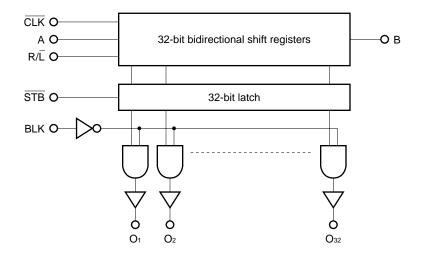
MOS INTEGRATED CIRCUIT μ PD16326

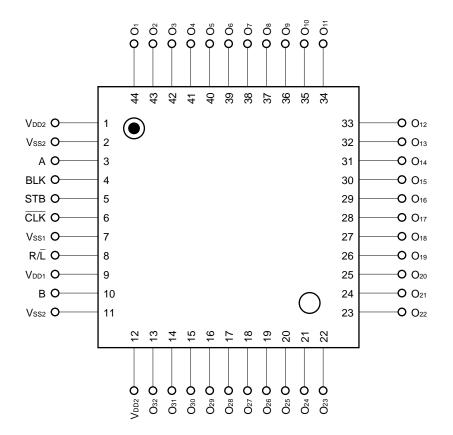
32-BIT FLUORESCENT DISPLAY TUBE DRIVER

The μ PD16326 is a fluorescent display tube driver using a high breakdown voltage CMOS process. It consists of 32-bit bidirectional shift registers, a latch circuit, and a high breakdown voltage CMOS driver block. The logic block operates on a 5 V power supply designed to be connected directly to a microcontroller (CMOS level input). The driver block has a 130 V and 20 mA high breakdown voltage output, and both the logic block and driver block consist of CMOS, allowing operation with low power consumption.

FEATURES


EC

- High breakdown voltage CMOS structure
- High breakdown voltage, high current output (130 V, 20 mA)
- 32-bit bidirectional shift registers on chip
- Data control by transfer clock (external) and latch
- High-speed data transfer capability (fmax = 8.0 MHz мих)
- Wide operating temperature range (T_A = -40 to 85 °C)


ORDERING INFORMATION

Part Number	Package
μPD16326GB-3B4	44-pin plastic QFP (4-direction leads)

BLOCK DIAGRAM

PIN CONFIGURATION (Top View)

Remark Be sure to enter the power to VDD1, logic signal, and VDD2, in that order, and turn off the power in the reverse order.

PIN DESCRIPTION

Pin Symbol	Pin Name	Pin Number	Description
STB	Latch strobe input	5	H: Data through L: Data retention
А	RIGHT data input	3	When $R/L = H$, A: Input B: Output
В	LEFT data input	10	When R/L = L, A: Output B: Input
CLK	Clock input	6	Shift is executed on a fall.
BLK	Blanking input	4	H: O1 to O32: ALL "L"
R/L	Shift control input	8	$ \begin{array}{ll} \mbox{H: Right shift mode} & \mbox{A} \rightarrow \mbox{O}_1 \ \ \mbox{O}_{32} \rightarrow \mbox{B} \\ \mbox{L: Left shift mode} & \mbox{B} \rightarrow \mbox{O}_{32} \ \ \mbox{O}_1 \rightarrow \mbox{A} \end{array} $
O1 to O32	High breakdown voltage output	13 - 44	130 V, 20 mA мах
Vdd1	Logic block power supply	9	5 V ±10 %
Vdd2	Driver block power supply	1, 12	30 to 125 V
Vss1	Logic ground	5	Connected to system GND
Vss2	Driver ground	2, 11	Connected to system GND

TRUTH TABLE 1 (SHIFT REGISTER BLOCK)

Input		Out	tput	Shift Pagistor
R/L	CLK	А	В	Shift Register
н	\downarrow	Input	Output ^{Note 1}	Execution of right shift
Н	H or L		Output	Retained
L	\downarrow	Output ^{Note 2}	Input	Execution of left shift
L	H or L	Output		Retained

Notes 1. On a clock fall, the data items of S_{31} are shifted to S_{32} , and output from B.

