

Powerline N-Channel Single Switch Low Loss IGBT Module

Preliminary Information

DS5288-1.3 January 2000

The GP401LSS18 is a single switch 1800V, robust n channel enhancement mode insulated gate bipolar transistor (IGBT) module. Designed for low power loss, the module is suitable for a variety of high voltage applications in motor drives and power conversion. The high impedance gate simplifies gate drive considerations enabling operation directly from low power control circuitry.

Fast switching times allow high frequency operation making the device suitable for the latest drive designs employing pwm and high frequency switching. The IGBT has a wide reverse bias safe operating area (RBSOA) for ultimate reliability in demanding applications.

These modules incorporate electrically isolated base plates and low inductance construction enabling circuit designers to optimise circuit layouts and utilise earthed heat sinks for safety.

The powerline range of high power modules includes dual and single switch configurations with a range of current and voltage capabilities to match customer system demands.

Typical applications include dc motor drives, ac pwm drives, main traction drives and auxiliaries, large ups systems and resonant inverters.

FEATURES

- n Channel
- Enhancement Mode
- High Input Impedance
- Optimised For High Power High Frequency Operation
- Isolated Base
- Ultra Low V_{CE(sat)}
- 400A Per Module

APPLICATIONS

- High Power Switching
- Motor Control
- Inverters
- Traction Systems
- Lower Loss Systems Retrofits

KEY PARAMETERS

V _{CES}		1800V
V _{CE(sat)}	(typ)	2.6V
I _{C70}	(max)	400A
C(PK)80	(max)	800A
I _{C25}	(max)	600A

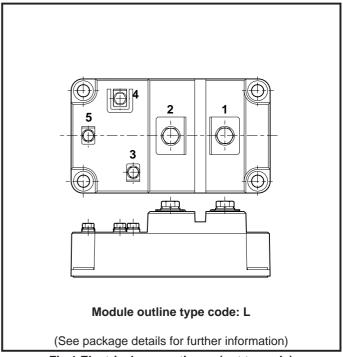


Fig.1 Electrical connections - (not to scale)

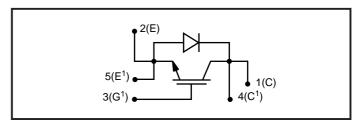


Fig.2 Single switch circuit diagram

ORDERING INFORMATION

Order As: GP401LSS18

Note: When ordering, please use the complete part number.

ABSOLUTE MAXIMUM RATINGS - PER ARM

Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability.

T_{case} = 25°C unless stated otherwise.

Symbol	Parameter	Test Conditions	Max.	Units
V _{CES}	Collector-emitter voltage	$V_{GE} = 0V$	1800	V
V _{GES}	Gate-emitter voltage	-	±20	V
I _c	Continuous collector current	DC, T _{case} = 25°C	600	А
I _{C(PK)}	Peak collector current	DC, T _{case} = 70°C	400	А
		1ms, T _{case} = 80°C (Transistor)	800	А
P _{max}	Max. power dissipation	T _{case} = 25°C (Transistor)	2980	W
V _{isol}	Isolation voltage	Commoned terminals to base plate. AC RMS, 1 min, 50Hz	4000	V

THERMAL AND MECHANICAL RATINGS

Symbol	Parameter	Test Conditions	Min.	Max.	Units
R _{th(j-c)}	Thermal resistance - transistor (per arm)	DC junction to case	-	42	°C/kW
R _{th(j-c)}	Thermal resistance - diode (per arm)	DC junction to case	-	80	°C/kW
R _{th(c-h)}	Thermal resistance - case to heatsink (per module)	Mounting torque 5Nm	-	15	°C/kW
		(with mounting grease)			
T _j	Junction temperature	Transistor	-	125	°C
		Diode	-	125	°C
T _{stg}	Storage temperature range	-	-40	125	°C
-	Screw torque	Mounting - M6	-	5	Nm
		Electrical connections - M4	-	2	Nm

