
  - RST, HST, P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P80 to P87, P90 to P97, PA0 to PA7, PB0 to PB7, PC0 to PC5
- \*2: Ouput pins
  P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, PA0 to PA7, PB0 to PB7, PC0 to PC5
- \*3: Output pins
  P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA7, PB0 to PB7, PC0 to PC5
- \*4: A list of availabilities of pull-up/pull-down resistors

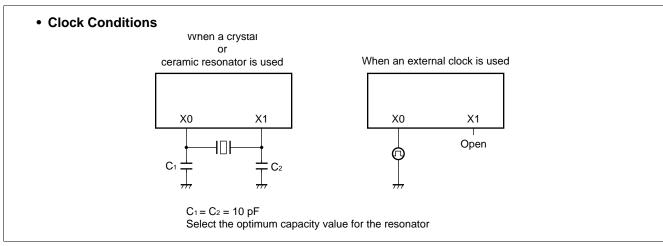
| Pin name | MB90223/224                                              | MB90P224A/W224A             | MB90P224B/W224B |
|----------|----------------------------------------------------------|-----------------------------|-----------------|
| RST      | Availability of pull-up resistors is optionally defined. | Pull-up resistors available | Unavailable     |
| MD1      | Pull-up resistors available                              | Unavailable                 | Unavailable     |
| MD0, MD2 | Pull-up resistors available                              | Unavailable                 | Unavailable     |

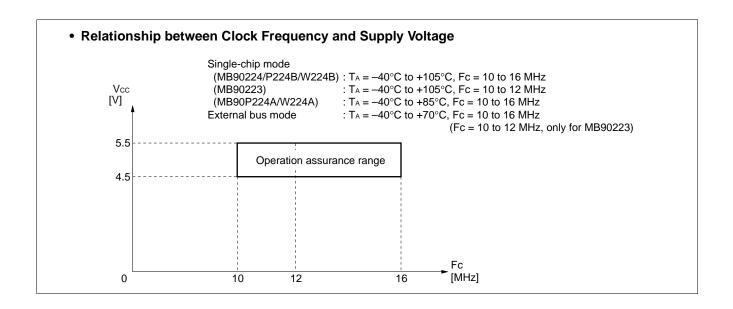
- \*5: Vcc = +5.0 V, Vss = 0.0 V,  $TA = +25^{\circ}C$ , Fc = 16 MHz
- \*6: The current value applies to the CPU stop mode with A/D converter inactive (Vcc = AVcc = AVRH = +5.5 V).
- \*7: Other than Vcc, Vss, AVcc and AVss
- \*8: Measurement condition of power supply current; external clock pin and output pin are open. Measurement condition of Vcc; see the table above mentioned.
- \*9: Fc = 12 MHz for MB90223

## 4. AC Characteristics

## (1) Clock Timing Standards


Single-chip mode MB90223/224/P224B/W224B : ( $Vcc = +4.5 \text{ to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$ )


MB90P224A/W224A :  $(Vcc = +4.5 \text{ to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

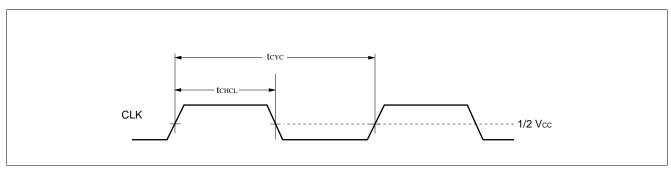

External bus mode :  $(Vcc = +4.5 \text{ to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$ 

| Doromotor                        | Symbol          | Pin    | Condition |        | Value |                    | Unit  | Remarks                                        |
|----------------------------------|-----------------|--------|-----------|--------|-------|--------------------|-------|------------------------------------------------|
| Parameter                        | Symbol          | name   | Condition | Min.   | Тур.  | Max.               | Offic | Remarks                                        |
| Clock frequency                  | Fc              | X0, X1 | _         | 10     | _     | 16                 | MHz   | MB90224/<br>P224A/P224B<br>MB90W224A/<br>W224B |
|                                  |                 |        |           | 10     | _     | 12                 | MHz   | MB90223                                        |
| Clock cycle time                 | tc              | X0, X1 | _         | 62.5   | _     | 100                | ns    | MB90224/<br>P224A/P224B<br>MB90W224A/<br>W224B |
|                                  |                 |        |           | 83.4   | _     | 100                | ns    | MB90223                                        |
| Input clock pulse width          | Pwh<br>PwL      | X0     | _         | 0.4 tc | _     | 0.6 t <sub>c</sub> | ns    | Equivalent to 60% duty ratio                   |
| Input clock rising/falling times | t <sub>cr</sub> | X0     | _         | _      | _     | 8                  | ns    | tor + tof                                      |

$$tc = 1/fc$$







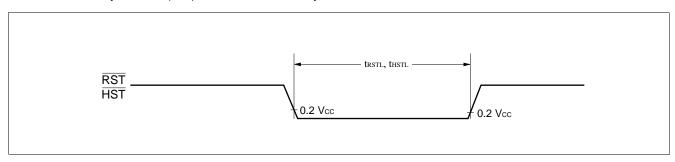

#### (2) Clock Output Timing

(External bus mode: Vcc = +4.5 V to +5.5 V, Vss = 0.0 V,  $T_A = -40 ^{\circ}\text{C}$  to  $+70 ^{\circ}\text{C}$ )

| Parameter                         | Symbol        | Pin<br>name | Condition                   | Value       |      |        | Unit  | Remarks                                       |  |
|-----------------------------------|---------------|-------------|-----------------------------|-------------|------|--------|-------|-----------------------------------------------|--|
|                                   |               |             |                             | Min.        | Тур. | Max.   | Offic | Remarks                                       |  |
| Machine cycle time                | tcyc          | CLK         | Load<br>condition:<br>80 pF | 62.5        | _    | 1600   | ns    | MB90224/<br>P224A/P224B<br>MB90W224A/<br>224B |  |
|                                   |               |             |                             | 83.4        | _    | 1600   | ns    | MB90223                                       |  |
| $CLK \uparrow \to CLK \downarrow$ | <b>t</b> chcl | CLK         |                             | tcyc/2 - 20 | _    | tcyc/2 | ns    |                                               |  |

tcyc = n/Fc, n gear ratio (1, 2, 4, 16)




#### (3) Reset and Hardware Standby Input Standards

Single-chip mode MB90223/224/P224B/W224B: (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, TA = -40°C to +105°C) MB90P224A/W224A : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, TA = -40°C to +85°C)

External bus mode (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, TA = -40 C to +63 C)

Value Pin Symbol **Parameter** Condition Unit Remarks name Min. Тур. Max. RST Reset input time **t**RSTL 5 tcyc ns Hardware standby input time **HST**  $t_{\mathsf{HSTL}}$ 5 tcyc ns

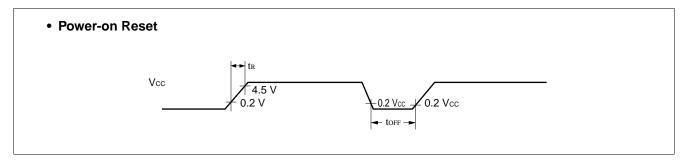
\*: The machine cycle time (tcyc) at hardware standby is set to 1/16 divided oscillation.



## (4) Power on Supply Specifications (Power-on Reset)

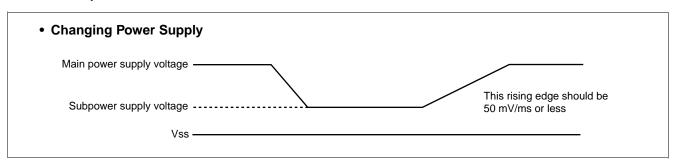
Single-chip mode MB90223/224/P224B/W224B: (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V,  $T_A$  = -40°C to +105°C)

MB90P224A/W224A : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V,  $T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}$ )


External bus mode : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V,  $T_A = -40 ^{\circ}\text{C}$  to  $+70 ^{\circ}\text{C}$ )

| Parameter                 | Symbol       | Pin name | Condition | Value |      |      | Unit  | Remarks     |
|---------------------------|--------------|----------|-----------|-------|------|------|-------|-------------|
| raiailletei               |              |          |           | Min.  | Тур. | Max. | Offic | iveillai ka |
| Power supply rising time  | <b>t</b> R   | Vcc      | _         | _     | _    | 30   | ms    | *           |
| Power supply cut-off time | <b>t</b> off | Vcc      | _         | 1     | _    |      | ms    |             |

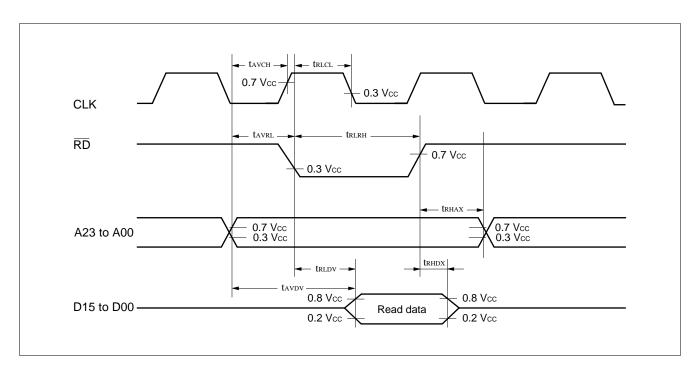
<sup>\* :</sup> Before power supply rising, it is required to be Vcc < 0.2 V.


Notes: • Power-on reset assumes the above values.

- Whether the power-on reset is required or not, turn the power on according to these characteristics and trigger the power-on reset.
- There are internal registers (STBYC, etc.) which is initialized only by the power-on reset in the device.



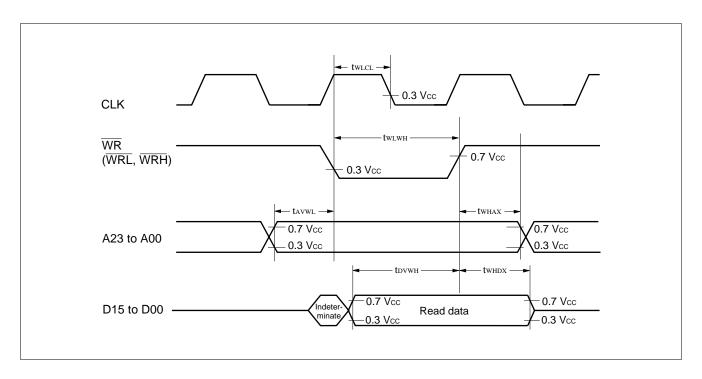
Note: Note on changing power supply


Even if above characteristics are not insufficient, abrupt changes in power supply voltage may cause a poweron reset. Therefore, at the time of a momentary changes such as when power is turned on, rise the power smoothly as shown below.



## (5) Bus Read Timing

 $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +70^{\circ}\text{C})$ 

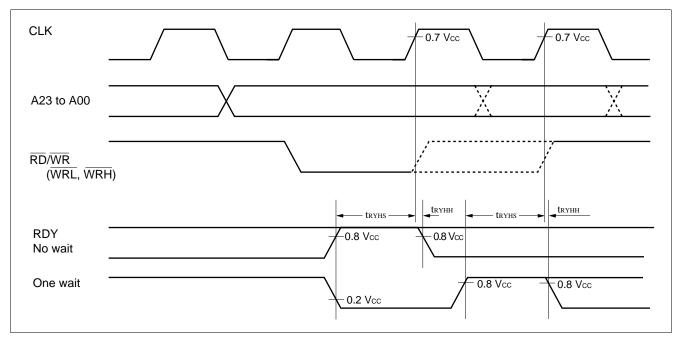

| Parameter                                                  | Symbol        | Pin name          | Condition             | Va          | lue           | Unit | Remarks |
|------------------------------------------------------------|---------------|-------------------|-----------------------|-------------|---------------|------|---------|
| raiailletei                                                | Syllibol      | Finitianie        | Condition             | Min.        | Max.          |      |         |
| Valid address $\rightarrow \overline{RD} \downarrow time$  | tavrl         | A23 to A00        |                       | tcyc/2 - 20 | _             | ns   |         |
| RD pulse width                                             | trlrh RD      |                   |                       | tcyc - 25   | _             | ns   |         |
| $\overline{RD} \downarrow \to Valid$ data input            | trldv         |                   |                       | _           | tcyc - 30     | ns   |         |
| $\overline{RD} \uparrow \to Data$ hold time                | <b>t</b> RHDX | D15 to D00        | condition:<br>- 80 pF | 0           | _             | ns   |         |
| $\hbox{Valid address} \rightarrow \hbox{Valid data input}$ | tavdv         |                   |                       | _           | 3 tcyc/2 - 40 | ns   |         |
| $\overline{RD} \!\uparrow \! 	o \! Address$ valid time     | <b>t</b> RHAX | A23 to A00        |                       | tcyc/2 - 20 | _             | ns   |         |
| Valid address → CLK ↑ time                                 | <b>t</b> avch | A23 to A00<br>CLK |                       | tcyc/2 - 25 | _             | ns   |         |
| $\overline{RD} \downarrow \to CLK \downarrow time$         | <b>t</b> rlcl | RD, CLK           |                       | tcyc/2 - 25 | _             | ns   |         |



## (6) Bus Write Timing

 $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +70^{\circ}\text{C})$ 

| Parameter                                                              | Symbol        | Pin name         | Condition                   | Val         | lue  | Unit | Remarks |
|------------------------------------------------------------------------|---------------|------------------|-----------------------------|-------------|------|------|---------|
| raiailletei                                                            | Symbol        |                  |                             | Min.        | Max. |      |         |
| Valid address $\rightarrow$ $\overline{\text{WR}}$ ↓ time              | tavwl         | A23 to A00       |                             | tcyc/2 - 20 | _    | ns   |         |
| WR pulse width                                                         | twLwH         | WRL, WRH         | Load<br>condition:<br>80 pF | tcyc - 25   | _    | ns   |         |
| Valid data output $\rightarrow$ $\overline{\text{WR}}$ $\uparrow$ time | <b>t</b> DVWH | D15 to D00       |                             | tcyc - 40   | _    | ns   |         |
| $\overline{ m WR} \uparrow  ightarrow$ Data hold time                  | twhox         | D15 to D00       |                             | tcyc/2 - 20 | _    | ns   |         |
| $\overline{ m WR} \uparrow  ightarrow  m Address$ valid time           | twhax         | A23 to A00       |                             | tcyc/2 - 20 | _    | ns   |         |
| $\overline{WR} \downarrow \to CLK \downarrow time$                     | twlcl         | WRL,<br>WRH, CLK |                             | tcyc/2 - 25 | _    | ns   |         |

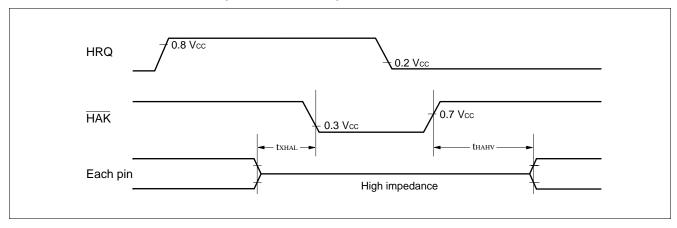



#### (7) Ready Input Timing

 $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$ 

| Parameter      | Symbol        | bol Pin Condition |                 | Value |      | Unit  | Remarks     |
|----------------|---------------|-------------------|-----------------|-------|------|-------|-------------|
| Farameter      | Symbol        | name              | Condition       | Min.  | Max. | Oilit | iveillai ks |
| RDY setup time | <b>t</b> RYHS | RDY               | Load condition: | 40    | _    | ns    |             |
| RDY hold time  | <b>t</b> RYHH | RDY               | 80 pF           | 0     | _    | ns    |             |

Note: Use the auto-ready function if the RDY setup time is insufficient.




