ASSP For Power Management Applications (Mobile Phones)

Power Management IC for Mobile Phone

MB3893A

■ DESCRIPTION

MB3893A is a multi-function power management IC chip with built-in 4-channel series regulator providing the output control functions and power supply drop detection circuits required for mobile phones. The MB3893A includes lithium-ion battery charge control functions and functions as a built-in power management system ideal for mobile phone devices.

■ FEATURES

[Power Supply Control Unit]

• Supply voltage range : Vcc = 3.1 V to 4.8 V

Low power consumption current during standby : 110 μA (Max.)

• Built-in 4-channel low-saturation voltage type series regulator

: 2.5 V/2 channels, 1.8 V/1 channels,

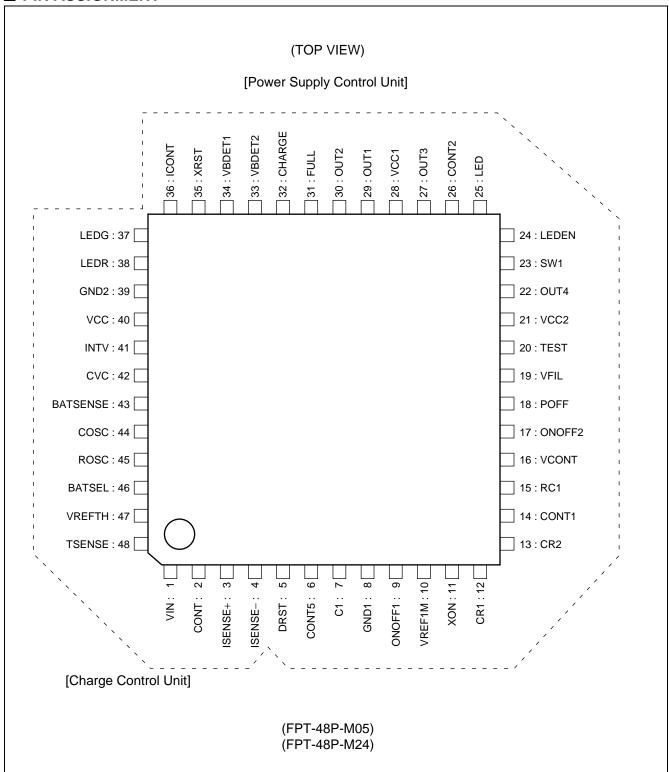
2.0 V/1 channels (1.9 V and 2.2 V available as mask options)

- Built-in interruption detection and supply recovery functions eliminate need for supplementary power supply
- Built-in On/Off switch circuit with accidental operation prevention function
- Accurate supply voltage drop detection
- Built-in power-on reset (OUT1) function
- · Detection voltage with hysteresis

[Charge Control Unit]

• Supply voltage range : VIN = 3.4 V to 5.9 V

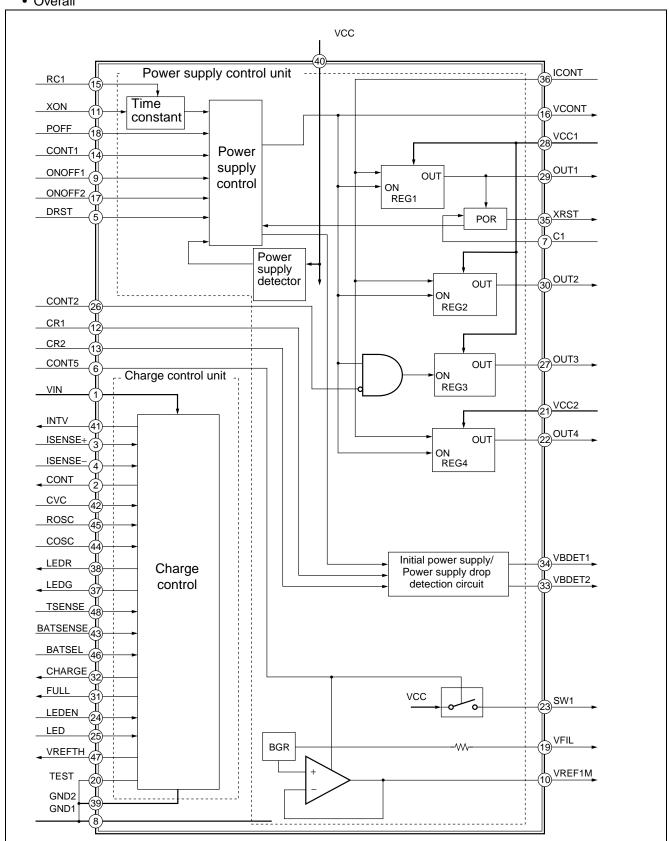
• Built-in lithium-ion battery charge control functions