ELECTRICAL CHARACTERISTICS

 $T_{case} = 25^{\circ}C$ unless stated otherwise.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
I _{CES}	Collector cut-off current	$V_{GE} = 0V, V_{CE} = V_{CES}$	-	-	1	mA
		V _{GE} = 0V, V _{CE} = V _{CES} , T _{case} = 125°C	-	-	10	mA
I _{GES}	Gate leakage current	$V_{GE} = \pm 20V, V_{CE} = 0V$	-	-	±2	μА
V _{GE(TH)}	Gate threshold voltage	$I_{\rm C}$ = 40mA, $V_{\rm GE}$ = $V_{\rm CE}$	4	-	7.5	V
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{GE} = 15V, I_{C} = 400A$	-	2.6	3.2	V
		$V_{GE} = 15V, I_{C} = 400A, T_{case} = 125^{\circ}C$	-	3.3	4.0	V
I _F	Diode forward current	DC, T _{case} = 55°C	-	-	400	А
I _{FM}	Diode maximum forward current	$t_p = 1 \text{ms}, T_{\text{case}} = 80^{\circ} \text{C}$	-	-	800	А
V _F	Diode forward voltage	I _F = 400A	-	2.2	2.5	V
		I _F = 400A, T _{case} = 125°C	-	2.3	2.6	V
C _{ies}	Input capacitance	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$	-	45	-	nF
L _M	Module inductance	-	-	15	-	nΗ

ELECTRICAL CHARACTERISTICS

For definition of switching waveforms, refer to figure 3 and 4.

 $T_{case} = 25^{\circ}C$ unless stated otherwise.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{d(off)}	Turn-off delay time	I _c = 400A	-	900	1100	ns
t _f	Fall time	$V_{GE} = \pm 15V$	-	280	350	ns
E _{OFF}	Turn-off energy loss	V _{CE} = 900V	-	150	200	mJ
t _{d(on)}	Turn-on delay time	$R_{G(ON)} = R_{G(OFF)} = 4.3\Omega$	-	500	650	ns
t _r	Rise time	L ~ 100nH	-	200	400	ns
E _{on}	Turn-on energy loss		-	140	180	mJ
Q _{rr}	Diode reverse recovery charge	$I_F = 400A, V_R = 50\% V_{CES},$	-	65	85	μС
		$dI_F/dt = 2500A/\mu s$				

T_{case} = 25°C unless stated otherwise.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{d(off)}	Turn-off delay time	I _C = 400A	-	1010	1200	ns
t _f	Fall time	$V_{GE} = \pm 15V$	-	390	500	ns
E _{OFF}	Turn-off energy loss	V _{CE} = 900V	-	180	230	mJ
t _{d(on)}	Turn-on delay time	$R_{G(ON)} = R_{G(OFF)} = 4.3\Omega$	-	660	800	ns
t _r	Rise time	L ~ 100nH	-	310	400	ns
E _{on}	Turn-on energy loss		-	210	260	mJ
Q _{rr}	Diode reverse recovery charge	$I_F = 400A, V_R = 50\% V_{CES},$	-	90	115	μС
		$dI_F/dt = 2500A/\mu s$				