#### (8) Hold Timing

 $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$ 

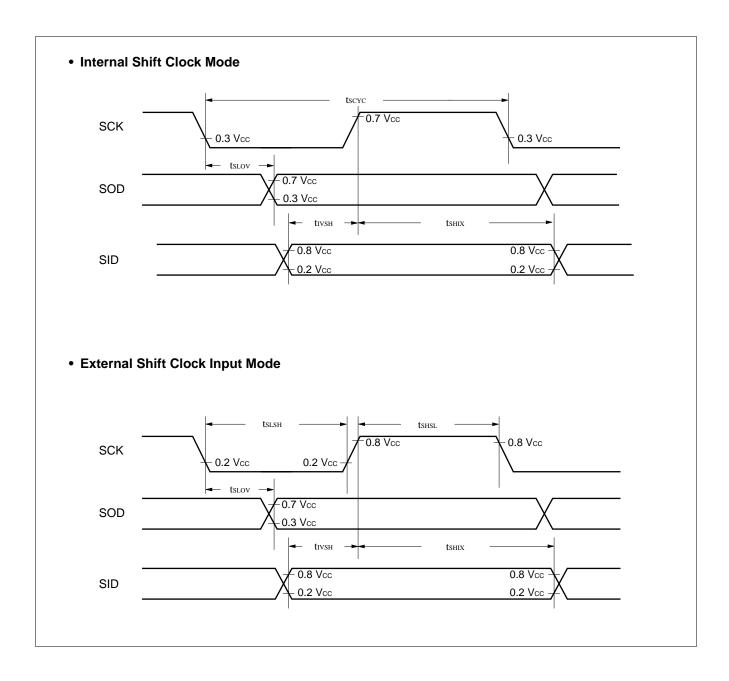
| Parameter                                             | Symbol        | Pin Condition |                 | Value |              | Unit  | Remarks     |
|-------------------------------------------------------|---------------|---------------|-----------------|-------|--------------|-------|-------------|
| Farameter                                             | Symbol        | name          | Condition       | Min.  | Max.         | Oilit | iveillai va |
| Pin floating $\rightarrow$ HAK $\downarrow$ time      | <b>t</b> xhal | HAK           | Load condition: | 30    | <b>t</b> cyc | ns    |             |
| $\overline{HAK} \uparrow time \to pin \ valid \ time$ | <b>t</b> hahv | HAK           | 80 pF           | tcyc  | 2 tcyc       | ns    |             |

Note: It takes at least one machine cycle for HAK to vary after HRQ is fetched.



### (9) UART Timing

Single-chip mode MB90223/224/P224B/W224B:  $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C})$ 


MB90P224A/W224A :  $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

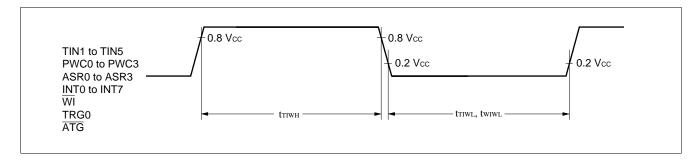
External bus mode :  $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$ 

| Parameter                                        | Symbol        | Pin  | Condition                | Value  |      | Unit  | Remarks              |  |
|--------------------------------------------------|---------------|------|--------------------------|--------|------|-------|----------------------|--|
| rarameter                                        | Syllibol      | name | Condition                | Min.   | Max. | Oilit | iveillai ka          |  |
| Serial clock cycle time                          | tscyc         | _    |                          | 8 tcyc | _    | ns    | Internal             |  |
| $SCLK \downarrow \to SOUT$ delay time            | tslov         | _    | Load condition:          | -80    | 80   | ns    | clock                |  |
| Valid SIN → SCLK ↑                               | tıvsh         | _    | 80 pF                    | 100    | _    | ns    | operation output pin |  |
| $SCLK \uparrow \to Valid \; SIN \; hold \; time$ | <b>t</b> shix | _    |                          | 60     | _    | ns    | output piii          |  |
| Serial clock "H" pulse width                     | tshsl         | _    |                          | 4 tcyc | _    | ns    |                      |  |
| Serial clock "L" pulse width                     | <b>t</b> slsh | _    |                          | 4 tcyc | _    | ns    | External             |  |
| $SCLK \downarrow \to SOUT$ delay time            | tslov         | _    | Load condition:<br>80 pF | _      | 150  | ns    | clock<br>operation   |  |
| Valid SIN → SCLK ↑                               | tıvsh         | _    |                          | 60     | _    | ns    | output pin           |  |
| SCLK $\uparrow \rightarrow$ valid SIN hold time  | <b>t</b> shix | _    |                          | 60     | _    | ns    |                      |  |

Notes: • These AC characteristics assume in CLK synchronization mode.

• "tcyc" is the machine cycle (unit: ns).




#### (10) Resourse Input Timing

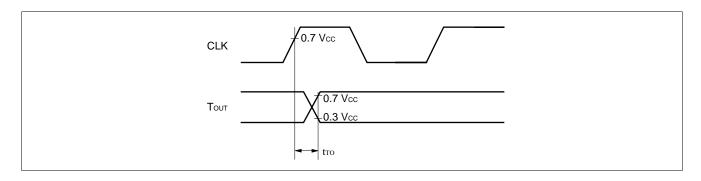
Single-chip mode MB90223/224/P224B/W224B:  $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +105^{\circ}\text{C})$ 

MB90P224A/W224A :  $(Vcc = +4.5 \text{ V to } +5.5 \text{ V, Vss} = 0.0 \text{ V, T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

External bus mode :  $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$ 

| Parameter         | Symbol         | Pin name     | Condition       |            | Value  |                     | Unit   | Remarks                         |   |
|-------------------|----------------|--------------|-----------------|------------|--------|---------------------|--------|---------------------------------|---|
| rarameter         | Syllibol       | Fili lialile | Condition       | Min.       | Тур.   | Max.                | Oill   | Remarks                         |   |
|                   | tтіwн<br>tтіwL | TIN1 to TIN5 |                 | 4 tcyc     | _      | _                   | ns     | External event count input mode |   |
|                   |                |              |                 | 2 tcyc     | _      | _                   | ns     | Trigger input/gate input mode   |   |
|                   |                | PWC0 to PWC3 | Load condition: | condition: | 2 tcyc | _                   | _      | ns                              |   |
| Input pulse width |                | ASR0 to ASR3 |                 |            |        | condition:<br>80 pF | 2 tcyc | _                               | _ |
|                   |                | INT0 to INT7 | ου ρι           | 3 tcyc     | _      | _                   | ns     |                                 |   |
|                   |                | TRG0         |                 | 2 tcyc     | _      | _                   | ns     |                                 |   |
|                   |                | ATG          |                 | 2 tcyc     | _      | _                   | ns     |                                 |   |
|                   | twiwL          | WI           |                 | 4 tcyc     | _      | _                   | ns     |                                 |   |




### (11) Resourse Output Timing

Single-chip mode MB90223/224/P224B/W224B:  $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +105^{\circ}\text{C})$ 

MB90P224A/W224A :  $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

External bus mode :  $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +70^{\circ}\text{C})$ 

| Parameter                                | Symbol   | Pin name                                                     | Condition                   | Value |      |      | Unit  | Remarks |
|------------------------------------------|----------|--------------------------------------------------------------|-----------------------------|-------|------|------|-------|---------|
| Parameter                                | Syllibol | Fili liallie                                                 | Condition                   | Min.  | Тур. | Max. | Ullit | Remarks |
| CLK ↑ → T <sub>OUT</sub> transition time | tто      | TOT0 to TOT5<br>PPG0 to PPG1<br>POT0 to POT3<br>DOT0 to DOT7 | Load<br>condition:<br>80 pF | _     | _    | 30   | ns    |         |



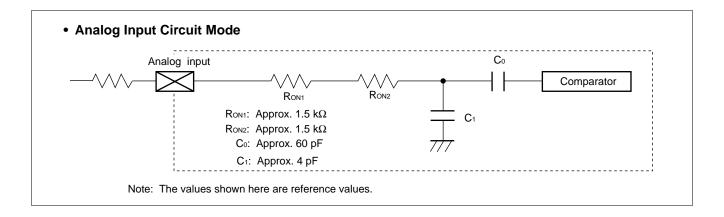
#### 5. A/D Converter Electrical Characteristics

Single-chip mode MB90223/224/P224B/W224B

: (AVcc = Vcc = +4.5 V to +5.5 V, AVss =Vss = 0.0 V,  $T_A$  = -40°C to +105°C, +4.5 V  $\leq$  AVRH - AVRL) MB90P224A/W224A

: (AVcc = Vcc = +4.5 V to +5.5 V, AVss = Vss =0.0 V,  $T_A = -40^{\circ}C$  to +85°C, +4.5 V  $\leq$  AVRH - AVRL)

External bus mode : (AVcc = Vcc = +4.5 V to +5.5 V, AVss = Vss =0.0 V,  $T_A = -40^{\circ}\text{C}$  to +70°C, +4.5 V  $\leq$  AVRH – AVRL)


| Parameter                     | Symbol              | Pin             | Condition |            | Value      | ·          | Unit  | Remarks           |
|-------------------------------|---------------------|-----------------|-----------|------------|------------|------------|-------|-------------------|
| Parameter                     | Syllibol            | name            | Condition | Min.       | Тур.       | Max.       | Offic |                   |
| Resolution                    | n                   | _               | _         | _          | _          | 10         | bit   |                   |
| Total error                   | _                   | _               | _         | _          | _          | ±3.0       | LSB   |                   |
| Linearity error               | _                   | _               | _         | _          | _          | ±2.0       | LSB   |                   |
| Differential linearity err    | or —                | _               | _         | _          | _          | ±1.5       | LSB   |                   |
| Zero transition voltage       | Vот                 | AN00 to         | _         | AVRL-1.5   | AVRL + 0.5 | AVRL + 2.5 | LSB   |                   |
| Full-scale transition voltage | V <sub>FST</sub>    | AN15            | _         | AVRH – 3.5 | AVRH – 1.5 | AVRH + 0.5 | LSB   |                   |
| Conversion time*1             | Tconv               | _               | tcyc      | 6.125      | _          | _          | μs    | 98 machine cycles |
| Sampling perio                | d T <sub>SAMP</sub> | _               | = 62.5 ns | 3.75       | _          | _          | μs    | 60 machine cycles |
| Analog port input curre       | nt IAIN             | AN00 to         | _         | _          | _          | ±0.1       | μΑ    |                   |
| Analog input voltage          | VAIN                | AN15            | _         | AVRL       | _          | AVRH       | V     |                   |
| Analog reference volte        |                     | AVRH            | _         | AVRL       | _          | AVcc       | V     |                   |
| Analog reference voltage      | ge —                | AVRL            | _         | AVss       | _          | AVRH       | V     |                   |
| Reference voltage sup         | oly IR              | AVRH            | _         | _          | 200        | 500        | μΑ    |                   |
| current                       | IRH                 | AVKI            | _         | _          | _          | 5*2        | μΑ    |                   |
| Variation between channels    | _                   | AN00 to<br>AN15 | _         | _          | _          | 4          | LSB   |                   |

<sup>\*1:</sup> These standards in this table are for MB90224/P224A/P224B/W224A/W224B. MB90223: Minimum conversion time is 8.17  $\mu$ s and minimum sampling time is 5  $\mu$ s at toyc = 83.4 ns.

Notes: (1) The error becomes larger as | AVRH – AVRL | becomes smaller.

- (2) Use the output impedance of the external circuit for analog input under the following conditions: External circuit output impedance < approx. 10 k $\Omega$  (Sampling time approx. 3.75  $\mu$ s, teye = 62.5 ns)
- (3) Precision values are standard values applicable to sleep mode.
- (4) If Vcc/AVcc or Vss/AVss is caused by a noise to drop to below the analog input volgtage, the analog input current is likely to increase. In such cases, a bypass capacitor or the like should be provided in the external circuit to suppress the noise.

<sup>\*2:</sup> The current value applies to the CPU stop mode with the A/D converter inactive (Vcc = AVcc = AVRH = +5.5 V).



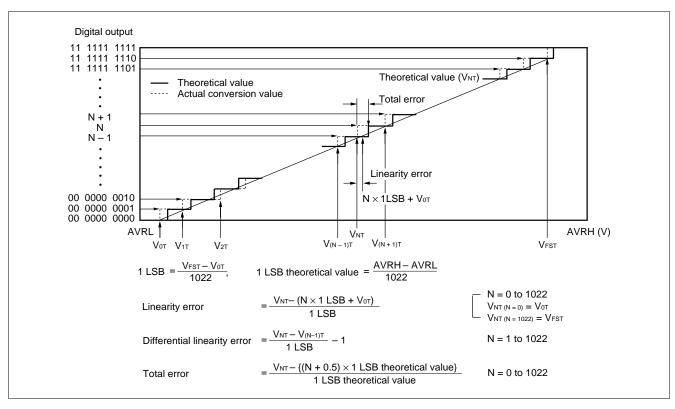
#### 6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

When the number of bits is 10, analog voltage can be divided into  $2^{10} = 1024$ .

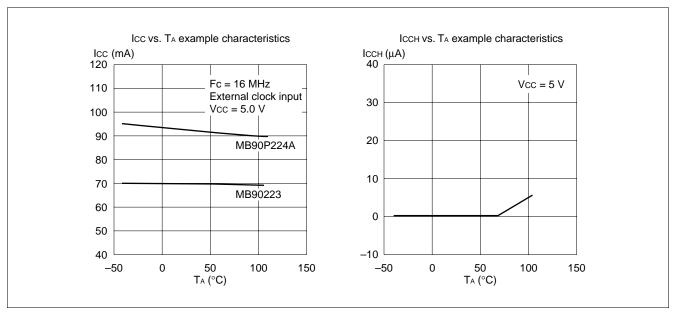
Total error: Difference between actual and logical values. This error is caused by a zero transition

error, full-scale transition error, linearity error, differential linearity error, or by noise.


Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000"

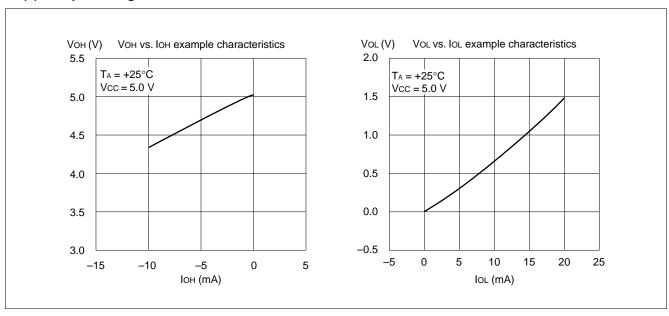
 $\leftrightarrow$  "00 0000 0001") with the full-scale transition point ("11 1111 1111"  $\leftrightarrow$  "11 1111

1110") from actual conversion characteristics


Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the

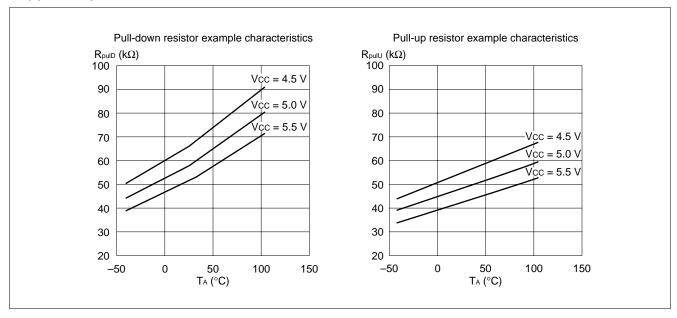
theoretical value




#### **■ EXAMPLE CHARACTERISTICS**

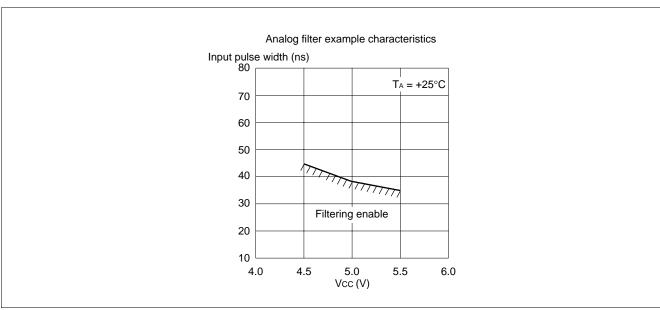
#### (1) Power Supply Current




Note: These are not assured value of characteristics but example characteristics.

#### (2) Output Voltage




Note: These are not assured value of characteristics but example characteristics.

#### (3) Pull-up/Pull-down Resistor



Note: These are not assured value of characteristics but example characteristics.

### (4) Analog Filter



Note: These are not assured value of characteristics but example characteristics.

### ■ INSTRUCTION SET (412 INSTRUCTIONS)

Table 1 Explanation of Items in Table of Instructions

| Item      | Explanation                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mnemonic  | Upper-case letters and symbols: Represented as they appear in assembler Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.                                                                                                                                                                                                |
| #         | Indicates the number of bytes.                                                                                                                                                                                                                                                                                                                                                                                    |
| ~         | Indicates the number of cycles. See Table 4 for details about meanings of letters in items.                                                                                                                                                                                                                                                                                                                       |
| В         | Indicates the correction value for calculating the number of actual cycles during execution of instruction.  The number of actual cycles during execution of instruction is summed with the value in the "cycles" column.                                                                                                                                                                                         |
| Operation | Indicates operation of instruction.                                                                                                                                                                                                                                                                                                                                                                               |
| LH        | Indicates special operations involving the bits 15 through 08 of the accumulator.  Z: Transfers "0".  X: Extends before transferring.  —: Transfers nothing.                                                                                                                                                                                                                                                      |
| АН        | Indicates special operations involving the high-order 16 bits in the accumulator.  *: Transfers from AL to AH.  —: No transfer.  Z: Transfers 00H to AH.  X: Transfers 00H or FFH to AH by extending AL.                                                                                                                                                                                                          |
| I         | Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky                                                                                                                                                                                                                                                                                                                   |
| S         | bit), N (negative), Z (zero), V (overflow), and C (carry).  *: Changes due to execution of instruction.                                                                                                                                                                                                                                                                                                           |
| Т         | —: No change.                                                                                                                                                                                                                                                                                                                                                                                                     |
| N         | S: Set by execution of instruction. R: Reset by execution of instruction.                                                                                                                                                                                                                                                                                                                                         |
| Z         |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V         |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| С         |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RMW       | Indicates whether the instruction is a read-modify-write instruction (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.).  *: Instruction is a read-modify-write instruction —: Instruction is not a read-modify-write instruction Note: Cannot be used for addresses that have different meanings depending on whether they are read or written. |

Table 2 Explanation of Symbols in Table of Instructions

| Symbol                                                       | Explanation                                                                                                                                              |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                                                            | 32-bit accumulator The number of bits used varies according to the instruction. Byte: Low order 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL, AH |
| АН                                                           | High-order 16 bits of A                                                                                                                                  |
| AL                                                           | Low-order 16 bits of A                                                                                                                                   |
| SP                                                           | Stack pointer (USP or SSP)                                                                                                                               |
| PC                                                           | Program counter                                                                                                                                          |
| SPCU                                                         | Stack pointer upper limit register                                                                                                                       |
| SPCL                                                         | Stack pointer lower limit register                                                                                                                       |
| PCB                                                          | Program bank register                                                                                                                                    |
| DTB                                                          | Data bank register                                                                                                                                       |
| ADB                                                          | Additional data bank register                                                                                                                            |
| SSB                                                          | System stack bank register                                                                                                                               |
| USB                                                          | User stack bank register                                                                                                                                 |
| SPB                                                          | Current stack bank register (SSB or USB)                                                                                                                 |
| DPR                                                          | Direct page register                                                                                                                                     |
| brg1                                                         | DTB, ADB, SSB, USB, DPR, PCB, SPB                                                                                                                        |
| brg2                                                         | DTB, ADB, SSB, USB, DPR, SPB                                                                                                                             |
| Ri                                                           | R0, R1, R2, R3, R4, R5, R6, R7                                                                                                                           |
| RWi                                                          | RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7                                                                                                                   |
| RWj                                                          | RW0, RW1, RW2, RW3                                                                                                                                       |
| RLi                                                          | RL0, RL1, RL2, RL3                                                                                                                                       |
| dir<br>addr16<br>addr24<br>addr24 0 to 15<br>addr24 16 to 23 | Compact direct addressing Direct addressing Physical direct addressing Bits 0 to 15 of addr24 Bits 16 to 23 of addr24                                    |
| io                                                           | I/O area (000000н to 0000FFн)                                                                                                                            |

(Continued)

### (Continued)

| Symbol                                           | Explanation                                                                                                                                     |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| #imm4<br>#imm8<br>#imm16<br>#imm32<br>ext (imm8) | 4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data |
| disp8<br>disp16                                  | 8-bit displacement<br>16-bit displacement                                                                                                       |
| bp                                               | Bit offset value                                                                                                                                |
| vct4<br>vct8                                     | Vector number (0 to 15) Vector number (0 to 255)                                                                                                |
| ( )b                                             | Bit address                                                                                                                                     |
| rel<br>ear<br>eam                                | Branch specification relative to PC Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)                                 |
| rlst                                             | Register list                                                                                                                                   |

Table 3 Effective Address Fields

| Code                                         | Notation                                                                                                        | Address format                                                                                                | Number of bytes in address extemsion* |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 00<br>01<br>02<br>03<br>04<br>05<br>06<br>07 | R0 RW0 RL0 R1 RW1 (RL0) R2 RW2 RL1 R3 RW3 (RL1) R4 RW4 RL2 R5 RW5 (RL2) R6 RW6 RL3 R7 RW7 (RL3)                 | Register direct "ea" corresponds to byte, word, and long-word types, starting from the left                   |                                       |
| 08<br>09<br>0A<br>0B                         | @RW0<br>@RW1<br>@RW2<br>@RW3                                                                                    | Register indirect                                                                                             | 0                                     |
| 0C<br>0D<br>0E<br>0F                         | @ RW0 +<br>@ RW1 +<br>@ RW2 +<br>@ RW3 +                                                                        | Register indirect with post-increment                                                                         | 0                                     |
| 10<br>11<br>12<br>13<br>14<br>15<br>16       | @ RW0 + disp8 @ RW1 + disp8 @ RW2 + disp8 @ RW3 + disp8 @ RW4 + disp8 @ RW5 + disp8 @ RW6 + disp8 @ RW7 + disp8 | Register indirect with 8-bit displacement                                                                     | 1                                     |
| 18<br>19<br>1A<br>1B                         | @RW0 + disp16<br>@RW1 + disp16<br>@RW2 + disp16<br>@RW3 + disp16                                                | Register indirect with 16-bit displacemen                                                                     | 2                                     |
| 1C<br>1D<br>1E<br>1F                         | @RW0 + RW7<br>@RW1 + RW7<br>@PC + dip16<br>addr16                                                               | Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address | 0<br>0<br>2<br>2                      |

<sup>\*:</sup> The number of bytes for address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the Table of Instructions.

Table 4 Number of Execution Cycles for Each Form of Addressing

| Code                 | Operand                                            | (a)*                                                   |
|----------------------|----------------------------------------------------|--------------------------------------------------------|
| Code                 | Operand                                            | Number of execution cycles for each from of addressing |
| 00 to 07             | Ri<br>RWi<br>RLi                                   | Listed in Table of Instructions                        |
| 08 to 0B             | @RWj                                               | 1                                                      |
| 0C to 0F             | @RWj +                                             | 4                                                      |
| 10 to 17             | @RWi + disp8                                       | 1                                                      |
| 18 to 1B             | @RWj + disp16                                      | 1                                                      |
| 1C<br>1D<br>1E<br>1F | @RW0 + RW7<br>@RW1 + RW7<br>@PC + dip16<br>@addr16 | 2<br>2<br>2<br>1                                       |

<sup>\*: &</sup>quot;(a)" is used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

| Operand                          | (k   | (b)* |      | <b>;)</b> * | (d)* |    |
|----------------------------------|------|------|------|-------------|------|----|
| Operand                          | byte |      | word |             | lo   | ng |
| Internal register                | +    | 0    | +    | 0           | +    | 0  |
| Internal RAM even address        | +    | 0    | +    | 0           | +    | 0  |
| Internal RAM odd address         | +    | 0    | +    | 1           | +    | 2  |
| Even address not in internal RAM | +    | 1    | +    | 1           | +    | 2  |
| Odd address not in internal RAM  | +    | 1    | +    | 3           | +    | 6  |
| External data bus (8 bits)       | +    | 1    | +    | 3           | +    | 6  |

<sup>\*: &</sup>quot;(b)", "(c)", and "(d)" are used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

Table 6 Transfer Instructions (Byte) [50 Instructions]

| MOV A, dir MOV A, addr16 MOV A, Ri MOV A, ear MOV A, eam MOV A, io MOV A, io MOV A, @A MOV A, @RLi+disp8 MOV A, @SP+disp8 MOV A, @A MOV A, @A MOV A, addr24 MOVP A, @A MOVN A, #imm4  MOVX A, dir MOVX A, addr16 MOVX A, Ri | 2<br>2<br>3<br>3<br>5<br>2<br>1<br>2<br>3<br>2       | 2<br>2<br>1<br>1<br>2+(a)<br>2<br>2<br>2<br>6<br>3<br>3<br>2<br>1 | (b)<br>(b)<br>0<br>(b)<br>(b)<br>0<br>(b)<br>(b)<br>(b)<br>(b)<br>0 | byte (A) ← (dir) byte (A) ← (addr16) byte (A) ← (Ri) byte (A) ← (ear) byte (A) ← (eam) byte (A) ← (io) byte (A) ← imm8 byte (A) ← ((A)) byte (A) ← ((RLi))+disp8) byte (A) ← ((SP)+disp8) byte (A) ← (addr24) byte (A) ← ((A)) byte (A) ← ((A)) byte (A) ← imm4                                                                                                                                                                             | Z                                     | * * * * * * * * * * * * * * * * * * * * | -<br>-<br>-<br>-<br>-<br>-                          |                            |              | * * * * * * * * * *   | * * * * * * * * * * * * * * * * * * * * |     |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------------------|----------------------------|--------------|-----------------------|-----------------------------------------|-----|-----------------|
| MOVX A, addr16                                                                                                                                                                                                              | 3 2                                                  |                                                                   | (h)                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                     |                                         | -                                                   |                            | _            | *<br>R                | * *                                     | I I | <br>_<br>_<br>_ |
| MOVX A, ear MOVX A, ear MOVX A, io MOVX A, #imm8 MOVX A, @A MOVX A, @RWi+disp8 MOVX A, @RLi+disp8 MOVX A, @SP+disp8 MOVPX A, addr24 MOVPX A, @A                                                                             | 2<br>2+<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>5<br>2 | 2<br>1<br>1<br>2+(a)<br>2<br>2<br>2<br>2<br>3<br>6<br>3<br>3<br>2 | (b)<br>(b)<br>0<br>(b)<br>(b)<br>(b)<br>(b)<br>(b)<br>(b)           | byte (A) $\leftarrow$ (dir)<br>byte (A) $\leftarrow$ (addr16)<br>byte (A) $\leftarrow$ (Ri)<br>byte (A) $\leftarrow$ (ear)<br>byte (A) $\leftarrow$ (eam)<br>byte (A) $\leftarrow$ (io)<br>byte (A) $\leftarrow$ imm8<br>byte (A) $\leftarrow$ ((A))<br>byte (A) $\leftarrow$ ((RWi))+disp8)<br>byte (A) $\leftarrow$ ((RLi))+disp8)<br>byte (A) $\leftarrow$ ((SP)+disp8)<br>byte (A) $\leftarrow$ (addr24)<br>byte (A) $\leftarrow$ ((A)) | X X X X X X X X X X X X X X X X X X X | * * * * * * * * * * * * * * * * * * * * | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | _<br>_<br>_<br>_<br>_<br>_ |              | * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * * * |     |                 |
| MOV dir, A MOV addr16, A MOV Ri, A MOV ear, A MOV eam, A MOV io, A MOV @RLi+disp8, A MOV @SP+disp8, A MOVP addr24, A                                                                                                        | 2<br>3<br>1<br>2<br>2+<br>2<br>3<br>3<br>5           | 2<br>2<br>1<br>2<br>2+(a)<br>2<br>6<br>3<br>3                     | (b)<br>(b)<br>0<br>(b)<br>(b)<br>(b)<br>(b)                         | byte (dir) $\leftarrow$ (A)<br>byte (addr16) $\leftarrow$ (A)<br>byte (Ri) $\leftarrow$ (A)<br>byte (ear) $\leftarrow$ (A)<br>byte (eam) $\leftarrow$ (A)<br>byte (io) $\leftarrow$ (A)<br>byte ((RLi)) +disp8) $\leftarrow$ (A)<br>byte ((SP)+disp8) $\leftarrow$ (A)<br>byte (addr24) $\leftarrow$ (A)                                                                                                                                    | _<br>_<br>_<br>_<br>_                 |                                         | _<br>_<br>_<br>_<br>_                               | -<br>-<br>-                |              | * * * * * * *         | * * * * * * * *                         |     |                 |
| MOV Ri, ear MOV Ri, eam MOVP @A, Ri MOV ear, Ri MOV eam, Ri MOV Ri, #imm8 MOV io, #imm8 MOV dir, #imm8 MOV ear, #imm8 MOV ear, #imm8 MOV eam, #imm8 MOV eam, #imm8                                                          | 2<br>2+<br>2<br>3<br>3                               | 2<br>3+ (a)<br>3<br>3+ (a)<br>2<br>3<br>3<br>2<br>2+ (a)          | 0<br>(b)<br>(b)<br>0<br>(b)<br>0<br>(b)<br>0<br>(b)                 | byte (Ri) $\leftarrow$ (ear)<br>byte (Ri) $\leftarrow$ (eam)<br>byte ((A)) $\leftarrow$ (Ri)<br>byte (ear) $\leftarrow$ (Ri)<br>byte (eam) $\leftarrow$ (Ri)<br>byte (Ri) $\leftarrow$ imm8<br>byte (io) $\leftarrow$ imm8<br>byte (dir) $\leftarrow$ imm8<br>byte (ear) $\leftarrow$ imm8<br>byte (eam) $\leftarrow$ imm8                                                                                                                  |                                       |                                         | -<br>-<br>-                                         |                            | _  <br> <br> | * * * * * *           | * * * * * — * — *                       |     |                 |

