2.5V or 3.3V, 200-MHz, 1:10 Clock Distribution Buffer #### **Features** - 2.5V or 3.3V operation - 200-MHz clock support - Two LVCMOS-/LVTTL-compatible inputs - Ten clock outputs: drive up to 20 clock lines - 1x or 1/2x configurable outputs - · Output three-state control - · 250-ps max. output-to-output skew - Pin-compatible with MPC946, MPC9446 - Available in commercial and industrial temperature range - 32-pin TQFP package ## **Description** The CY29946 is a low-voltage 200-MHz clock distribution buffer with the capability to select one of two LVCMOS/LVTTL compatible input clocks. These clock sources can be used to provide for test clocks as well as the primary system clocks. All other control inputs are LVCMOS/LVTTL compatible. The 10 outputs are LVCMOS or LVTTL compatible and can drive 50Ω series or parallel terminated transmission lines. For series terminated transmission lines, each output can drive one or two traces giving the device an effective fanout of 1:20. The CY29946 is capable of generating $1\times$ and $1/2\times$ signals from a $1\times$ source. These signals are generated and retimed internally to ensure minimal skew between the $1\times$ and $1/2\times$ signals. SEL(A:C) inputs allow flexibility in selecting the ratio of $1\times$ to $1/2\times$ outputs. The CY29946 outputs can also be three-stated via MR/OE# input. When MR/OE# is set HIGH, it resets the internal flip-flops and three-states the outputs. ## Pin Description^[1] | Pin | Name | PWR | I/O | Description | | |------------------------------|-----------|------|-------|--|--| | 3, 4 | TCLK(0,1) | | I, PU | External Reference/Test Clock Input | | | 26, 28, 30 | QA(2:0) | VDDC | 0 | Clock Outputs | | | 19, 21, 23 | QB(2:0) | VDDC | 0 | Clock Outputs | | | 10, 12, 14, 16 | QC(0:3) | VDDC | 0 | Clock Outputs | | | 5, 6, 7 | DSEL(A:C) | | I, PD | Divider Select Inputs . When HIGH, selects ÷2 input divider. When LOW, selects ÷1 input divider. | | | 1 | TCLK_SEL | | I, PD | TCLK Select Input. When LOW, TCLK0 clock is selected and when HIGH TCLK1 is selected. | | | 32 | MR/OE# | | I, PD | Output Enable Input. When asserted LOW, the outputs are enabled and when asserted HIGH, internal flip-flops are reset and the outputs are three-stated. If more than 1 Bank is being used in /2 Mode, a reset must be performed (MR/OE# Asserted High) after power-up to ensure all internal flip-flops are set to the same state. | | | 9, 13, 17, 18,
22, 25, 29 | VDDC | | | 2.5V or 3.3V Power Supply for Output Clock Buffers | | | 2 | VDD | | | 2.5V or 3.3V Power Supply | | | 8, 11, 15, 20,
24, 27, 31 | VSS | | | Common Ground | | Note: 1. PD = Internal pull-down. PU = Internal pull-up. ### Absolute Maximum Conditions^[2] | Maximum Input Voltage Relative to V _{SS} : | V _{SS} – 0.3V | |---|------------------------| | Maximum Input Voltage Relative to V_{DD} : | V _{DD} + 0.3V | | Storage Temperature: | 65°C to + 150°C | | Operating Temperature: | 40°C to +85°C | | Maximum ESD protection | 2 kV | | Maximum Power Supply: | 5.5V | | Maximum Input Current: | ± 20 mA | This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, V_{in} and V_{out} should be constrained to the range: $V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (either $\rm V_{SS}$ or $\rm V_{DD}).