SWITCHING DEFINITIONS

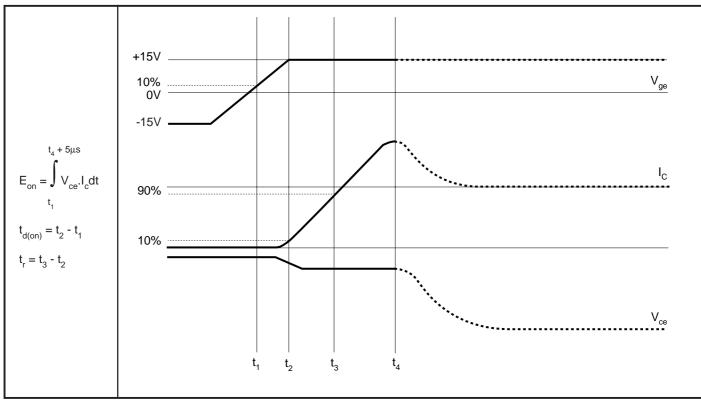
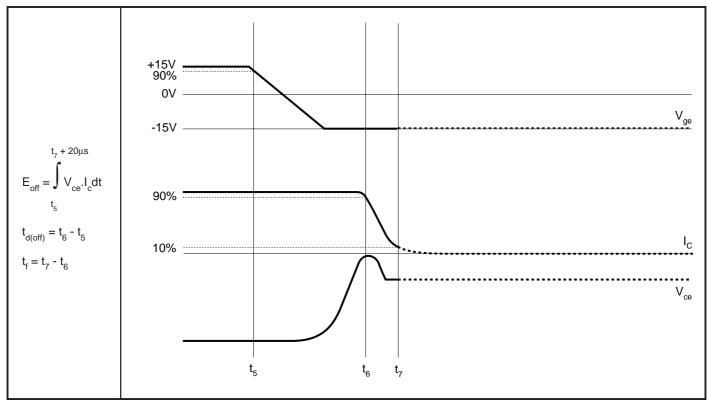
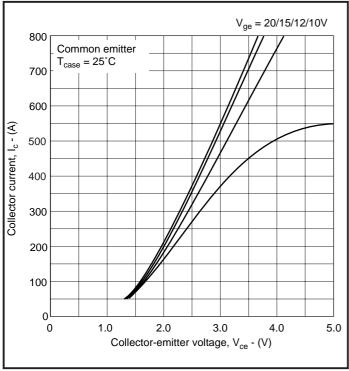
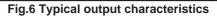
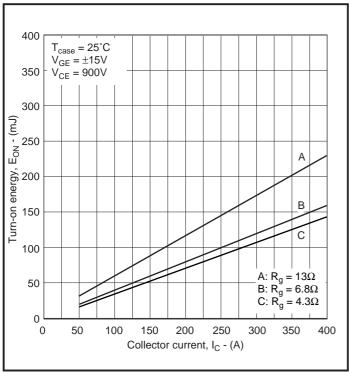


Fig.3 Definition of turn-on switching times


Fig.4 Definition of turn-off switching times


TYPICAL CHARACTERISTICS

 $V_{ge} = 20/15/12/10V$ 800 Common emitter $T_{case} = 125^{\circ}C$ 700 600 Collector current, I_c - (A) 500 400 300 200 100 0 1.0 2.0 3.0 4.0 5.0 6.0 0 Collector-emitter voltage, V_{ce} - (V)

Fig.5 Typical output characteristics

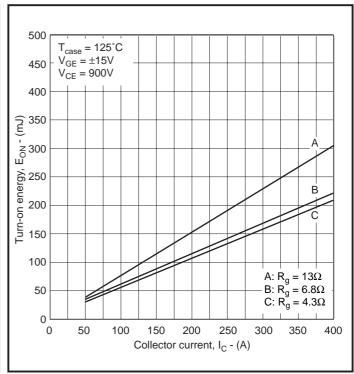
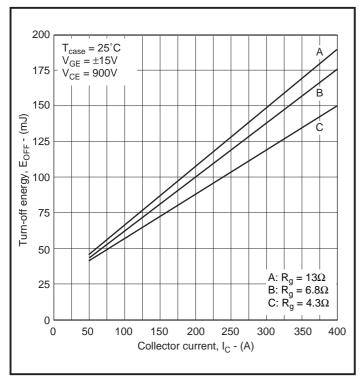