(Continued)

#### (Continued)

|     | Mnemonic | #  | cycles | В      | Operation                         | LH | АН | I | S | T | N | Z | ٧ | С | RMW |
|-----|----------|----|--------|--------|-----------------------------------|----|----|---|---|---|---|---|---|---|-----|
| XCH | A, ear   | 2  | 3      | 0      | byte (A) $\leftrightarrow$ (ear)  | Ζ  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| XCH | A, eam   | 2+ | 3+ (a) | 2× (b) | byte $(A) \leftrightarrow (eam)$  | Ζ  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| XCH | Ri, ear  | 2  | 4      | 0      | byte (Ri) ↔ (ear)                 | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| XCH | Ri, eam  | 2+ | 5+ (a) | 2× (b) | byte (Ri) $\leftrightarrow$ (eam) | -  | _  | _ | _ | _ | _ | _ | _ | _ | _   |

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 7 Transfer Instructions (Word) [40 Instructions]

| Mnemonic                              | #      | cycles      | В        | Operation                                                      | LH | АН     | ı | S | Т | N | Z | ٧ | С | RMW |
|---------------------------------------|--------|-------------|----------|----------------------------------------------------------------|----|--------|---|---|---|---|---|---|---|-----|
| MOVW A, dir                           | 2      | 2           | (c)      | word (A) $\leftarrow$ (dir)                                    | _  | *      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW A, addr16                        | 3      | 2           | (c)      | word (A) ← (addr16)                                            | -  | *      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW A, SP                            | 1      | 2           | 0        | word (A) $\leftarrow$ (SP)                                     | _  | *      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW A, RWi                           | 1      | 1           | 0        | word (A) $\leftarrow$ (RWi)                                    | _  | *      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW A, ear                           | 2      | 1           | 0        | word (A) ← (ear)                                               | _  | *      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW A, eam                           | 2+     | 2+ (a)      | (c)      | word $(A) \leftarrow (eam)$                                    | -  | *      | _ | _ | _ | * | * | _ | - | _   |
| MOVW A, io                            | 2      | 2           | (c)      | word (A) $\leftarrow$ (io)                                     | _  | *      | _ | _ | _ | * | * | _ | - | _   |
| MOVW A, @A                            | 2      | 2           | (c)      | word $(A) \leftarrow ((A))$                                    | _  | -<br>* | _ | _ | _ | * | * | _ | - | _   |
| MOVW A, #imm16                        | 3      | 2           | 0        | word (A) $\leftarrow$ imm16                                    | _  | *      | - | _ | _ | * | * | _ | - | _   |
| MOVW A, @RWi+disp8                    | 2      | 3           | (c)      | word (A) $\leftarrow$ ((RWi) +disp8)                           | _  | *      | - | _ | _ | * | * | _ | _ | _   |
| MOVW A, @RLi+disp8                    | 3      | 6           | (c)      | word (A) $\leftarrow$ ((RLi) +disp8)                           | _  | *      | - | _ | _ | * | * |   | _ | _   |
| MOVW A, @SP+disp8                     | 3      | 3           | (c)      | word (A) $\leftarrow$ ((SP) +disp8                             |    | *      | _ | _ | _ | * | * | _ | _ | _   |
| MOVPW A, addr24                       | 5      | 3           | (c)      | word (A) $\leftarrow$ (addr24)                                 | -  |        | _ | _ | _ | * | * | _ | _ | _   |
| MOVPW A, @A                           | 2      | 2           | (c)      | word (A) $\leftarrow$ ((A))                                    | -  | _      | _ | _ | _ |   |   | _ | _ |     |
| MOVW dir, A                           | 2      | 2           | (c)      | word (dir) $\leftarrow$ (A)                                    | _  | _      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW addr16, A                        | 3      | 2           | (c)      | word (addr16) ← (A)                                            | _  | _      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW SP, # imm16                      | 4      | 2           | 0        | word (SP) ← imm16                                              | -  | _      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW SP, A                            | 1      | 2           | 0        | word (SP) $\leftarrow$ (A)                                     | _  | _      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW RWi, A                           | 1      | 1           | 0        | word (RWi) $\leftarrow$ (A)                                    | _  | _      | _ | _ | _ | * | * | _ | - | _   |
| MOVW ear, A                           | 2      | 2           | 0        | word (ear) ← (A)                                               | _  | _      | - | _ | _ | * | * | _ | _ | _   |
| MOVW eam, A                           | 2+     | 2+ (a)      | (c)      | word (eam) $\leftarrow$ (A)                                    | _  | _      | - | _ | _ | * | * | _ | _ | _   |
| MOVW io, A                            | 2      | 2           | (c)      | word (io) $\leftarrow$ (A)                                     | _  | _      | - | _ | _ | * | * | _ | _ | _   |
| MOVW @RWi+disp8, A                    | 2      | 3           | (c)      | word ((RWi) +disp8) $\leftarrow$ (A)                           |    | _      | _ |   | _ | * | * | _ | _ |     |
| MOVW @RLi+disp8, A                    | 3      | 6           | (c)      | word ((RLi) +disp8) $\leftarrow$ (A)                           | -  | _      |   | _ | _ | * | * | _ | _ | _   |
| MOVW @SP+disp8, A                     | 3      | 3           | (c)      | word ((SP) +disp8) $\leftarrow$ (A)                            | -  | _      | _ | _ | _ | * | * | _ | _ | _   |
| MOVPW addr24, A                       | 5      | 3           | (c)      | word (addr24) $\leftarrow$ (A)                                 | _  | _      | _ | _ | _ | * | * | _ |   | _   |
| MOVPW @A, RWi                         | 2<br>2 | 2           | (c)<br>0 | word $((A)) \leftarrow (RWi)$<br>word $(RWi) \leftarrow (ear)$ | _  | _      | _ | _ |   | * | * | _ | _ | _   |
| MOVW RWi, ear<br>MOVW RWi, eam        | 2+     | ∠<br>3+ (a) | (c)      | word (RWi) $\leftarrow$ (ear)<br>word (RWi) $\leftarrow$ (eam) | _  | _      | _ |   | _ | * | * | _ | _ | _   |
| MOVW RWI, earn                        | 2+     | 3+ (a)      | 0        | word (RWI) ← (BWI)                                             | _  | _      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW ear, RWi                         | 2+     | 3+ (a)      | (c)      | word (ear) $\leftarrow$ (RWi)                                  | _  | _      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW RWi, #imm16                      | 3      | 2 2         | 0        | word (Cam) ← (RWI)<br>word (RWI) ← imm16                       | _  | _      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW io, #imm16                       | 4      | 3           | (c)      | word (io) $\leftarrow$ imm16                                   | _  | _      | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVW lo, #illimmo<br>MOVW ear, #imm16 | 4      | 2           | 0        | word (ear) ← imm16                                             | _  | _      | _ | _ | _ | * | * | _ | _ | _   |
| MOVW ean, #imm16                      | 4+     | 2+ (a)      | (c)      | word (eam) ← imm16                                             | _  | _      | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVW @AL, AH                          | 2      | 2           | (c)      | word $((A)) \leftarrow (AH)$                                   | _  | _      | _ | _ | _ | * | * | _ | - | _   |
| XCHW A, ear                           | 2      | 3           | 0        | word (A) $\leftrightarrow$ (ear)                               | _  | _      | _ | _ | _ | _ | _ | _ | _ | _   |
| XCHW A, eam                           | 2+     |             |          | word (A) $\leftrightarrow$ (ear)                               | _  | _      | _ | _ | _ | _ | _ | _ | _ | _   |
| XCHW RWi, ear                         | 2      | 4           | 0        | word (RWi) $\leftrightarrow$ (ear)                             | _  | _      | _ | _ | _ | _ | _ | _ | _ | _   |
| XCHW RWi, eam                         | 2+     | -           | •        | word (RWi) $\leftrightarrow$ (eam)                             | _  | _      | _ | _ | _ | _ | _ | _ | _ | _   |

Note: For an explanation of "(a)" and "(c)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 8 Transfer Instructions (Long Word) [11 Instructions]

| Mnemonic            | #  | cycles | В   | Operation                            | LH | АН | I | S | T | N | Z | ٧ | С | RMW |
|---------------------|----|--------|-----|--------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| MOVL A, ear         | 2  | 1      | 0   | long (A) ← (ear)                     | _  | _  | _ | _ | _ | * | * | _ | _ | _   |
| MOVL A, eam         | 2+ | 3+ (a) | (d) | long (A) ← (eam)                     | _  | _  | _ | _ | _ | * | * | _ | _ | _   |
| MOVL A, # imm32     | 5  | 3      | 0   | long (A) $\leftarrow$ imm32          | _  | _  | _ | _ | _ | * | * | _ | _ | _   |
| MOVL A, @SP + disp8 | 3  | 4      | (d) | $long(A) \leftarrow ((SP) + disp8)$  | _  | _  | _ | _ | _ | * | * | _ | _ | _   |
| MOVPL A, addr24     | 5  | 4      | (d) | long (A) ← (addr24)                  | _  | _  | _ | _ | _ | * | * | _ | _ | _   |
| MOVPL A, @A         | 2  | 3      | (d) | $long (A) \leftarrow ((A))$          | _  | _  | _ | _ | _ | * | * | _ | - | _   |
| MOVPL @A, RLi       | 2  | 5      | (d) | $long ((A)) \leftarrow (RLi)$        | _  | _  | _ | _ | _ | * | * | _ | _ | _   |
| MOVL @SP + disp8, A | 3  | 4      | (d) | $long ((SP) + disp8) \leftarrow (A)$ | _  | _  | _ | _ | _ | * | * | _ | _ | _   |
| MOVPL addr24, A     | 5  | 4      | (d) | long (addr24) ← (A)                  | _  | _  | _ | _ | _ | * | * | _ | _ | _   |
| MOVL ear, A         | 2  | 2      | 0   | long (ear) ← (A)                     | _  | _  | _ | _ | _ | * | * | _ | _ | _   |
| MOVL eam, A         | 2+ | 3+ (a) | (d) | long (eam) $\leftarrow$ (A)          | _  | _  | _ | _ | _ | * | * | _ | _ | _   |

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

| Mnemonic                                                                                                                   | #                                                 | cycles                                                        | В                                                        | Operation                                                                                                                                                                                                                                                                                                                                                                                                          | LH                    | АН                    | I       | S         | T        | N                                     | Z                 | ٧                 | С                 | RMW                             |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------|-----------|----------|---------------------------------------|-------------------|-------------------|-------------------|---------------------------------|
| ADD A, #imm8 ADD A, dir ADD A, ear ADD A, eam ADD ear, A ADD eam, A ADDC A ADDC A, ear ADDC A, ear ADDC A, eam ADDC A, eam | 2<br>2<br>2+<br>2<br>2+<br>1<br>2<br>2+<br>1      | 2<br>3<br>2<br>3+ (a)<br>2<br>3+ (a)<br>2<br>2<br>3+ (a)<br>3 | 0<br>(b)<br>0<br>(b)<br>0<br>2×(b)<br>0<br>0<br>(b)<br>0 | byte (A) $\leftarrow$ (A) +imm8<br>byte (A) $\leftarrow$ (A) +(dir)<br>byte (A) $\leftarrow$ (A) +(ear)<br>byte (A) $\leftarrow$ (A) +(eam)<br>byte (ear) $\leftarrow$ (ear) + (A)<br>byte (eam) $\leftarrow$ (eam) + (A)<br>byte (A) $\leftarrow$ (AH) + (AL) + (C)<br>byte (A) $\leftarrow$ (A) + (ear) + (C)<br>byte (A) $\leftarrow$ (AH) + (AL) + (C) (Decimal)                                               | Z Z Z Z Z Z Z Z Z Z Z |                       |         |           | 11111111 | * * * * * * * * *                     | * * * * * * * *   | * * * * * * * *   | * * * * * * * *   | * *                             |
| SUB A, #imm8 SUB A, dir SUB A, ear SUB A, eam SUB ear, A SUB eam, A SUBC A SUBC A, ear SUBC A, ear SUBC A, eam SUBC A      | 2<br>2<br>2<br>2+<br>2<br>2+<br>1<br>2<br>2+<br>1 | 2<br>3<br>2<br>3+ (a)<br>2<br>3+ (a)<br>2<br>2<br>3+ (a)<br>3 | 0<br>(b)<br>0<br>(b)<br>0<br>2×(b)<br>0<br>0<br>(b)<br>0 | byte (A) $\leftarrow$ (A) -imm8<br>byte (A) $\leftarrow$ (A) - (dir)<br>byte (A) $\leftarrow$ (A) - (ear)<br>byte (A) $\leftarrow$ (A) - (eam)<br>byte (ear) $\leftarrow$ (ear) - (A)<br>byte (eam) $\leftarrow$ (eam) - (A)<br>byte (A) $\leftarrow$ (AH) - (AL) - (C)<br>byte (A) $\leftarrow$ (A) - (ear) - (C)<br>byte (A) $\leftarrow$ (A) - (eam) - (C)<br>byte (A) $\leftarrow$ (AH) - (AL) - (C) (Decimal) | Z Z Z Z – Z Z Z Z Z Z |                       |         |           |          | * * * * * * * * * * * * * * * * * * * | * * * * * * * * * | * * * * * * * * * | * * * * * * * * * | -<br>-<br>-<br>*<br>*<br>-<br>- |
| ADDW A ADDW A, ear ADDW A, eam ADDW A, #imm16 ADDW ear, A ADDW eam, A ADDCW A, ear ADDCW A, eam                            | 1<br>2<br>2+<br>3<br>2<br>2+<br>2<br>2+           | 2<br>2<br>3+ (a)<br>2<br>2<br>3+ (a)<br>2<br>3+ (a)           | 0<br>0<br>(c)<br>0<br>0<br>2×(c)<br>0<br>(c)             | word (A) $\leftarrow$ (AH) + (AL)<br>word (A) $\leftarrow$ (A) +(ear)<br>word (A) $\leftarrow$ (A) +(eam)<br>word (A) $\leftarrow$ (A) +imm16<br>word (ear) $\leftarrow$ (ear) + (A)<br>word (eam) $\leftarrow$ (eam) + (A)<br>word (A) $\leftarrow$ (A) + (ear) + (C)<br>word (A) $\leftarrow$ (A) + (eam) + (C)                                                                                                  |                       |                       |         |           |          | * * * * * * * *                       | * * * * * * *     | * * * * * * * *   | * * * * * * *     | -<br>-<br>-<br>*<br>*           |
| SUBW A SUBW A, ear SUBW A, eam SUBW A, #imm16 SUBW ear, A SUBW eam, A SUBCW A, ear SUBCW A, eam                            | 1<br>2<br>2+<br>3<br>2<br>2+<br>2<br>2+           | 2<br>2<br>3+ (a)<br>2<br>3+ (a)<br>2<br>3+ (a)                | (c)                                                      | word (A) $\leftarrow$ (AH) – (AL)<br>word (A) $\leftarrow$ (A) – (ear)<br>word (A) $\leftarrow$ (A) – (eam)<br>word (A) $\leftarrow$ (A) – imm16<br>word (ear) $\leftarrow$ (ear) – (A)<br>word (eam) $\leftarrow$ (eam) – (A)<br>word (A) $\leftarrow$ (A) – (ear) – (C)<br>word (A) $\leftarrow$ (A) – (eam) – (C)                                                                                               | -<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>- |         |           |          | * * * * * * * *                       | * * * * * * *     | * * * * * * *     | * * * * * * * *   | -<br>-<br>-<br>*<br>*           |
| ADDL A, ear ADDL A, eam ADDL A, #imm32  SUBL A, ear SUBL A, eam SUBL A, #imm32                                             | 2<br>2+<br>5<br>2<br>2+<br>5                      | 5<br>6+ (a)<br>4<br>5<br>6+ (a)<br>4                          | 0<br>(d)<br>0<br>(d)<br>0                                | $\begin{array}{l} \text{long (A)} \leftarrow \text{(A)} + \text{(ear)} \\ \text{long (A)} \leftarrow \text{(A)} + \text{(eam)} \\ \text{long (A)} \leftarrow \text{(A)} + \text{imm32} \\ \\ \text{long (A)} \leftarrow \text{(A)} - \text{(ear)} \\ \text{long (A)} \leftarrow \text{(A)} - \text{(eam)} \\ \text{long (A)} \leftarrow \text{(A)} - \text{imm32} \\ \end{array}$                                  |                       | _<br>_<br>_<br>_      | 111 111 | 1 1 1 1 1 | 111 111  | * * * * *                             | * * * *           | * * * * *         | * * * * *         |                                 |