2. On a clock fall, the data items of S_2 are shifted to $S_1,$ and output from A.

TRUTH TABLE 2 (LATCH BLOCK)

STB	Operation
L	Retains Sn data immediately before STB becomes L.
н	Outputs shift register data.

TRUTH TABLE 3 (DRIVER BLOCK)

LnNote	STB	BLK	Driver output state
×	×	Н	L (all driver outputs: L)
×	L	L	Outputs S₁ data on STB fall.
L	Н	L	L
Н	Н	L	Н

Note Ln: Latch output **Remark** \times = H or L, H = high level, L = Low level

ABSOLUTE MAXIMUM RATINGS ($T_A = 25 \degree C$, $V_{SS} = 0 \lor V$)

Item	Symbol	Rating	Unit
Logic block supply voltage	Vdd1	-0.5 to +7.0	V
Driver block supply voltage	Vdd2	-0.5 to +130	V
Logic block input voltage	Vi	-0.5 to VDD1 + 0.5	V
Driver block output current	lo	20	mA
Package allowable power dissipation	PD	800 ^{Note}	mW
Operating ambient temperature	TA	-40 to +85	°C
Storage temperature	Tstg	-65 to +150	°C

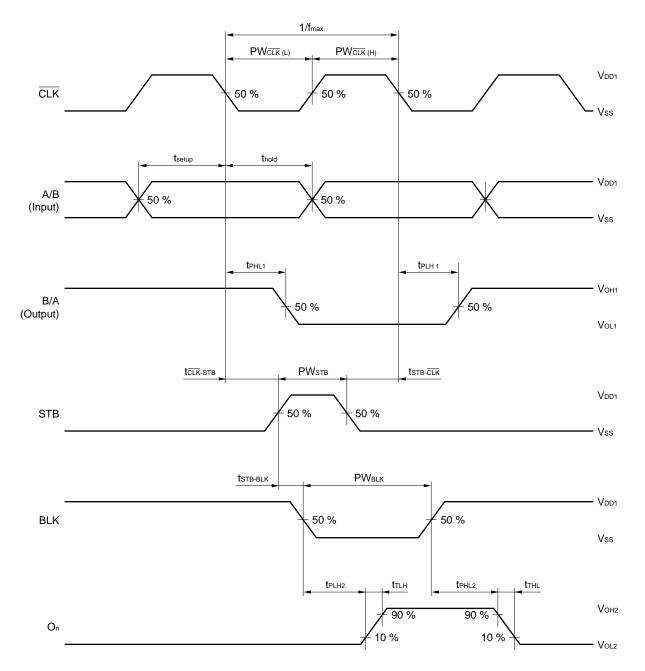
Note When $T_A \ge 25$ °C, load should be alleviated at a rate of -8.0 mW/°C. (T_j = 125 °C (MAX.))

RECOMMENDED OPERATING RANGE (TA = -40 to +85 °C, Vss = 0 V)

Item	Symbol	MIN.	TYP.	MAX.	Unit
Logic block supply voltage	Vdd1	4.5	5.0	5.5	V
Driver block supply voltage	Vdd2	30		125	V
Input voltage high	Vih	0.7.Vdd1		Vdd1	V
Input voltage low	VIL	0		0.2·V _{DD1}	V
Driver output current	Іон			-10	mA
	lol			+2.5	mA

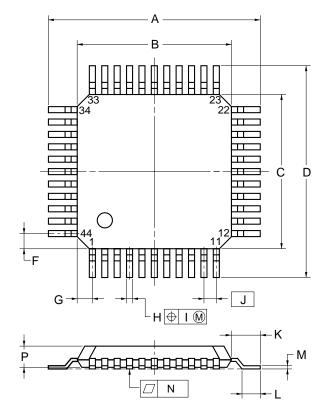
ELECTRICAL SPECIFICATIONS (TA = 25 °C, VDD1 = 4.5 to 5.5 V, VDD2 = 125 V, Vss = 0 V)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Output voltage high	Vон1	Logic, Iон = -1.0 mA	0.9.V _{DD1}		Vdd1	V
Output voltage low	Vol1	Logic, IoL = 1.0 mA	0		0.1.Vdd1	V
Output voltage high	Voh21	О1 to O40, IOH = -0.5 mA	121			V
	Vон22	О1 to O40, Iон = -5.0 mA	115			V
Output voltage low	Vol2	O1 to O40, IOL = 0.5 mA			2.5	V
Input leakage current	lı.	VI = VDD1 OF VSS1			±1.0	μΑ
Input voltage high	Vін		0.7.V _{DD1}		Vdd1	V
Input voltage low	VIL		0		0.2·V _{DD1}	V
Static consumption current	IDD1	Logic, $T_A = -40$ to +85 °C			1 000	μA
	IDD1	Logic, T _A = 25 °C			100	μΑ
	IDD2	Driver, $T_A = -40$ to +85 °C			1 000	μΑ
	IDD2	Driver, T _A = 25 °C			100	μA