Fig.8 Typical turn-on energy vs collector current

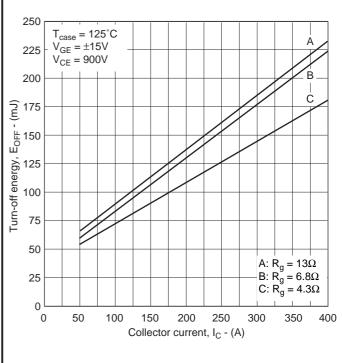
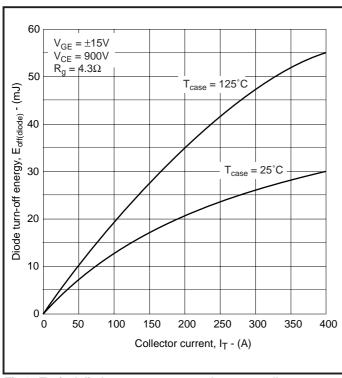
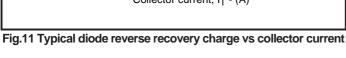
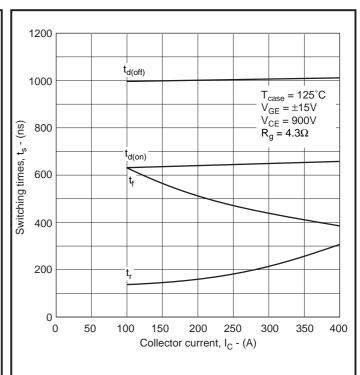
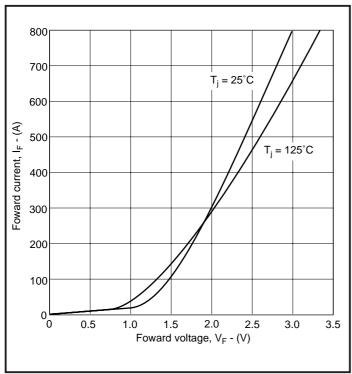
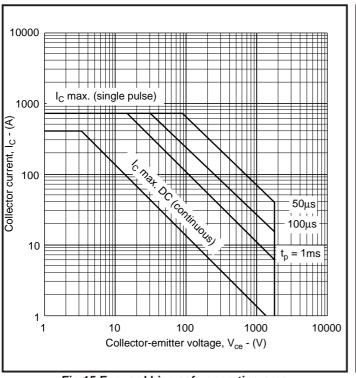




Fig.9 Typical turn-off energy vs collector current

Fig.10 Typical turn-off energy vs collector current


Fig.12 Typical switching characteristics

1000 900 800 700 Collector current, I_C - (A) 500 400 300 = 125°C 200 $V_{ge} = \pm 15V$ $R_{g(min)}^{g} = 4.3\Omega$ 100 R_{g(min)}: Minimum recommended value 400 800 1200 1600 2000 Collector-emitter voltage, V_{ce} - (V)

Fig.13 Diode typical forward characteristics

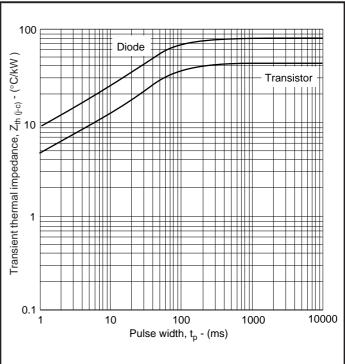
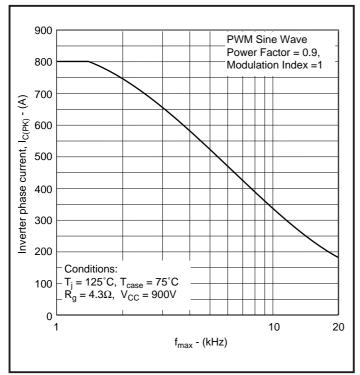



