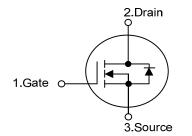


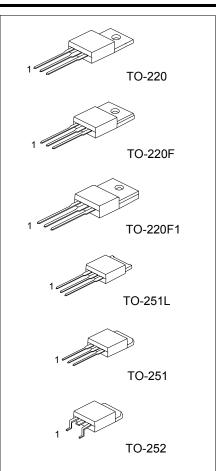
UTC UNISONIC TECHNOLOGIES CO., LTD

2N65L

Preliminary

2A, 650V N-CHANNEL **POWER MOSFET**


DESCRIPTION


The UTC 2N65L is a high voltage power MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and a high rugged avalanche characteristics. This power MOSFET is usually used in the high speed switching applications of power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- $* R_{DS(ON)} = 5.0 \Omega @V_{GS} = 10V$
- * Ultra Low gate charge (typical 9.0nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 5.0 pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness

SYMBOL -

ORDERING INFORMATION

Orderin	Ordering Number Dockage		Pin Assignment			Dealving
Lead Free	Halogen Free	Package	1	2	3	Packing
2N65LL-TA3-T	2N65LG-TA3-T	TO-220	G	D	S	Tube
2N65LL-TF1-T	2N65LG-TF1-T	TO-220F1	G	D	S	Tube
2N65LL-TF3-T	2N65LG-TF3-T	TO-220F	G	D	S	Tube
2N65LL-TM3-T	2N65LG-TM3-T	TO-251	G	D	S	Tube
2N65LL-TMA-T	2N65LG-TMA-T	TO-251L	G	D	S	Tube
2N65LL-TN3-R	2N65LG-TN3-R	TO-252	G	D	S	Tape Reel
2N65LL-TN3-T	2N65LG-TN3-T	TO-252	G	D	S	Tube
Note: Pin Assignment: G:	Gate D: Drain S: Source					

2N65LL-TA3-T (1)Packing Type (2)Package Type (3)Lead Free	 (1) T: Tube, R: Tape Reel (2) TA3: TO-220, TF1: TO-220F1, TF3: TO-220F TM3: TO-251, TMA:TO-251L, TN3: TO-252, T2Q: TO-262 	
	(3) G: Halogen Free, L: Lead Free	

■ **ABSOLUTE MAXIMUM RATINGS** (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	650	V
Gate-Source Voltage		V _{GSS}	±30	V
Avalanche Current (Note 2)		I _{AR}	2.0	А
Drain Current	Continuous	Ι _D	2.0	А
	Pulsed (Note 2)	I _{DM}	8.0	А
Avalancha Enormy	Single Pulsed (Note 3)	E _{AS}	140	mJ
Avalanche Energy	Repetitive (Note 2)	E _{AR}	4.5	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns
Power Dissipation	TO-220		54	W
	TO-220F/TO-220F1	PD	23	W
	TO-251/TO-251L/TO-252		44	W
Junction Temperature		T_J	+150	°C
Operating Temperature		T _{OPR}	-55 ~ +150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

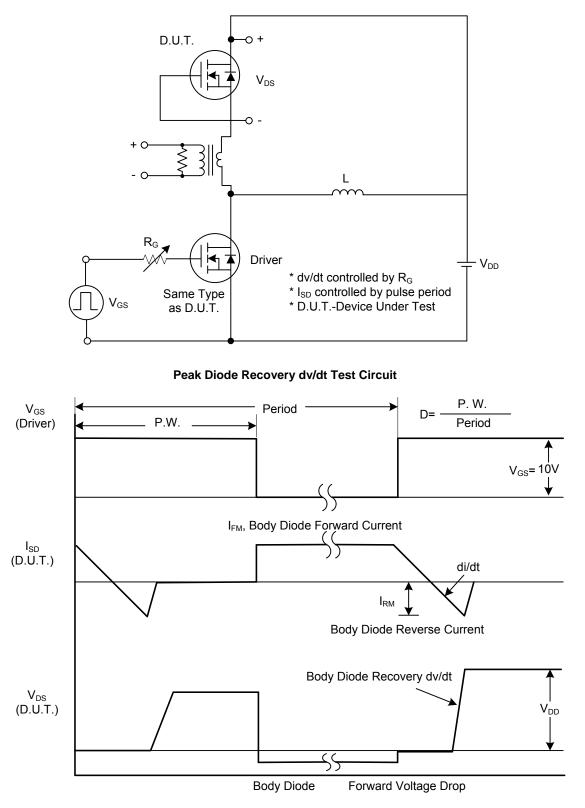
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