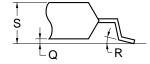

SWITCHING CHARACTERISTICS (TA = 25 °C, VDD1 = 5.0 V, VDD2 = 125 V, Vss = 0 V, logic CL = 15 pF, driver CL = 50 pF, driver RL = 220 k Ω , tr = tf = 10 ns)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Transmission delay time	tPHL1	$\overline{CLK}\downarrow \to A/B$			110	ns
	tPLH1				110	ns
	tPHL2	$\overline{BLK} \downarrow \rightarrow O_1 \text{ to } O_{32}$			300	ns
	tPLH2				300	ns
Fall time	t⊤н∟	O1 to O32			600	ns
Rise time	tт∟н	O1 to O32			500	ns
Maximum clock frequency	f _{max}	With cascading, Duty = 50 %	8.0			MHz
Input capacitance	С				15	pF

TIMING REQUIREMENTS (TA = -40 to +85 °C, VDD1 = 4.5 to 5.5 V, Vss = 0 V, tr = tf = 10 ns)


Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock pulse width	PWclk		40			ns
Strobe pulse width	РWsтв		80			ns
Blank pulse width	PWBLK		1 500			ns
Data setup time	tsetup		15			ns
Data hold time	thold		30			ns
Clock-strobe time	tclk-stb	$\overline{CLK} \downarrow \rightarrow STB \uparrow$	45			ns
Strobe-clock time	tstb-CLK	$STB \downarrow \rightarrow \overline{CLK} \downarrow$	45			ns
Strobe-blank time	tstb-blk	$STB \uparrow \to BLK \downarrow$	80			ns

SWITCHING CHARACTERISTIC WAVEFORM (R/L = H)



PACKAGE DRAWINGS

44 PIN PLASTIC QFP (Unit: mm)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
	WILLIWEIERS	
А	13.6±0.4	$0.535^{+0.017}_{-0.016}$
В	10.0±0.2	$0.394^{+0.008}_{-0.009}$
С	10.0±0.2	$0.394^{+0.008}_{-0.009}$
D	13.6±0.4	$0.535^{+0.017}_{-0.016}$
F	1.0	0.039
G	1.0	0.039
н	0.35±0.10	$0.014^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P)
к	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
		P44GB-80-3B4-3

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended below. For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

SURFACE MOUNT TYPE

For details of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual" (C10535E).

μ**PD16326GB-3B4**

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. MAX. (at 210 °C or above), Number of times: Twice, Time limit: None ^{Note}	IR35-00-2
VPS	Package peak temperature: 215 °C, Duration: 40 sec. MAX. (at 200 °C or above), Number of times: Twice, Time limit: None ^{Note}	VP15-00-2
Wave soldering	Solder bath temperature: 260 °C MAX., Duration: 10 sec. MAX., Number of times: Once, Time limit: None ^{Note}	WS60-00-1
Pin partial heating	Pin partial temperature: 300 °C MAX., Duration: 10 sec. MAX., Time limit: None ^{Note}	

Note For the storage period after dry-pack decapsulation, storage conditions are max. 25 °C, 65 % RH.

Caution Use of more than one soldering method should be avoided (except in the case of pin partial heating).

REFERENCES

NEC Semiconductor Device Reliability/Quality Control System (IEI-1212) Quality Grade on NEC Semiconductor Devices (IEI-1209) [MEMO]

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.