Fig.16 Transient thermal impedance

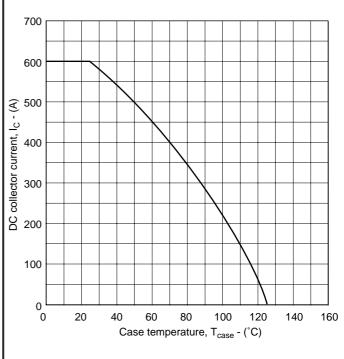


Fig.17 3-Phase inverter operating frequency

Fig.18 DC current rating vs case temperature

PACKAGE DETAILS

For further package information, please contact your local Customer Service Centre. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

ASSOCIATED PUBLICATIONS

Title	Application Note	_
	Number	
Electrostatic handling precautions	AN4502	
An introduction to IGBTs	AN4503	
IGBT ratings and characteristics	AN4504	
Heatsink requirements for IGBT modules	AN4505	
Calculating the junction temperature of power semiconductors	AN4506	
Gate drive considerations to maximise IGBT efficiency	AN4507	
Parallel operation of IGBTs – punch through vs non-punch through characteristics	AN4508	
Guidance notes for formulating technical enquiries	AN4869	
Principle of rating parallel connected IGBT modules	AN5000	
Short circuit withstand capability in IGBTs	AN5167	
Driving high power IGBTs with concept gate drivers	AN5190	

Caution: This device is sensitive to electrostatic discharge. Users should follow ESD handling procedures.

POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink / clamping systems in line with advances in device types and the voltage and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group continues to offer high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the up to date CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete solution (PACs).

HEATSINKS

Power Assembly has it's own proprietary range of extruded aluminium heatsinks. They have been designed to optimise the performance or our semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on

For further information on device clamps, heatsinks and assemblies, please contact your nearest Sales Representative or the factory.

http://www.dynexsemi.com

e-mail: power solutions@dynexsemi.com

HEADQUARTERS OPERATIONS DYNEX SEMICONDUCTOR LTD

Doddington Road, Lincoln. Lincolnshire. LN6 3LF. United Kingdom. Tel: 00-44-(0)1522-500500 Fax: 00-44-(0)1522-500550

DYNEX POWER IC.

Unit 7 - 58 Antares Drive, Nepean, Ontario, Canada K2E 7W6. Tel: 613.723.7035 Fax: 613.723.1518

Toll Free: 1.888.33.DYNEX (39639)

CUSTOMER SERVICE CENTRES

France, Benelux, Italy and Spain Tel: +33 (0)1 69 18 90 00. Fax: +33 (0)1 64 46 54 50

North America Tel: 011-800-5554-5554. Fax: 011-800-5444-5444

UK, Germany, Scandinavia & Rest Of World Tel: +44 (0)1522 500500. Fax: +44 (0)1522 500020

SALES OFFICES

France, Benelux, Italy and Spain Tel: +33 (0)1 69 18 90 00. Fax: +33 (0)1 64 46 54 50

Germany Tel: 07351 827723

North America Tel: (613) 723-7035. Fax: (613) 723-1518. Toll Free: 1.888.33.DYNEX (39639) /

Tel: (831) 440-1988. Fax: (831) 440-1989 / Tel: (949) 733-3005. Fax: (949) 733-2986. UK, Germany, Scandinavia & Rest Of World Tel: +44 (0)1522 500500. Fax: +44 (0)1522 500020

These offices are supported by Representatives and Distributors in many countries world-wide.

© Dynex Semiconductor 2000 Publication No. DS5288-1.3 Issue No. 1.3 January 2000

TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

Datasheet Annotations:

Dynex Semiconductor annotate datasheets in the top right hard corner of the front page, to indicate product status. The annotations are as follows:-

Target Information: This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started.

Preliminary Information: The product is in design and development. The datasheet represents the product as it is understood but details may change.

Advance Information: The product design is complete and final characterisation for volume production is well in hand.

No Annotation: The product parameters are fixed and the product is available to datasheet specification.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners

Caution: This device is sensitive to electrostatic discharge. Users should follow ESD handling procedures.