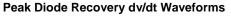
- 2. Repetitive Rating : Pulse width limited by $T_{\rm J}$
- 3. L=64mH, I_{AS}=2.0A, V_{DD}=50V, R_G=25 Ω , Starting T_J = 25°C
- 4. $I_{SD} \le 2.4A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220/TO-220F/TO-220F1	0	62.5	°C/W
	TO-251/TO-251L/TO-252	θ _{JA}	100	°C/W
Junction to Case	TO-220	θ_{Jc}	2.32	°C/W
	TO-220F/TO-220F1		5.5	°C/W
	TO-251/TO-251L/TO-252		2.87	°C/W

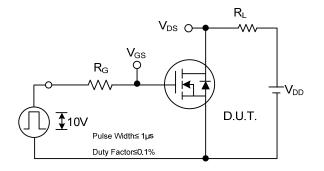
■ ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)

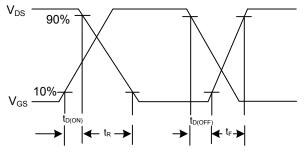

$\begin{tabular}{ c c c c c } \hline OFF CHARACTERISTICS \\ \hline Drain-Source Breakdown Voltage & BV_{DSS} & V_{GS} = 0V, I_D = 0 \\ \hline Drain-Source Leakage Current & I_{DSS} & V_{DS} = 650V, V_{DS} \\ \hline Gate-Source Leakage Current & Forward Reverse & I_{GSS} & V_{GS} = 30V, V_{DS} \\ \hline Gate-Source Leakage Current & Forward Reverse & I_{GSS} & V_{GS} = -30V, V_{DS} \\ \hline Breakdown Voltage Temperature Coefficient $\sigma BV_{DSS}/\sigma T_J$ _D=250µA,Ref ON CHARACTERISTICS \\ \hline Gate Threshold Voltage & V_{GS(TH)} & V_{DS} = V_{GS}, I_D \\ \hline Static Drain-Source On-State Resistance & R_{DS(ON)} & V_{GS} = 10V, I_D \\ \hline DYNAMIC CHARACTERISTICS \\ \hline Input Capacitance & C_{ISS} & V_{DS} = 25V, V_{GS} \\ \hline Output Capacitance & C_{RSS} & f = 1MHz \\ \hline SWITCHING CHARACTERISTICS \\ \hline Turn-On Delay Time & t_D (ON) \\ \hline Turn-On Rise Time & t_R & V_{DD} = 325V, I_D \\ \hline Turn-Off Delay Time & t_D (OFF) \\ \hline Turn-Off Fall Time & t_F & V_{DS} = 25\Omega (Note The Comparison of the temperature te$	$V_{GS} = 0V$ $v_{SS} = 0V$ $v_{DS} = 0V$ erenced to 25°C $v_{SS} = 250\mu A$ $v_{SS} = 250\mu A$ $v_{SS} = 2.0$	0.4	MAX 10 -100 -100 4.0 5.0	V μA nA V/°C V Ω
$\begin{tabular}{ c c c c c c } \hline Drain-Source Breakdown Voltage & BV_{DSS} & V_{GS} = 0V, I_D = \\ \hline Drain-Source Leakage Current & I_{DSS} & V_{DS} = 650V, V_{DS} = 00000000000000000000000000000000000$	$V_{GS} = 0V$ $V_{SS} = 0V$ $V_{DS} = 0V$ erenced to 25°C $= 250\mu A$ $= 1A$	3.9	100 -100 4.0	μA nA nA V/°C V
$\begin{tabular}{ c c c c c c } \hline Drain-Source Leakage Current & I_{DSS} & V_{DS} = 650V, V_{GS} \\ \hline Gate-Source Leakage Current & Forward & I_{GSS} & V_{GS} = 30V, V_{T} \\ \hline Reverse & I_{GSS} & V_{GS} = -30V, V_{SS} \\ \hline Breakdown Voltage Temperature Coefficient & $\Delta BV_{DSS}/$\Delta T_J & I_D = 250\muA, Ref \\ \hline ON CHARACTERISTICS \\ \hline Gate Threshold Voltage & V_{GS(TH)} & V_{DS} = V_{GS}, I_D \\ \hline Static Drain-Source On-State Resistance & R_{DS(ON)} & V_{GS} = 10V, I_D \\ \hline DYNAMIC CHARACTERISTICS \\ \hline Input Capacitance & C_{ISS} & V_{DS} = 25V, V_{G} \\ \hline Output Capacitance & C_{RSS} & f = 1MHz \\ \hline SWITCHING CHARACTERISTICS \\ \hline Turn-On Delay Time & t_D (ON) \\ \hline Turn-On Rise Time & t_R & V_{DD} = 325V, I_D \\ \hline Turn-Off Delay Time & t_F & V_{DD} = 325\Omega (Note Turn-Off Fall Time & t_F \\ \hline \end{tabular}$	$V_{GS} = 0V$ $V_{SS} = 0V$ $V_{DS} = 0V$ erenced to 25°C $= 250\mu A$ $= 1A$	3.9	100 -100 4.0	μA nA nA V/°C V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	as = 0V bs = 0V erenced to 25°C = 250µA 2.0 =1A	3.9	100 -100 4.0	nA nA V/°C V
Gate-Source Leakage CurrentIGSSVGS = -30V, VBreakdown Voltage Temperature Coefficient $\triangle BV_{DSS} / \triangle T_J$ $I_D = 250 \mu A, RefON CHARACTERISTICSGate Threshold VoltageV_{GS}(TH)V_{DS} = V_{GS}, I_DStatic Drain-Source On-State ResistanceR_{DS(ON)}V_{GS} = 10V, I_DDYNAMIC CHARACTERISTICSInput CapacitanceC_{ISS}V_{DS} = 25V, V_{GS}Output CapacitanceC_{OSS}f = 1MHzSWITCHING CHARACTERISTICSTurn-On Delay Timet_D (ON)Turn-On Rise Timet_RV_{DD} = 325V, I_DTurn-Off Delay Timet_RV_{DD} = 325V, I_DTurn-Off Fall Timet_FTurn-Off$	DS = 0V erenced to 25°C = 250μA 2.0 =1A	3.9	-100	nA V/°C V
IReverse $V_{GS} = -30V$, VBreakdown Voltage Temperature Coefficient $\triangle BV_{DSS} / \triangle T_J$ $I_D = 250 \mu A$, RefON CHARACTERISTICSGate Threshold Voltage $V_{GS(TH)}$ $V_{DS} = V_{GS}$, I_D Static Drain-Source On-State Resistance $R_{DS(ON)}$ $V_{GS} = 10V$, I_D DYNAMIC CHARACTERISTICSInput Capacitance C_{ISS} $V_{DS} = 25V$, V_{GI} Output Capacitance C_{OSS} $f = 1MHz$ SWITCHING CHARACTERISTICSTurn-On Delay Time t_D (ON)Turn-On Rise Time t_R V_{DD} = 325V, I_D Turn-Off Delay Time $t_C(OFF)$ Turn-Off Fall Time t_F	erenced to 25°C = 250μA 2.0 =1A	3.9	4.0	V/°C V
$\begin{tabular}{ c c c c c c } \hline \textbf{ON CHARACTERISTICS} \\ \hline \textbf{Gate Threshold Voltage} & V_{GS(TH)} & V_{DS} = V_{GS}, I_D \\ \hline \textbf{Static Drain-Source On-State Resistance} & R_{DS(ON)} & V_{GS} = 10V, I_D \\ \hline \textbf{DYNAMIC CHARACTERISTICS} \\ \hline \textbf{Input Capacitance} & C_{ISS} & \\ \hline \textbf{Output Capacitance} & C_{OSS} & f = 1MHz \\ \hline \textbf{Reverse Transfer Capacitance} & C_{RSS} & \\ \hline \textbf{SWITCHING CHARACTERISTICS} \\ \hline \textbf{Turn-On Delay Time} & t_D (ON) \\ \hline \textbf{Turn-On Rise Time} & t_R & \\ \hline \textbf{V}_{DD} = 325V, I_D \\ \hline \textbf{Turn-Off Delay Time} & t_F & \\ \hline \end{tabular}$	= 250µA 2.0 =1A	3.9	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=1A		-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=1A		-	-