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

| Mn           | emonic     | #       | cycles      | В           | Operation                                      | LH     | АН     | I   | S      | Т      | N | Z | ٧ | С        | RMW |
|--------------|------------|---------|-------------|-------------|------------------------------------------------|--------|--------|-----|--------|--------|---|---|---|----------|-----|
| INC<br>INC   | ear<br>eam | 2<br>2+ | 2<br>3+ (a) | 0<br>2× (b) | byte (ear) ← (ear) +1<br>byte (eam) ← (eam) +1 | _      | _      | _   | _      | _      | * | * | * | _        | *   |
| DEC<br>DEC   | ear<br>eam | 2<br>2+ | 2<br>3+ (a) | 0<br>2× (b) | byte (ear) ← (ear) −1<br>byte (eam) ← (eam) −1 | _<br>_ | _      |     | _<br>_ | _<br>_ | * | * | * | _        | *   |
| INCW<br>INCW | ear<br>eam | 2<br>2+ | 2<br>3+ (a) | 0<br>2× (c) | word (ear) ← (ear) +1<br>word (eam) ← (eam) +1 | _      | _      | 1 1 | _      | _      | * | * | * | _        | *   |
| DECW<br>DECW | ear<br>eam | 2<br>2+ | 2<br>3+ (a) | 0<br>2× (c) | word (ear) ← (ear) −1<br>word (eam) ← (eam) −1 | _<br>_ | _<br>_ |     | _<br>_ | _<br>_ | * | * | * | _        | *   |
| INCL<br>INCL | ear<br>eam | 2<br>2+ | 4<br>5+ (a) |             | long (ear) ← (ear) +1<br>long (eam) ← (eam) +1 | _      | _      | 1 1 | _      | _      | * | * | * | _        | *   |
| DECL<br>DECL | ear<br>eam | 2<br>2+ | 4<br>5+ (a) | 0<br>2× (d) | long (ear) ← (ear) -1<br>long (eam) ← (eam) -1 | _<br>_ | _<br>_ | 1 1 | _<br>_ | _<br>_ | * | * | * | <u>-</u> | *   |

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

| Mn   | emonic    | #  | cycles | В   | Operation        | LH | АН | I | S | Т | N | Z | ٧ | С | RMW |
|------|-----------|----|--------|-----|------------------|----|----|---|---|---|---|---|---|---|-----|
| CMP  | Α         | 1  | 2      | 0   | byte (AH) – (AL) | _  | _  | - | _ | _ | * | * | * | * | _   |
| CMP  | A, ear    | 2  | 2      | 0   | byte (A) – (ear) | _  | _  | _ | _ | _ | * | * | * | * | _   |
| CMP  | A, eam    | 2+ | 2+ (a) | (b) | byte (A) – (eam) | _  | _  | _ | _ | _ | * | * | * | * | _   |
| CMP  | A, #imm8  | 2  | 2 ′    | O´  | byte (A) – imm8  | _  | _  | _ | _ | _ | * | * | * | * | _   |
| CMPW | Α         | 1  | 2      | 0   | word (AH) – (AL) | _  | ١  | 1 | - | - | * | * | * | * | _   |
| CMPW | A, ear    | 2  | 2      | 0   | word (A) – (ear) | _  | _  | _ | _ | _ | * | * | * | * | -   |
| CMPW | A, eam    | 2+ | 2+ (a) | (c) | word (A) – (eam) | _  | _  | _ | _ | _ | * | * | * | * | _   |
| CMPW | A, #imm16 | 3  | 2      | 0   | word (A) – imm16 | _  | _  | _ | _ | _ | * | * | * | * | -   |
| CMPL | A, ear    | 2  | 3      | 0   | long (A) – (ear) | _  | ١  | 1 | - | - | * | * | * | * | _   |
| CMPL | A, eam    | 2+ | 4+ (a) | (d) | long (A) – (eam) | _  | _  | _ | _ | _ | * | * | * | * | _   |
| CMPL | A, #imm32 | 5  | 3 ′    | 0   | long (A) – imm32 | _  | _  | _ | _ | _ | * | * | * | * | _   |

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 12 Unsigned Multiplication and Division Instructions (Word/Long Word) [11 Instructions]

| Mnemonic     | #  | cycles | В   | Operation                                                                                                                                                    | LH | АН | I | S | T | N | Ζ | ٧ | С | RMW |
|--------------|----|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| DIVU A       | 1  | *1     | 0   | word (AH) /byte (AL)                                                                                                                                         | _  | _  | _ | _ | _ | _ | _ | * | * | _   |
| DIVU A, ear  | 2  | *2     | 0   | Quotient $\rightarrow$ byte (AL) Remainder $\rightarrow$ byte (AH) word (A)/byte (ear)<br>Quotient $\rightarrow$ byte (A) Remainder $\rightarrow$ byte (ear) | _  | _  | ı | _ | _ | _ | _ | * | * | _   |
| DIVU A, eam  | 2+ | *3     | *6  | word (A)/byte (eam)                                                                                                                                          | _  | _  | _ | _ | _ | _ | _ | * | * | _   |
| DIVUW A, ear | 2  | *4     | 0   | Quotient $\rightarrow$ byte (A) Remainder $\rightarrow$ byte (eam) long (A)/word (ear)                                                                       | _  | _  | _ | _ | _ | _ |   | * | * | _   |
| 2.7.0.7., 00 | _  |        |     | Quotient $\rightarrow$ word (A) Remainder $\rightarrow$ word (ear)                                                                                           |    |    |   |   |   |   |   |   |   |     |
| DIVUW A, eam | 2+ | *5     | *7  | long (A)/word (eam)                                                                                                                                          | _  | _  | _ | _ | _ | _ | _ | * | * | _   |
|              |    |        |     | Quotient $\rightarrow$ word (A) Remainder $\rightarrow$ word (eam)                                                                                           |    |    |   |   |   |   |   |   |   |     |
| MULU A       | 1  | *8     | 0   | byte (AH) $\times$ byte (AL) $\rightarrow$ word (A)                                                                                                          | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MULU A, ear  | 2  | *9     | 0   | byte $(A) \times$ byte $(ear) \rightarrow$ word $(A)$                                                                                                        | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MULU A, eam  | 2+ | *10    | (b) | byte (A) $\times$ byte (eam) $\rightarrow$ word (A)                                                                                                          | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MULUW A      | 1  | *11    | 0   | word (AH) $\times$ word (AL) $\rightarrow$ long (A)                                                                                                          | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MULUW A, ear | 2  | *12    | 0   | word (A) $\times$ word (ear) $\rightarrow$ long (A)                                                                                                          | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MULUW A, eam | 2+ | *13    | (c) | word (A) $\times$ word (eam) $\rightarrow$ long (A)                                                                                                          | _  | _  | - | - | _ | - | _ | _ | - | _   |

For an explanation of "(b)" and "(c), refer to Table 5, "Correction Values for Number of Cycle Used to Calculate Number of Actual Cycles."

<sup>\*1: 3</sup> when dividing into zero, 6 when an overflow occurs, and 14 normally.

<sup>\*2: 3</sup> when dividing into zero, 5 when an overflow occurs, and 13 normally.

<sup>\*3: 5 + (</sup>a) when dividing into zero, 7 + (a) when an overflow occurs, and 17 + (a) normally.

<sup>\*4: 3</sup> when dividing into zero, 5 when an overflow occurs, and 21 normally.

<sup>\*5: 4 + (</sup>a) when dividing into zero, 7 + (a) when an overflow occurs, and 25 + (a) normally.

<sup>\*6: (</sup>b) when dividing into zero or when an overflow occurs, and  $2 \times (b)$  normally.

<sup>\*7: (</sup>c) when dividing into zero or when an overflow occurs, and  $2 \times$  (c) normally.

<sup>\*8: 3</sup> when byte (AH) is zero, and 7 when byte (AH) is not 0.

<sup>\*9: 3</sup> when byte (ear) is zero, and 7 when byte (ear) is not 0.

<sup>\*10:</sup> 4 + (a) when byte (eam) is zero, and 8 + (a) when byte (eam) is not 0.

<sup>\*11: 3</sup> when word (AH) is zero, and 11 when word (AH) is not 0.

<sup>\*12: 3</sup> when word (ear) is zero, and 11 when word (ear) is not 0.

<sup>\*13: 4 + (</sup>a) when word (eam) is zero, and 12 + (a) when word (eam) is not 0.

Table 13 Signed Multiplication and Division Instructions (Word/Long Word) [11 Insturctions]

| Mnemonic    | #  | cycles | В   | Operation                                                          | LH | АН | I | S | Т | N | Z | ٧ | С | RMW |
|-------------|----|--------|-----|--------------------------------------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| DIV A       | 2  | *1     | 0   | word (AH) /byte (AL)                                               | Ζ  | _  | _ | _ | _ | _ | _ | * | * | _   |
|             | _  |        |     | Quotient $\rightarrow$ byte (AL) Remainder $\rightarrow$ byte (AH) |    |    |   |   |   |   |   |   |   |     |
| DIV A, ear  | 2  | *2     | 0   | word (A)/byte (ear)                                                | Ζ  | _  | _ | _ | _ | _ | _ | * | * | _   |
|             |    |        |     | Quotient $\rightarrow$ byte (A) Remainder $\rightarrow$ byte (ear) |    |    |   |   |   |   |   |   |   |     |
| DIV A, eam  | 2+ | *3     | *6  | word (A)/byte (eam)                                                | Ζ  | _  | _ | _ | _ | _ | _ | * | * | _   |
|             |    |        |     | Quotient $\rightarrow$ byte (A) Remainder $\rightarrow$ byte (eam) |    |    |   |   |   |   |   |   |   |     |
| DIVW A, ear | 2  | *4     | 0   | long (A)/word (ear)                                                | _  | _  | _ | _ | _ | _ | _ | * | * | _   |
|             |    |        |     | Quotient $\rightarrow$ word (A) Remainder $\rightarrow$ word (ear) |    |    |   |   |   |   |   |   |   |     |
| DIVW A, eam | 2+ | *5     | *7  | long (A)/word (eam)                                                | _  | _  | _ | _ | _ | _ | _ | * | * | _   |
|             |    |        |     | Quotient $\rightarrow$ word (A) Remainder $\rightarrow$ word (eam) |    |    |   |   |   |   |   |   |   |     |
| MUL A       | 2  | *8     | 0   | byte (AH) $\times$ byte (AL) $\rightarrow$ word (A)                | _  | _  | _ | _ | _ | _ | _ | - | _ | _   |
| MUL A, ear  | 2  | *9     | 0   | byte (A) $\times$ byte (ear) $\rightarrow$ word (A)                | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MUL A, eam  | 2+ | *10    | (b) | byte (A) $\times$ byte (eam) $\rightarrow$ word (A)                | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MULW A      | 2  | *11    | 0   | word (AH) $\times$ word (AL) $\rightarrow$ long (A)                | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MULW A, ear | 2  | *12    | 0   | word $(A) \times word (ear) \rightarrow long (A)$                  | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MULW A, eam | 2+ | *13    | (b) | word $(A) \times word (eam) \rightarrow long (A)$                  | _  | _  | ı | _ | _ | _ | ı | ı | - | _   |

For an explanation of "(b)" and "(c)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

- \*1: 3 when dividing into zero, 8 or 18 when an overflow occurs, and 18 normally.
- \*2: 3 when dividing into zero, 10 or 21 when an overflow occurs, and 22 normally.
- \*3: 4 + (a) when dividing into zero, 11 + (a) or 22 + (a) when an overflow occurs, and 23 + (a) normally.
- \*4: When the dividend is positive: 4 when dividing into zero, 10 or 29 when an overflow occurs, and 30 normally. When the dividend is negative: 4 when dividing into zero, 11 or 30 when an overflow occurs, and 31 normally.
- \*5: When the dividend is positive: 4 + (a) when dividing into zero, 11 + (a) or 30 + (a) when an overflow occurs, and 31 + (a) normally.
  - When the dividend is negative: 4 + (a) when dividing into zero, 12 + (a) or 31 + (a) when an overflow occurs, and 32 + (a) normally.
- \*6: (b) when dividing into zero or when an overflow occurs, and  $2 \times$  (b) normally.
- \*7: (c) when dividing into zero or when an overflow occurs, and  $2 \times$  (c) normally.
- \*8: 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- \*9: 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
- \*10: 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
- \*11: 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- \*12: 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
- \*13: 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.

Note: Which of the two values given for the number of execution cycles applies when an overflow error occurs in a DIV or DIVW instruction depends on whether the overflow was detected before or after the operation.