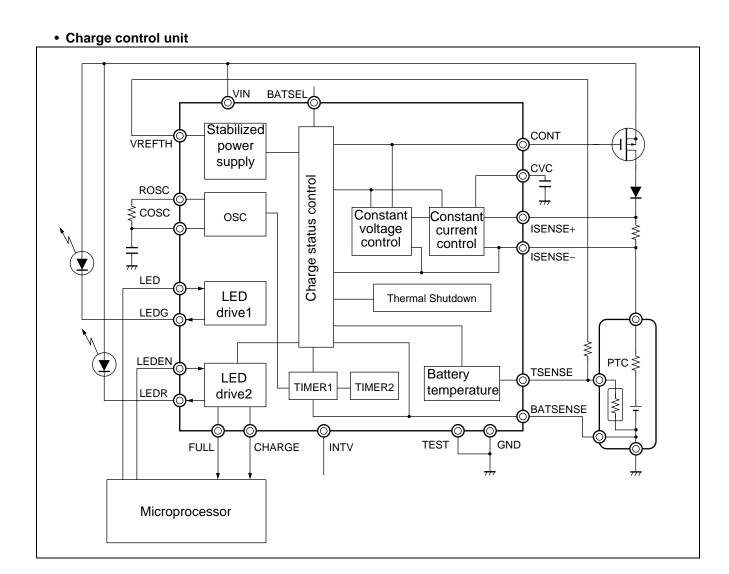

Charging voltage : 4.1 V/4.2 V (switchable)

- Built-in preliminary charging function
- · Built-in re-charging function
- · Built-in timer functions
- · Built-in battery temperature detection function

PACKAGES

■ PIN ASSIGNMENT


■ PIN DESCRIPTION


Pin No.	Symbol	I/O	Description	
1	VIN	_	Power supply pin for the charge control unit.	
2	CONT	0	External P-ch MOS FET output control pin.	
3	ISENSE+	I	Charge current detection input pin.	
4	ISENSE-	I	Charge current/voltage detection input pin.	
5	DRST	I	Power supply drop detection reset input pin. 100 k Ω pull-down.	
6	CONT5	I	Battery voltage measurement setting pin. 100 k Ω pull-down.	
7	C1	I	POR delay time setting capacitor connection pin.	
8	GND1	_	Ground pin.	
9	ONOFF1	I	REG ON control pin. 100 kΩ pull-up: VCC (edge input)	
10	VREF1M	0	Reference voltage output pin. (Power supply control unit)	
11	XON	I	REG On control pin. 100 kΩ pull-up: VCC (with delay)	
12	CR1	I	Power supply drop detection judgement capacitor-resistor conne	ection pin.
13	CR2	I	Cutoff detection judgement capacitor-resistor connection pin.	
14	CONT1	I	REG ON control pin. 100 kΩ pull-up: VCC	
15	RC1	I	XON delay time setting capacitor-resistor connection pin. 470 k Ω pull-up: VCC (XON = Lo)	
16	VCONT	0	REG rise signal output pin.	
17	ONOFF2	I	REG ON control pin. 100 kΩ pull-up: VCC (edge input)	
18	POFF	I	REG OFF control pin. 100 kΩ pull-down (OFF)	
19	VFIL	0	REG reference pin.	
20	TEST	_	Testing auxiliary pin. (normally GND connection)	
21	VCC2	_	REG4 power supply pin.	
22	OUT4	0	REG4 output pin.	(2.5 V Typ.)
23	SW1	0	Battery voltage measurement output pin.	
24	LEDEN	I	LED input pin. 100 k Ω pull-down (LEDR : "L" = ON, "H" = OFF)	
25	LED	I	LED input pin. 100 k Ω pull-down (LEDG : "H" = ON, "L" = OFF)	
26	CONT2	I	REG3 On/Off control pin. 470 kΩ pull-up : OUT1	
27	OUT3	0	REG3 output pin.	(2.0 V Typ.)
28	VCC1	_	REG1, 2, 3 supply pin.	
29	OUT1	0	REG1 output pin.	(2.5 V Typ.)
30	OUT2	0	REG2 output pin.	(1.8 V Typ.)
31	FULL	0	Charge state detection signal output pin. (full charge)	
32	CHARGE	0	Charge state detection signal output pin. (charging)	
33	VBDET2	0	Power supply drop detection output signal pin.	