$ ## **DC Electrical Specifications:** $V_{DD} = V_{DDC} = 3.3V \pm 10\%$ or $2.5V \pm 5\%$, over the specified temperature range | Parameter | Description | Conditions | Min. | Тур. | Max. | Unit | |------------------|------------------------------------|---|-----------------|------|----------|------| | V_{IL} | Input Low Voltage | | V _{SS} | | 0.8 | V | | V_{IH} | Input High Voltage | | 2.0 | | V_{DD} | V | | I _{IL} | Input Low Current ^[3] | | | | -100 | μA | | I _{IH} | Input High Current ^[3] | | | | 100 | μA | | V _{OL} | Output Low Voltage ^[4] | I _{OL} = 20 mA | | | 0.4 | V | | V _{OH} | Output High Voltage ^[4] | $I_{OH} = -20 \text{ mA}, V_{DD} = 3.3 \text{V}$ | 2.5 | | | V | | | | $I_{OH} = -20 \text{ mA}, V_{DD} = 2.5 \text{V}$ | 1.8 | | | | | I _{DDQ} | Quiescent Supply Current | | | 5 | 7 | mΑ | | I _{DD} | Dynamic Supply Current | V _{DD} = 3.3V, Outputs @ 100 MHz, CL = 30 pF | | 130 | | mA | | | | V _{DD} = 3.3V, Outputs @ 160 MHz, CL = 30 pF | | 225 | | | | | | V _{DD} = 2.5V, Outputs @ 100 MHz, CL = 30 pF | | 95 | | 1 | | | | V _{DD} = 2.5V, Outputs @ 160 MHz, CL = 30 pF | | 160 | | | | Z _{Out} | Output Impedance | $V_{DD} = 3.3V$ | 12 | 15 | 18 | W | | | | V _{DD} = 2.5V | 14 | 18 | 22 | 1 | | C _{in} | Input Capacitance | | | 4 | | pF | ## AC Electrical Specifications $V_{DD} = V_{DDC} = 3.3V \pm 10\%$ or $2.5V \pm 5\%$, over the specified temperature range^[5] | Parameter | Description | Conditions | Min. | Тур. | Max. | Unit | |------------|---|---|------|------|------|------| | Fmax | Input Frequency ^[6] | $V_{DD} = 3.3V$ | | | 200 | MHz | | | | V _{DD} = 2.5V | | | 170 | | | Tpd | TTL_CLK To Q Delay ^[6] | | 5.0 | | 11.5 | ns | | FoutDC | Output Duty Cycle ^[6, 7] | Measured at V _{DD} /2 | 45 | | 55 | % | | tpZL, tpZH | Output enable time (all outputs) | | 2 | | 10 | ns | | tpLZ, tpHZ | Output disable time (all outputs) | | 2 | | 10 | ns | | Tskew | Output-to-Output Skew ^[6, 8] | | | 150 | 250 | ps | | Tskew(pp) | Part-to-Part Skew ^[9] | | | 2.0 | 4.5 | ns | | Tr/Tf | Output Clocks Rise/Fall Time ^[8] | 0.8V to 2.0V,
V _{DD} = 3.3V | 0.10 | | 1.0 | ns | | | | 0.6V to 1.8V,
V _{DD} = 2.5V | 0.10 | | 1.3 | | #### Notes: - 2. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. - 3. Inputs have pull-up/pull-down resistors that effect input current. - 4. Driving series or parallel terminated 50Ω (or 50Ω to $V_{DD}/2$) transmission lines. - 5. Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs. - 6. Outputs driving 50Ω transmission lines. - 7. 50% input duty cycle. - 8. See Figure 1. - 9. Part-to-Part skew at a given temperature and voltage. Figure 1. LVCMOS_CLK CY29946 Test Reference for V_{CC} = 3.3V and V_{CC} = 2.5V Figure 2. LVCMOS Propagation Delay (TPD) Test Reference Figure 3. Output Duty Cycle (FoutDC) Figure 4. Output-to-Output Skew tsk(0) ## **Ordering Information** | Part Number Package Type | | Production Flow | | | |--------------------------|-----------------------------|----------------------------|--|--| | CY29946AXI | 32-pin TQFP | Industrial, -40°C to +85°C | | | | CY29946AIXT | 32-pin TQFP – Tape and Reel | Industrial, -40°C to +85°C | | | | CY29946AXC | 32-pin TQFP | Commercial, 0°C to +70°C | | | | CY29946AXCT | 32-pin TQFP – Tape and Reel | Commercial, 0°C to +70°C | | | ## **Package Drawing and Dimensions** #### 32-Lead Thin Plastic Quad Flatpack 7 x 7 x 1.0mm A32 All product and company names mentioned in this document may be the trademarks of their respective holders. # **Document History Page** | Document Title: CY29946 2.5V or 3.3V, 200-MHz, 1:10 Clock Distribution Buffer Document Number: 38-07286 | | | | | | | |---|---------|------------|--------------------|--|--|--| | REV. | ECN NO. | Issue Date | Orig. of
Change | Description of Change | | | | ** | 111097 | 02/07/02 | BRK | New data sheet | | | | *A | 116780 | 08/15/02 | HWT | Added the commercial temperature range in the Ordering Information | | | | *B | 122878 | 12/22/02 | RBI | Added power-up requirements to Maximum Ratings | | | | *C | 130007 | 10/15/03 | RGL | Fixed the block diagram. Fixed the MK/OE# description in the pin description table. | | | | *D | 131375 | 11/21/03 | RGL | Updated document history page (revision *C) to reflect changes that were not listed. | | | | *E | 221587 | See ECN | RGL | Minor Change: Moved up the word Block Diagram in the first page. | | |