Table 14 Logical 1 Instructions (Byte, Word) [39 Instructions]

| Mn                                            | emonic                                                              | #                                            | cycles                               | В                                              | Operation                                                                                                                                                                                                                                                                                                                                            | LH                    | АН               | ı                          | S         | Т                  | N                 | Z               | ٧                | С         | RMW                   |
|-----------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|----------------------------|-----------|--------------------|-------------------|-----------------|------------------|-----------|-----------------------|
| AND<br>AND<br>AND<br>AND<br>AND               | A, #imm8<br>A, ear<br>A, eam<br>ear, A<br>eam, A                    | 2<br>2<br>2+<br>2<br>2+                      | 2<br>2<br>3+ (a)<br>3<br>3+ (a)      | 0<br>(b)<br>0<br>2×(b)                         | byte (A) $\leftarrow$ (A) and imm8<br>byte (A) $\leftarrow$ (A) and (ear)<br>byte (A) $\leftarrow$ (A) and (eam)<br>byte (ear) $\leftarrow$ (ear) and (A)<br>byte (eam) $\leftarrow$ (eam) and (A)                                                                                                                                                   | _<br>_<br>_<br>_      | _<br>_<br>_<br>_ | _<br>_<br>_<br>_           |           | <br> -<br> -<br> - | * * * *           | * * * *         | R<br>R<br>R<br>R |           | <br><br>*<br>*        |
| OR<br>OR<br>OR<br>OR<br>OR                    | A, #imm8<br>A, ear<br>A, eam<br>ear, A<br>eam, A                    | 2<br>2+<br>2<br>2+                           | 2<br>2<br>3+ (a)<br>3<br>3+ (a)      | 0<br>(b)<br>0<br>2× (b)                        | byte (A) $\leftarrow$ (A) or imm8<br>byte (A) $\leftarrow$ (A) or (ear)<br>byte (A) $\leftarrow$ (A) or (eam)<br>byte (ear) $\leftarrow$ (ear) or (A)<br>byte (eam) $\leftarrow$ (eam) or (A)                                                                                                                                                        | -<br>-<br>-<br>-      | _<br>_<br>_<br>_ | _<br>_<br>_<br>_           |           |                    | *<br>*<br>*<br>*  | * * * * *       | R<br>R<br>R<br>R | 1 1 1 1 1 | -<br>-<br>*<br>*      |
| XOR<br>XOR<br>XOR<br>XOR<br>XOR<br>NOT<br>NOT | A, #imm8<br>A, ear<br>A, eam<br>ear, A<br>eam, A<br>A<br>ear<br>eam | 2<br>2<br>2+<br>2<br>2+<br>1<br>2<br>2+      | 2                                    | 0                                              | byte (A) $\leftarrow$ (A) xor imm8<br>byte (A) $\leftarrow$ (A) xor (ear)<br>byte (A) $\leftarrow$ (A) xor (eam)<br>byte (ear) $\leftarrow$ (ear) xor (A)<br>byte (eam) $\leftarrow$ (eam) xor (A)<br>byte (A) $\leftarrow$ not (A)<br>byte (ear) $\leftarrow$ not (ear)<br>byte (eam) $\leftarrow$ not (eam)                                        | -<br>-<br>-<br>-<br>- |                  | -<br>-<br>-<br>-<br>-<br>- |           |                    | * * * * * * * *   | * * * * * * *   | RRRRRRR          |           | -<br>-<br>*<br>*<br>* |
| ANDW<br>ANDW<br>ANDW                          | A, #imm16<br>A, ear<br>A, eam                                       | 1<br>3<br>2<br>2+<br>2<br>2+                 | 2<br>2<br>3+ (a)<br>3<br>3+ (a)      | 0<br>0<br>(c)<br>0<br>2×(c)                    | word (A) $\leftarrow$ (AH) and (A)<br>word (A) $\leftarrow$ (A) and imm16<br>word (A) $\leftarrow$ (A) and (ear)<br>word (A) $\leftarrow$ (A) and (eam)<br>word (ear) $\leftarrow$ (ear) and (A)<br>word (eam) $\leftarrow$ (eam) and (A)                                                                                                            | _<br>_<br>_<br>_<br>_ |                  | -<br>-<br>-<br>-           | 1 1 1 1 1 | 11111              | * * * * * *       | * * * * * *     | R R R R R R      | 11111     | -<br>-<br>-<br>*<br>* |
| ORW<br>ORW<br>ORW<br>ORW<br>ORW<br>ORW        | A<br>A, #imm16<br>A, ear<br>A, eam<br>ear, A<br>eam, A              | 1<br>3<br>2<br>2+<br>2<br>2+                 | 2<br>2<br>2<br>3+ (a)<br>3<br>3+ (a) | 0<br>0<br>(c)<br>0<br>2×(c)                    | word (A) $\leftarrow$ (AH) or (A)<br>word (A) $\leftarrow$ (A) or imm16<br>word (A) $\leftarrow$ (A) or (ear)<br>word (A) $\leftarrow$ (A) or (eam)<br>word (ear) $\leftarrow$ (ear) or (A)<br>word (eam) $\leftarrow$ (eam) or (A)                                                                                                                  | -<br>-<br>-<br>-      |                  | -<br>-<br>-<br>-           | 11111     | 11111              | * * * * * *       | * * * * * *     | R R R R R        |           | _<br>_<br>_<br>*<br>* |
| XORW<br>XORW<br>XORW                          | A, #imm16<br>A, ear<br>A, eam<br>ear, A<br>eam, A<br>A              | 1<br>3<br>2<br>2+<br>2<br>2+<br>1<br>2<br>2+ | 2                                    | 0<br>0<br>(c)<br>0<br>2×(c)<br>0<br>0<br>2×(c) | word (A) $\leftarrow$ (AH) xor (A)<br>word (A) $\leftarrow$ (A) xor imm16<br>word (A) $\leftarrow$ (A) xor (ear)<br>word (A) $\leftarrow$ (A) xor (eam)<br>word (ear) $\leftarrow$ (ear) xor (A)<br>word (eam) $\leftarrow$ (eam) xor (A)<br>word (A) $\leftarrow$ not (A)<br>word (ear) $\leftarrow$ not (ear)<br>word (eam) $\leftarrow$ not (eam) |                       |                  |                            |           |                    | * * * * * * * * * | * * * * * * * * | RRRRRRRR         |           |                       |

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

| Mn           | emonic           | #       | cycles      | В        | Operation                                                               | LH     | АН     | I      | S      | Т      | N | Z | ٧      | С      | RMW    |
|--------------|------------------|---------|-------------|----------|-------------------------------------------------------------------------|--------|--------|--------|--------|--------|---|---|--------|--------|--------|
| ANDL<br>ANDL | A, ear<br>A, eam | 2<br>2+ | 5<br>6+ (a) | 0<br>(d) | long (A) $\leftarrow$ (A) and (ear) long (A) $\leftarrow$ (A) and (eam) | _<br>_ | _<br>_ | _<br>_ | _<br>_ | _<br>_ | * | * | R<br>R | _      | _      |
| ORL<br>ORL   | A, ear<br>A, eam | 2<br>2+ | 5<br>6+ (a) |          | long (A) $\leftarrow$ (A) or (ear) long (A) $\leftarrow$ (A) or (eam)   | _<br>_ | _<br>_ |        | _<br>_ | _<br>_ | * | * | R<br>R | -<br>- |        |
| XORL<br>XORL | A, ear<br>A, eam | 2<br>2+ | 5<br>6+ (a) | 0<br>(d) | long (A) $\leftarrow$ (A) xor (ear) long (A) $\leftarrow$ (A) xor (eam) | _<br>_ | _<br>_ |        | _<br>_ | _<br>_ | * | * | R<br>R | _      | _<br>_ |

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

| Mn           | emonic     | #       | cycles      | В           | Operation                                                              | LH     | АН     | ı | S      | Т | N | Z | ٧ | С | RMW |
|--------------|------------|---------|-------------|-------------|------------------------------------------------------------------------|--------|--------|---|--------|---|---|---|---|---|-----|
| NEG          | Α          | 1       | 2           | 0           | byte (A) $\leftarrow$ 0 – (A)                                          | Χ      | -      | _ | _      | - | * | * | * | * | _   |
| NEG<br>NEG   | ear<br>eam | 2<br>2+ | 2<br>3+ (a) | 0<br>2× (b) | byte (ear) $\leftarrow$ 0 – (ear)<br>byte (eam) $\leftarrow$ 0 – (eam) | _<br>_ | _      | _ | _      | _ | * | * | * | * | *   |
| NEGW         | А          | 1       | 2           | 0           | word (A) $\leftarrow$ 0 – (A)                                          | -      | -      | - | _      | _ | * | * | * | * | _   |
| NEGW<br>NEGW |            | 2<br>2+ | 2<br>3+ (a) | 0<br>2× (c) | word (ear) $\leftarrow$ 0 - (ear) word (eam) $\leftarrow$ 0 - (eam)    | _<br>_ | _<br>_ | _ | _<br>_ | _ | * | * | * | * | *   |

For an explanation of "(a)", "(b)" and "(c)" and refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Absolute Value Instructions (Byte/Word/Long Word) [3 Insturctions]

| Mnemonic | # | cycles | В | Operation                                  | LH | АН | I | S | T | N | Z | ٧ | С | RMW |
|----------|---|--------|---|--------------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| ABS A    | 2 | 2      | 0 | byte (A) ← absolute value (A)              | Ζ  | _  | _ | _ | _ | * | * | * | _ | -   |
| ABSW A   | 2 | 2      | 0 | word $(A) \leftarrow$ absolute value $(A)$ | _  | _  | _ | _ | _ | * | * | * | _ | _   |
| ABSL A   | 2 | 4      | 0 | long $(A) \leftarrow$ absolute value $(A)$ | _  | -  | _ | _ | _ | * | * | * | _ | -   |

Table 18 Normalize Instructions (Long Word) [1 Instruction]

| Mnemonic   | # | cycles | В | Operation                                                                                    | LH | АН | I | S | T | N | Z | ٧ | C | RMW |
|------------|---|--------|---|----------------------------------------------------------------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| NRML A, R0 | 2 | *      |   | long (A) ← Shifts to the position at which "1" was set first byte (R0) ← current shift count | -  | -  | _ | 1 | * | 1 | _ | - | - | _   |

<sup>\*:5</sup> when the contents of the accumulator are all zeroes, 5 + (R0) in all other cases.

Table 19 Shift Instructions (Byte/Word/Long Word) [27 Instructions]

| Mnemonic      | #  | cycles | В      | Operation                                                     | LH | АН | I | S | Т | N | Z | ٧ | С | RMW |
|---------------|----|--------|--------|---------------------------------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| RORC A        | 2  | 2      | 0      | byte (A) ← Right rotation with carry                          | _  | _  | - | _ | _ | * | * | _ | * | _   |
| ROLC A        | 2  | 2      | 0      | byte (A) ← Left rotation with carry                           | -  | _  | - | - | _ | * | * | _ | * | _   |
| RORC ear      | 2  | 2      | 0      | byte (ear) ← Right rotation with carry                        | _  | _  | _ | _ | _ | * | * | _ | * | *   |
| RORC eam      | 2+ |        | 2× (b) | byte (eam) ← Right rotation with carry                        | _  | _  | _ | _ | _ | * | * | _ | * | *   |
| ROLC ear      | 2  | 2      | 0      | byte (ear) ← Left rotation with carry                         | _  | _  | _ | _ | _ | * | * | _ | * | *   |
| ROLC eam      | 2+ | 3+ (a) | 2× (b) | byte (eam) ← Left rotation with carry                         | -  | _  | _ | _ | _ | * | * | _ | * | *   |
| ASR A, R0     | 2  | *1     | 0      | byte (A) $\leftarrow$ Arithmetic right barrel shift (A, R0)   | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSR A, R0     | 2  | *1     | 0      | byte (A) ← Logical right barrel shift (A, R0)                 | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSL A, R0     | 2  | *1     | 0      | byte (A) ← Logical left barrel shift (A, R0)                  | -  | _  | _ | _ | _ | * | * | _ | * | _   |
| ASR A, #imm8  | 3  | *3     | 0      | byte (A) ← Arithmetic right barrel shift (A, imm8)            | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSR A, #imm8  | 3  | *3     | 0      | byte (A) ← Logical right barrel shift (A, imm8)               | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSL A, #imm8  | 3  | *3     | 0      | byte (A) ← Logical left barrel shift (A, imm8)                | _  | _  | _ | _ | _ | * | * | _ | * | _   |
| ASRW A        | 1  | 2      | 0      | word (A) ← Arithmetic right shift (A, 1 bit)                  | -  | _  | _ | _ | * | * | * | _ | * | _   |
| LSRW A/SHRW A | 1  | 2      | 0      | word (A) ← Logical right shift (A, 1 bit)                     | _  | _  | _ | _ | * | R | * | _ | * | _   |
| LSLW A/SHLW A | 1  | 2      | 0      | word (A) ← Logical left shift (A, 1 bit)                      | -  | _  | _ | _ | - | * | * | _ | * | _   |
| ASRW A, R0    | 2  | *1     | 0      | word (A) ← Arithmetic right barrel shift (A, R0)              | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSRW A, R0    | 2  | *1     | 0      | word (A) ← Logical right barrel shift (A, R0)                 | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSLW A, R0    | 2  | *1     | 0      | word (A) $\leftarrow$ Logical left barrel shift (A, R0)       | -  | _  | _ | _ | - | * | * | _ | * | _   |
| ASRW A, #imm8 | 3  | *3     | 0      | word (A) $\leftarrow$ Arithmetic right barrel shift (A, imm8) | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSRW A, #imm8 | 3  | *3     | 0      | word (A) ← Logical right barrel shift (A, imm8)               | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSLW A, #imm8 | 3  | *3     | 0      | word (A) ← Logical left barrel shift (A, imm8)                | -  | _  | _ | _ | _ | * | * | _ | * | _   |
| ASRL A, R0    | 2  | *2     | 0      | long (A) ← Arithmetic right shift (A, R0)                     | -  | _  | - | - | * | * | * | _ | * | -   |
| LSRL A, R0    | 2  | *2     | 0      | long (A) ← Logical right barrel shift (A, R0)                 | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSLL A, R0    | 2  | *2     | 0      | long (A) ← Logical left barrel shift (A, R0)                  | -  | _  | - | _ | _ | * | * | _ | * | _   |
| ASRL A, #imm8 | 3  | *4     | 0      | long (A) $\leftarrow$ Arithmetic right shift (A, imm8)        |    | _  | _ | _ | * | * | * | _ | * | _   |
| LSRL A, #imm8 | 3  | *4     | 0      | long (A) $\leftarrow$ Logical right barrel shift (A, imm8)    | _  | _  | _ | _ | * | * | * | _ | * | _   |
| LSLL A, #imm8 | 3  | *4     | 0      | long (A) ← Logical left barrel shift (A, imm8)                | -  | -  | - | - | _ | * | * | - | * | _   |

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

<sup>\*1: 3</sup> when R0 is 0, 3 + (R0) in all other cases.

<sup>\*2: 3</sup> when R0 is 0, 4 + (R0) in all other cases.

<sup>\*3: 3</sup> when imm8 is 0, 3 + (imm8) in all other cases.

<sup>\*4: 3</sup> when imm8 is 0, 4 + (imm8) in all other cases.