$\begin{tabular}{ c c c c } \hline DYNAMIC CHARACTERISTICS \\ \hline Input Capacitance & C_{ISS} \\ \hline Output Capacitance & C_{OSS} \\ \hline Output Capacitance & C_{RSS} \\ \hline F = 1MHz \\ \hline F = 1MHz \\ \hline SWITCHING CHARACTERISTICS \\ \hline Turn-On Delay Time & $t_{D (ON)}$ \\ \hline Turn-On Rise Time & t_{R} \\ \hline V_{DD} = 325V, I_{D} \\ \hline Turn-Off Delay Time & $t_{D(OFF)}$ \\ \hline Turn-Off Fall Time & t_{F} \\ \hline \end{tabular}$			5.0	Ω
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	>=0V	270		
$\begin{tabular}{ c c c c c c } \hline Output Capacitance & C_{OSS} & V_{DS} = 25V, V_G \\ \hline Reverse Transfer Capacitance & C_{RSS} & f = 1 MHz \\ \hline SWITCHING CHARACTERISTICS & & & \\ \hline Turn-On Delay Time & t_{D (ON)} & & \\ \hline Turn-On Rise Time & t_R & V_{DD} = 325V, I_D & \\ \hline Turn-Off Delay Time & t_{D (OFF)} & R_G = 25\Omega (Note Turn-Off Fall Time & t_F & \\ \hline \hline Turn-Off Fall Time & t_F & & \\ \hline \hline \end{tabular}$	s=0V	270		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			350	рF
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$, , ,	40	50	рF
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		5	7	рF
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
$\begin{tabular}{ c c c c c c c } \hline Turn-Off Delay Time & $t_{D(OFF)}$ $R_G=25\Omega$ (Note Turn-Off Fall Time t_F $$		10	30	ns
Turn-Off Fall Time t _F	=2.4A,	25	60	ns
	e 1, 2)	20	50	ns
		25	60	ns
Total Gate Charge Q _G	-10)/	9.0	11	nC
Gate-Source Charge Q_{GS} V_{DS} =520V, V_{C} I_D =2.4A(No		1.6		nC
Gate-Drain Charge Q _{GD}	le 1, 2)	4.3		nC
DRAIN-SOURCE DIODE CHARACTERISTICS				
Drain-Source Diode Forward Voltage V _{SD} V _{GS} = 0 V, I _{SD}	= 2.0 A		1.4	V
Continuous Drain-Source Current I _{SD}			2.0	Α
Pulsed Drain-Source Current I _{SM}			8.0	Α
Reverse Recovery Time t_{rr} V_{GS} = 0 V, I_{SD}		180		ns
Reverse Recovery Charge Q _{RR} di/dt = 100 A/	= 2.4A,	100		μC


Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%

2. Essentially independent of operating temperature

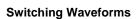
TEST CIRCUITS AND WAVEFORMS

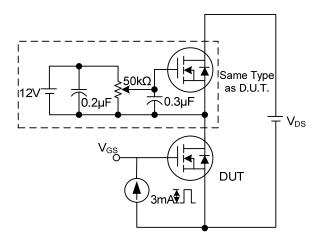

2N65L

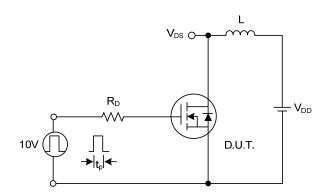

 V_{GS}

10V

Q_{GS}

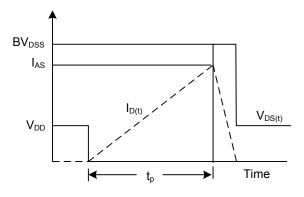

TEST CIRCUITS AND WAVEFORMS (Cont.)


Switching Test Circuit



 Q_G

 Q_{GD}


Gate Charge Test Circuit

Unclamped Inductive Switching Test Circuit

Gate Charge Waveform

Charge

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