Table 20 Branch 1 Instructions [31 Instructions]

| Mne    | emonic    | #  | cycles | В      | Operation                                                 | LH | АН | I | S | Т | N | Z | ٧ | С | RMW |
|--------|-----------|----|--------|--------|-----------------------------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| BZ/BEC | Q rel     | 2  | *1     | 0      | Branch when (Z) = 1                                       | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BNZ/BN | NE rel    | 2  | *1     | 0      | Branch when $(Z) = 0$                                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BC/BLC | O rel     | 2  | *1     | 0      | Branch when $(C) = 1$                                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BNC/BI | HS rel    | 2  | *1     | 0      | Branch when $(C) = 0$                                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BN     | rel       | 2  | *1     | 0      | Branch when $(N) = 1$                                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BP     | rel       | 2  | *1     | 0      | Branch when $(N) = 0$                                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BV     | rel       | 2  | *1     | 0      | Branch when $(V) = 1$                                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BNV    | rel       | 2  | *1     | 0      | Branch when $(V) = 0$                                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BT     | rel       | 2  | *1     | 0      | Branch when $(T) = 1$                                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BNT    | rel       | 2  | *1     | 0      | Branch when $(T) = 0$                                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BLT    | rel       | 2  | *1     | 0      | Branch when $(V)$ xor $(N) = 1$                           | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BGE    | rel       | 2  | *1     | 0      | Branch when $(V)$ xor $(N) = 0$                           | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BLE    | rel       | 2  | *1     | 0      | ((V) xor (N)) or (Z) = 1                                  | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BGT    | rel       | 2  | *1     | 0      | ((V) xor (N)) or (Z) = 0                                  | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BLS    | rel       | 2  | *1     | 0      | Branch when (C) or $(Z) = 1$                              | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BHI    | rel       | 2  | *1     | 0      | Branch when $(C)$ or $(Z) = 0$                            | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| BRA    | rel       | 2  | *1     | 0      | Branch unconditionally                                    | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| JMP    | @A        | 1  | 2      | 0      | word (PC) $\leftarrow$ (A)                                | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| JMP    | addr16    | 3  | 2      | 0      | word (PC) ← addr16                                        | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| JMP    | @ear      | 2  | 3      | 0      | word (PC) ← (ear)                                         | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| JMP    | @eam      | 2+ | 4+ (a) | (c)    | word (PC) ← (eam)                                         | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| JMPP   | @ear *3   | 2  | 3      | 0      | word (PC) $\leftarrow$ (ear), (PCB) $\leftarrow$ (ear +2) | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| JMPP   | @eam *3   | 2+ | 4+ (a) | (d)    | word (PC) $\leftarrow$ (eam), (PCB) $\leftarrow$ (eam +2) | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| JMPP   | addr24    | 4  | 3      | 0      | word (PC) ← ad24 0 to 15                                  | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
|        |           |    |        |        | (PCB) ← ad24 16 to 23                                     |    |    |   |   |   |   |   |   |   |     |
| CALL   | @ear *4   | 2  | 4      | (c)    | word (PC) ← (ear)                                         | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| CALL   | @eam *4   | 2+ | 5+ (a) | 2× (c) | word (PC) $\leftarrow$ (eam)                              | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| CALL   | addr16 *5 | 3  | 5      | (c)    | word (PC) ← addr16                                        | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| CALLV  | #vct4 *5  | 1  | 5      | 2× (c) | Vector call linstruction                                  | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| CALLP  | @ear *6   | 2  | 7      | 2× (c) | word (PC) $\leftarrow$ (ear) 0 to 15,                     | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
|        |           |    |        |        | (PCB) ← (ear) 16 to 23                                    |    |    |   |   |   |   |   |   |   |     |
| CALLP  | @eam *6   | 2+ | 8+ (a) | *2     | word (PC) $\leftarrow$ (eam) 0 to 15,                     | _  | _  | _ | - | _ | - | _ | _ | _ | -   |
|        |           |    |        |        | (PCB) ← (eam) 16 to 23                                    |    |    |   |   |   |   |   |   |   |     |
| CALLP  | addr24 *7 | 4  | 7      | 2× (c) | word (PC) $\leftarrow$ addr 0 to 15,                      | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
|        |           |    |        |        | (PCB) ← addr 16 to 23                                     |    |    |   |   |   |   |   |   |   |     |

For an explanation of "(a)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

<sup>\*1: 3</sup> when branching, 2 when not branching.

<sup>\*2:</sup>  $3 \times (c) + (b)$ 

<sup>\*3:</sup> Read (word) branch address.

<sup>\*4:</sup> W: Save (word) to stack; R: Read (word) branch address.

<sup>\*5:</sup> Save (word) to stack.

<sup>\*6:</sup> W: Save (long word) to W stack; R: Read (long word) branch address.

<sup>\*7:</sup> Save (long word) to stack.

Table 21 Branch 2 Instructions [20 Instructions]

| Mnemonic               | #  | cycles   | В        | Operation                             | LH | АН | I      | S      | T | N | Z | ٧ | С | RMW        |
|------------------------|----|----------|----------|---------------------------------------|----|----|--------|--------|---|---|---|---|---|------------|
| CBNE A, #imm8, rel     | 3  | *1       | 0        | Branch when byte (A) ≠ imm8           | _  | _  | _      | _      | _ | * | * | * | * | _          |
| CWBNE A, #imm16, rel   | 4  | *1       | 0        | Branch when byte (A) ≠ imm16          | _  | _  | _      | _      | _ | * | * | * | * | _          |
|                        |    | *1       |          |                                       |    |    |        |        |   |   |   |   |   |            |
| CBNE ear, #imm8, rel   | 4  | *3       | 0        | Branch when byte (ear) ≠ imm8         | _  | _  | _      | _      | _ | * | * | * | * | _          |
| CBNE eam, #imm8, rel   | 4+ | *1       | (b)      | Branch when byte (eam) ≠ imm8         | _  | _  | _      | _      | _ | * | * | * | * | _          |
| CWBNE ear, #imm16, rel | _  | *3       | 0        | Branch when word (ear) ≠ imm16        |    | _  | _      | _      | _ | * | * | * | * | _          |
| CWBNE eam, #imm16, rel | 5+ | *2       | (c)      | Branch when word (eam) ≠ imm16        | _  | _  | _      | _      | _ | * | * | * | * | _          |
| DBNZ ear, rel          | 3  | *4       | 0        | Branch when byte (ear) =              | _  | _  | _      | _      | _ | * | * | * | _ | _          |
|                        |    |          |          | (ear) – 1, and (ear) ≠ 0              |    |    |        |        |   |   |   |   |   |            |
| DBNZ eam, rel          | 3+ | *2       | 2× (b)   | Branch when byte (ear) =              | _  | _  | _      | _      | _ | * | * | * | _ | *          |
|                        |    |          |          | $(eam) - 1$ , and $(eam) \neq 0$      |    |    |        |        |   |   |   |   |   |            |
| DWBNZ ear, rel         | 3  | *4       | 0        | Branch when word (ear) =              | _  | _  | _      | _      | _ | * | * | * | _ | _          |
| DIAGNIZ                | _  |          |          | (ear) $-1$ , and (ear) $\neq 0$       |    |    |        |        |   |   |   |   |   |            |
| DWBNZ eam, rel         | 3+ | 4.4      | 2× (c)   | Branch when word (eam) =              | _  | _  | _      | _      | _ | * | * | * | _ | *          |
|                        |    | 14<br>12 |          | $(eam) - 1$ , and $(eam) \neq 0$      |    |    |        |        |   |   |   |   |   |            |
| INT #vct8              | 2  | 13       | 0, , (a) | Coffee and into me and                |    |    | _      | 0      |   |   |   |   |   |            |
| INT addr16             | 2  | 14       |          | Software interrupt                    | _  | _  | R<br>R | SS     | _ | _ | _ | _ | _ | _          |
| INTP addr24            | 4  | 9        |          | Software interrupt                    | _  | _  | R      | o<br>S | _ | _ | _ | _ | _ | _          |
| INT9                   | 1  | 11       |          | Software interrupt Software interrupt | _  | _  | R      | S      | _ | _ |   | _ | _ |            |
| RETI                   | 1  |          |          | Return from interrupt                 |    |    | *      | *      | * | * | * | * | * | _          |
| RETIQ *6               | 2  | 6        | *5       | Return from interrupt                 |    | _  | *      | *      | * | * | * | * | * |            |
| INE ITO                | _  |          |          | Tretum nom interrupt                  |    |    |        |        |   |   |   |   |   |            |
| LINK #imm8             | 2  |          | (c)      | At constant entry, save old           | _  | _  | _      | _      | _ | _ | _ | _ | _ | _          |
|                        | _  |          | ,        | frame pointer to stack, set new       |    |    |        |        |   |   |   |   |   |            |
|                        |    | 5        |          | frame pointer, and allocate           |    |    |        |        |   |   |   |   |   |            |
|                        |    |          |          | local pointer area                    |    |    |        |        |   |   |   |   |   |            |
| UNLINK                 | 1  |          | (c)      | At constant entry, retrieve old       | _  | _  | _      | _      | _ | _ | _ | _ | _ | _          |
|                        |    | 4        |          | frame pointer from stack.             |    |    |        |        |   |   |   |   |   |            |
| DET +7                 |    | 5        |          | ·                                     |    |    |        |        |   |   |   |   |   |            |
| RET *7                 | 1  |          | (c)      | Return from subroutine                | _  | _  | _      | _      | _ | _ | _ | _ | _ | <b>-  </b> |
| RETP *8                | 1  |          | (d)      | Return from subroutine                | _  | _  | _      | _      | _ | _ | _ | _ | _ | _          |

For an explanation of "(b)", "(c)" and "(d)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

<sup>\*1: 4</sup> when branching, 3 when not branching

<sup>\*2: 5</sup> when branching, 4 when not branching

<sup>\*3: 5 + (</sup>a) when branching, 4 + (a) when not branching

<sup>\*4: 6 + (</sup>a) when branching, 5 + (a) when not branching

<sup>\*5:</sup>  $3 \times (b) + 2 \times (c)$  when an interrupt request is generated,  $6 \times (c)$  when returning from the interrupt.

<sup>\*6:</sup> High-speed interrupt return instruction. When an interrupt request is detected during this instruction, the instruction branches to the interrupt vector without performing stack operations when the interrupt is generated.

<sup>\*7:</sup> Return from stack (word)

<sup>\*8:</sup> Return from stack (long word)

Table 22 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

| Mnemonic                                                         | #                          | cycles                     | В                          | Operation                                                                                                                                                                                                                                                                                                                                                                             | LH          | АН          | I                     | S           | T           | N           | Z                | ٧                | С           | RMW         |
|------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------------------|-------------|-------------|-------------|------------------|------------------|-------------|-------------|
| PUSHW A PUSHW AH PUSHW PS PUSHW rlst                             | 1<br>1<br>1<br>2           | 3<br>3<br>*3               | (C)<br>(C)<br>(C)<br>*4    | $\begin{aligned} & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{A}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{AH}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{PS}) \\ & (\text{SP}) \leftarrow (\text{SP}) - 2n, ((\text{SP})) \leftarrow (\text{rlst}) \end{aligned}$ |             | 1 1 1 1     | -<br>-<br>-           |             |             |             | _<br>_<br>_<br>_ | _<br>_<br>_<br>_ |             |             |
| POPW A<br>POPW AH<br>POPW PS<br>POPW rlst                        | 1<br>1<br>1<br>2           | 3<br>3<br>3<br>*2          | (c)<br>(c)<br>(c)<br>*4    | $\begin{aligned} & \text{word (A)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (AH)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (PS)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{(rlst)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) \end{aligned}$      |             | *           | -<br>*<br>-           | -<br>*<br>- | -<br>*<br>- | -<br>*<br>- | -<br>*<br>-      | -<br>*<br>-      | -<br>*<br>- | -<br>-<br>- |
| JCTX @A                                                          | 1                          | 9                          | 6× (c)                     | Context switch instruction                                                                                                                                                                                                                                                                                                                                                            | _           | -           | *                     | *           | *           | *           | *                | *                | *           | _           |
| AND CCR, #imm8<br>OR CCR, #imm8                                  | 2                          | 3                          | 0                          | byte (CCR) ← (CCR) and imm8<br>byte (CCR) ← (CCR) or imm8                                                                                                                                                                                                                                                                                                                             |             | 1 1         | *                     | *           | *           | *           | *                | *                | *           | _<br>_      |
| MOV RP, #imm8<br>MOV ILM, #imm8                                  | 2                          | 2 2                        | 0<br>0                     | byte (RP) ←imm8<br>byte (ILM) ←imm8                                                                                                                                                                                                                                                                                                                                                   |             | 1 1         | _                     |             |             |             | _<br>_           | _                |             | _<br>_      |
| MOVEA RWi, ear<br>MOVEA RWi, eam<br>MOVEA A, ear<br>MOVEA A, eam | 2<br>2+<br>2<br>2+         | 3<br>2+ (a)<br>2<br>1+ (a) | 0<br>0<br>0<br>0           | word (RWi) ←ear<br>word (RWi) ←eam<br>word(A) ←ear<br>word (A) ←eam                                                                                                                                                                                                                                                                                                                   |             | -<br>*<br>* | _<br>_<br>_<br>_      |             |             |             | _<br>_<br>_<br>_ | _<br>_<br>_<br>_ |             | -<br>-<br>- |
| ADDSP #imm8<br>ADDSP #imm16                                      | 2                          | 3                          | 0                          | word (SP) $\leftarrow$ ext (imm8)<br>word (SP) $\leftarrow$ imm16                                                                                                                                                                                                                                                                                                                     |             | 1 1         | _                     |             |             |             | _                | _<br>_           |             | _<br>_      |
| MOV A, brgl<br>MOV brg2, A<br>MOV brg2, #imm8                    | 2<br>2<br>3                | *1<br>1<br>2               | 0<br>0<br>0                | byte (A) ← (brgl)<br>byte (brg2) ← (A)<br>byte (brg2) ← imm8                                                                                                                                                                                                                                                                                                                          | Z<br>-<br>- | *           | _<br>_<br>_           |             | -<br>-<br>- | * *         | * *              | -<br>-<br>-      |             |             |
| NOP<br>ADB<br>DTB<br>PCB<br>SPB<br>NCC<br>CMR                    | 1<br>1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0 | No operation Prefix code for AD space access Prefix code for DT space access Prefix code for PC space access Prefix code for SP space access Prefix code for no flag change Prefix code for the common register bank                                                                                                                                                                  |             |             | -<br>-<br>-<br>-<br>- |             |             |             |                  |                  |             |             |
| MOVW SPCU, #imm16<br>MOVW SPCL, #imm16<br>SETSPC<br>CLRSPC       | 4<br>4<br>2<br>2           | 2<br>2<br>2<br>2           | 0<br>0<br>0<br>0           | word (SPCU) ← (imm16)<br>word (SPCL) ← (imm16)<br>Stack check ooperation enable<br>Stack check ooperation disable                                                                                                                                                                                                                                                                     |             | 1 1 1 1     | _<br>_<br>_<br>_      |             |             |             | _<br>_<br>_<br>_ | _<br>_<br>_<br>_ |             | _<br>_<br>_ |
| BTSCN A<br>BTSCNS A<br>BTSCND A                                  | 2<br>2<br>2                | *5<br>*6<br>*7             | 0<br>0<br>0                | byte (A) $\leftarrow$ position of "1" bit in word (A)<br>byte (A) $\leftarrow$ position of "1" bit in word (A) $\times$ 2<br>byte (A) $\leftarrow$ position of "1" bit in word (A) $\times$ 4                                                                                                                                                                                         | Ζ           |             | -<br>-<br>-           | -<br>-<br>- | -<br>-<br>- | _<br>_<br>_ | * *              | _<br>_<br>_      | -<br>-      | -<br>-<br>- |

For an explanation of "(a)" and "(c)", refer to Tables 4 and 5.

DPR: 3 cycles

<sup>\*1:</sup> PCB, ADB, SSB, USB, and SPB: 1 cycle DTB: 2 cycles

<sup>\*2:</sup>  $3 + 4 \times (pop count)$ \*3:  $3 + 4 \times (push count)$ 

<sup>\*4:</sup> Pop count  $\times$  (c), or push count  $\times$  (c)

<sup>\*5: 3</sup> when AL is 0, 5 when AL is not 0.

<sup>\*6: 4</sup> when AL is 0, 6 when AL is not 0.

<sup>\*7: 5</sup> when AL is 0, 7 when AL is not 0.

Table 23 Bit Manipulation Instructions [21 Instructions]

| Mr                   | nemonic                                     | #           | cycles         | В                          | Operation                                                                                                  | LH          | АН          | I | S           | T           | N           | Z   | ٧           | С | RMW         |
|----------------------|---------------------------------------------|-------------|----------------|----------------------------|------------------------------------------------------------------------------------------------------------|-------------|-------------|---|-------------|-------------|-------------|-----|-------------|---|-------------|
| MOVB<br>MOVB<br>MOVB | A, dir:bp<br>A, addr16:bp<br>A, io:bp       | 3<br>4<br>3 | 3<br>3<br>3    | (b)<br>(b)                 | byte (A) $\leftarrow$ (dir:bp) b<br>byte (A) $\leftarrow$ (addr16:bp) b<br>byte (A) $\leftarrow$ (io:bp) b | Z<br>Z<br>Z | * *         |   |             | -<br>-<br>- | * *         | * * |             |   | _<br>_<br>_ |
| MOVB<br>MOVB<br>MOVB | dir:bp, A<br>addr16:bp, A<br>io:bp, A       | 3<br>4<br>3 | 4<br>4<br>4    |                            | bit (dir:bp) $b \leftarrow (A)$<br>bit (addr16:bp) $b \leftarrow (A)$<br>bit (io:bp) $b \leftarrow (A)$    |             | _<br>_<br>_ |   |             | _<br>_<br>_ | * *         | * * | <br>        |   | * *         |
| SETB<br>SETB<br>SETB | dir:bp<br>addr16:bp<br>io:bp                | 3<br>4<br>3 | 4<br>4<br>4    | 2× (b)<br>2× (b)<br>2× (b) | bit (dir:bp) b $\leftarrow$ 1<br>bit (addr16:bp) b $\leftarrow$ 1<br>bit (io:bp) b $\leftarrow$ 1          |             | _<br>_<br>_ |   | -<br>-<br>- | -<br>-<br>- | _<br>_<br>_ |     | -<br>-<br>- |   | * *         |
| CLRB<br>CLRB<br>CLRB | dir:bp<br>addr16:bp<br>io:bp                | 3<br>4<br>3 | 4<br>4<br>4    |                            | bit (dir:bp) $b \leftarrow 0$<br>bit (addr16:bp) $b \leftarrow 0$<br>bit (io:bp) $b \leftarrow 0$          |             | -<br>-<br>- |   |             | -<br>-<br>- | -<br>-<br>- |     |             |   | * *         |
| BBC<br>BBC<br>BBC    | dir:bp, rel<br>addr16:bp, rel<br>io:bp, rel | 4<br>5<br>4 | *1<br>*1<br>*1 | (b)<br>(b)                 | Branch when (dir:bp) b = 0<br>Branch when (addr16:bp) b = 0<br>Branch when (io:bp) b = 0                   | 1 1 1       | _<br>_<br>_ |   |             | _<br>_<br>_ | _<br>_<br>_ | * * |             |   | -<br>-<br>- |
| BBS<br>BBS<br>BBS    | dir:bp, rel<br>addr16:bp, rel<br>io:bp, rel | 4<br>5<br>4 | *1<br>*1<br>*1 | (b)<br>(b)                 | Branch when (dir:bp) b = 1<br>Branch when (addr16:bp) b = 1<br>Branch when (io:bp) b = 1                   |             | _<br>_<br>_ |   |             | _<br>_<br>_ | _<br>_<br>_ | * * |             |   | _<br>_<br>_ |
| SBBS                 | addr16:bp, rel                              | 5           | *2             | 2× (b)                     | Branch when $(addr16:bp)b=1$ , $bit=1$                                                                     | _           | _           | - | -           | -           | _           | *   | _           | _ | *           |
| WBTS                 | io:bp                                       | 3           | *3             | *4                         | Wait until (io:bp) b = 1                                                                                   | _           | _           | _ | _           | _           | _           | _   | _           | _ | _           |
| WBTC                 | io:bp                                       | 3           | *3             | *4                         | Wait until (io:bp) b = 0                                                                                   | -           | _           | - | -           | _           | _           | _   | -           | - | _           |

For an explanation of "(b)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

<sup>\*1: 5</sup> when branching, 4 when not branching

<sup>\*2: 7</sup> when condition is satisfied, 6 when not satisfied

<sup>\*3:</sup> Undefined count

<sup>\*4:</sup> Until condition is satisfied

Table 24 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

| Mnemonic | # | cycles | В | Operation                                              | LH | АН | I | S | T | N | Z | ٧ | С | RMW |
|----------|---|--------|---|--------------------------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| SWAP     | 1 | 3      | 0 | byte (A) 0 to 7 $\leftarrow$ $\rightarrow$ (A) 8 to 15 | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| SWAPW    | 1 | 2      | 0 | word $(AH) \leftarrow \rightarrow (AL)$                | _  | *  | _ | _ | _ | _ | _ | _ | _ | _   |
| EXT      | 1 | 1      | 0 | Byte code extension                                    | Χ  | _  | _ | _ | _ | * | * | _ | _ | _   |
| EXTW     | 1 | 2      | 0 | Word code extension                                    | _  | Χ  | _ | _ | _ | * | * | _ | _ | -   |
| ZEXT     | 1 | 1      | 0 | Byte zero extension                                    | Ζ  | _  | _ | _ | _ | R | * | _ | _ | _   |
| ZEXTW    | 1 | 2      | 0 | Word zero extension                                    | _  | Ζ  | _ | _ | _ | R | * | _ | _ | _   |

Table 25 String Instructions [10 Instructions]

| Mnemonic     | # | cycles | В  | Operation                                           | LH | АН | I | S | T | N | Z | ٧ | С | RMW |
|--------------|---|--------|----|-----------------------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| MOVS/MOVSI   | 2 | *2     | *3 | Byte transfer @AH+ ← @AL+, counter = RW0            | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVSD        | 2 | *2     | *3 | Byte transfer @AH–← @AL–, counter = RW0             | -  | -  | - | - | - | _ | - | _ | _ | _   |
| SCEQ/SCEQI   | 2 | *1     | *4 | Byte retrieval @AH+ - AL, counter = RW0             | _  | _  | _ | _ | _ | * | * | * | * | _   |
| SCEQD        | 2 | *1     | *4 | Byte retrieval @AHAL, counter = RW0                 | _  | -  | - | - | - | * | * | * | * | _   |
| FILS/FILSI   | 2 | 5m +3  | *5 | Byte filling @AH+ ← AL, counter = RW0               | _  | -  | _ | ı | ı | * | * | _ | ı | _   |
| MOVSW/MOVSWI | 2 | *2     | *6 | Troid transfer State Country                        | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVSWD       | 2 | *2     | *6 | Word transfer $@AH-\leftarrow @AL-$ , counter = RW0 | _  | -  | - | - | - | _ | - | _ | _ | _   |
| SCWEQ/SCWEQI | 2 | *1     | *7 | Word retrieval @AH+ - AL, counter = RW0             | _  | _  | _ | _ | _ | * | * | * | * | _   |
| SCWEQD       | 2 | *1     | *7 | Word retrieval @AHAL, counter = RW0                 | _  | -  | - | _ | _ | * | * | * | * | -   |
| FILSW/FILSWI | 2 | 5m +3  | *8 | Word filling @AH+ ← AL, counter = RW0               | _  | _  | - | _ | _ | * | * | _ | _ | _   |

m: RW0 value (counter value)

<sup>\*1: 3</sup> when RW0 is 0, 2 +  $6 \times$  (RW0) for count out, and 6n + 4 when match occurs

<sup>\*2: 4</sup> when RW0 is 0, 2 +  $6 \times$  (RW0) in any other case

<sup>\*3: (</sup>b)  $\times$  (RW0)

<sup>\*4: (</sup>b)  $\times$  n

<sup>\*5: (</sup>b)  $\times$  (RW0)

<sup>\*6: (</sup>c)  $\times$  (RW0)

<sup>\*7: (</sup>c)  $\times$  n

<sup>\*8: (</sup>c) × (RW0)

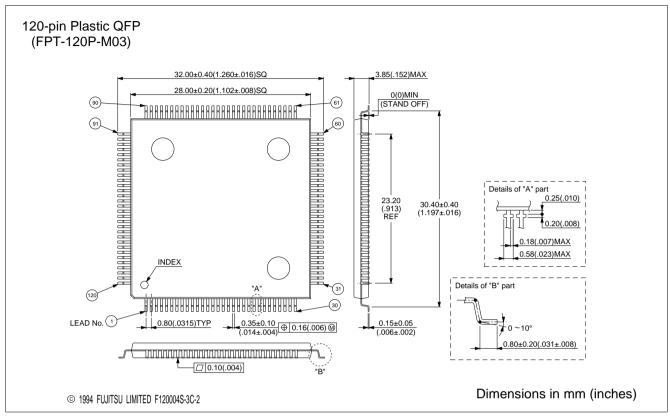
Table 26 Multiple Data Transfer Instructions [18 Instructions]

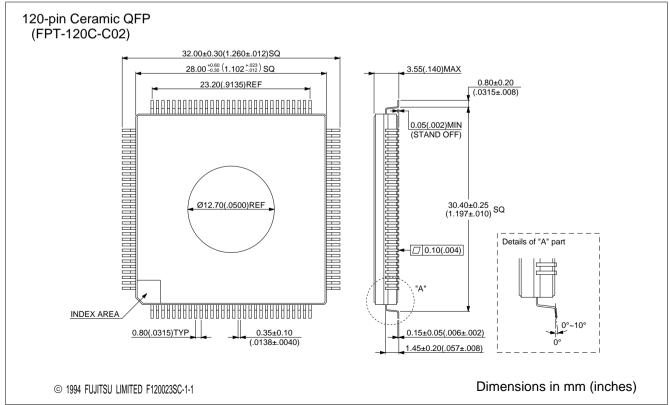
| Mnemonic                 | #  | cycles | В  | Operation                                             | LH | АН | I | S | T | N | Z | ٧ | С | RMW |
|--------------------------|----|--------|----|-------------------------------------------------------|----|----|---|---|---|---|---|---|---|-----|
| MOVM @A, @RLi, #imm8     | 3  | *1     | *3 | Multiple data trasfer byte $((A)) \leftarrow ((RLi))$ | _  | _  | ١ | _ | _ | _ | _ | _ | _ | _   |
| MOVM @A, eam, #imm8      | 3+ | *2     | *3 | Multiple data trasfer byte ((A)) ← (eam)              | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVM addr16, @RLi, #imm8 | 5  | *1     | *3 | Multiple data trasfer byte (addr16) ← ((RLi))         | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVM addr16, eam, #imm8  | 5+ | *2     | *3 | Multiple data trasfer byte (addr16) ← (eam)           | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVMW @A, @RLi, #imm8    | 3  | *1     | *4 | Multiple data trasfer word ((A)) $\leftarrow$ ((RLi)) | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVMW @A, eam, #imm8     | 3+ | *2     | *4 | Multiple data trasfer word ((A)) ← (eam)              | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVMWaddr16, @RLi,#imm8  | 5  | *1     | *4 | Multiple data trasfer word (addr16) ← ((RLi))         | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVMW addr16, eam, #imm8 | 5+ | *2     | *4 | Multiple data trasfer word (addr16) ← (eam)           | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVM @RLi, @A, #imm8     | 3  | *1     | *3 | Multiple data trasfer byte $((RLi)) \leftarrow ((A))$ | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVM eam, @A, #imm8      | 3+ | *2     | *3 | Multiple data trasfer byte (eam) $\leftarrow$ ((A))   | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVM @RLi, addr16, #imm8 | 5  | *1     | *3 | Multiple data transfer byte ((RLi)) ← (addr16)        | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVM eam, addr16, #imm8  | 5+ | *2     | *3 | Multiple data transfer byte (eam) ← (addr16)          | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVMW @RLi, @A, #imm8    | 3  | *1     | *4 | Multiple data trasfer word ((RLi)) $\leftarrow$ ((A)) | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVMW eam, @A, #imm8     | 3+ | *2     | *4 | Multiple data trasfer word (eam) $\leftarrow$ ((A))   | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVMW@RLi, addr16, #imm8 | 5  | *1     | *4 | Multiple data transfer word ((RLi)) ← (addr16)        | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVMW eam, addr16, #imm8 | 5+ | *2     | *4 | Multiple data transfer word (eam) ← (addr16)          | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| MOVM bnk: addr16, *5     | 7  | *1     | *3 | Multiple data transfer                                | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| bnk : addr16, #imm8      |    |        |    | byte (bnk:addr16) ← (bnk:addr16)                      |    |    |   |   |   |   |   |   |   |     |
| MOVMW bnk: addr16, *5    | 7  | *1     | *4 | Multiple data transfer                                | _  | _  | _ | _ | _ | _ | _ | _ | _ | _   |
| bnk: addr16, #imm8       |    |        |    | word (bnk:addr16) ← (bnk:addr16)                      |    |    |   |   |   |   |   |   |   |     |

<sup>\*1:</sup>  $5 + imm8 \times 5$ , 256 times when imm8 is zero.

<sup>\*2:</sup>  $5 + \text{imm8} \times 5 + (a)$ , 256 times when imm8 is zero.

<sup>\*3:</sup> Number of transfers  $\times$  (b)  $\times$  2


<sup>\*4:</sup> Number of transfers  $\times$  (c)  $\times$  2


<sup>\*5:</sup> The bank register specified by "bnk" is the same as for the MOVS instruction.

### **■** ORDERING INFORMATION

| Part number                                  | Туре                                                | Package                               | Remarks        |
|----------------------------------------------|-----------------------------------------------------|---------------------------------------|----------------|
| MB90224<br>MB90223<br>MB90P224A<br>MB90P224B | MB90224PF<br>MB90223PF<br>MB90P224PF<br>MB90P224BPF | 120-pin Plastic QFP<br>(FPT-120P-M03) |                |
| MB90W224A<br>MB90W224B                       | MB90W224ZF<br>MB90W224BZF                           | 120-pin Ceramic QFP<br>(FPT-120C-C02) | ES level only  |
| MB90V220                                     | MB90V220CR                                          | 256-pin Ceramic PGA<br>(PGA-256C-A02) | For evaluation |

#### **■ PACKAGE DIMENSIONS**





Note: See to the latest version of Package Data Book for official package dimensions.

## **FUJITSU LIMITED**

For further information please contact:

#### **Japan**

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices

KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

#### North and South America

FUJITSU MICROELECTRONICS, INC.

Semiconductor Division 3545 North First Street

San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

#### Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

#### Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

#### F9710

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.