Pin No.	Symbol	I/O	Description
34	VBDET1	0	Power supply drop detection output signal pin. (10 s Typ.)
35	XRST	0	POR reset output pin.
36	ICONT	I	REG output mode switching pin. 100 kΩ pull-down
37	LEDG	0	LED output pin. (open drain)
38	LEDR	0	LED output pin. (open drain)
39	GND2	_	Ground pin.
40	VCC	_	Power supply pin for the power supply control unit
41	INTV	_	Internal power supply pin.
42	CVC	I	Phase compensation capacitor connection pin.
43	BATSENSE	I	Battery connection verification input pin. 100 kΩ pull-up : VIN
44	cosc	I	Oscillator frequency setting capacitor connection pin. 100 pF + 19 pF (reference capacitance)
45	ROSC	I	Oscillator frequency setting resistance connection pin.
46	BATSEL	I	Charge setting voltage switching pin. 100 k Ω pull-up : VIN (OPEN = 4.1 V, "L" = 4.2 V)
47	VREFTH	0	Temperature detection reference voltage pin
48	TSENSE	I	Temperature detection input pin.

■ BLOCK DIAGRAM

Overall

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rat	ting	Unit
raiailletei	Syllibol	Condition	Min.	Rating Max. 7 15 V _{IN} + 0.3 Vcc + 0.3 860* 1230* +125	Offic
Power supply voltage	Vcc	21, 28, 40 pin	-0.3	7	V
Power supply voltage	Vin	1 pin	-0.3	15	V
	V _{IN1}	2, 37, 38, 42 to 48 pin	-0.3	VIN + 0.3	V
Input voltage	V _{IN2}	3 to 7, 9 to 20, 22 to 27, 29 to 36, 41 pin	-0.3	Vcc + 0.3	V
Power dissipation	PD	Ta≤+25 °C (LQFP-48P)	_	860*	mW
r ower dissipation	L.D	Ta≤+25°C (TQFP-48P)	_	1230*	mW
Storage temperature	Tstg	_	-55	+125	°C

^{*:} The packages are mounted on the dual-sided epoxy board (10 cm × 10 cm).

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition		Value		Unit
rarameter	Зуппоп	Condition	Min.	Тур.	Max.	Onit
Power supply voltage	Vcc	_	3.1	_	4.8	V
Fower supply voltage	Vin	_	3.4	5.3	5.9	V
REG capacitor guarantee value	Со	OUT1 to OUT4 pin	0.8	1.0	_	μF
REG capacitor ESR guarantee value	Resr	_	0.02	_	0.6	Ω
VREF1M capacitor guarantee value	Со	VREF1M pin	_	_	100	pF
Operating ambient temperature	Та	_	-30	+25	+85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

(Ta = -30 to +85 °C, VCC = 3.1 V to 4.8 V)

	Davamatav	Cumbal	Din No	Conditions		Value		Unit
	Parameter	Symbol	Pin No.	Conditions	Min.	Тур.	Max.	Unit
Reference voltage block	Reference voltage	VFIL	19	VFIL = 0 mA	1.19	1.23	1.27	V
	Output voltage	Vois	29	OUT1 = 0 to $-500 \mu A$, ICONT = "L" level	2.41	2.50	2.59	V
	Output voltage	V _{O1} F	29	OUT1 = 0 to -70 mA, ICONT = "H" level	2.41	2.50	2.59	V
	Input stability	Line	29	OUT1 = 0 to -70 mA, ICONT = "H" level	_	_	20	mV
	Load stability	Load	29	OUT1 = 0 to -70 mA, ICONT = "H" level	-30	_	0	mV
ock [REG1]	Ripple rejection	R.R	29	VIN = 0.2 Vrms, f = 1 kHz, OUT1 = 0 to -70 mA, ICONT = "H" level	50	_	_	dB
Constant voltage control block [REG1]		TXIIX		VIN = 0.2 Vrms, f = 10 kHz, OUT1 = 0 to -70 mA, ICONT = "H" level	50	_	_	dB
nstant voltag	Noise	V _{NOVL1}	29	f = 10 Hz to 20 kHz, VCC = 3.6 V, OUT1 = -70 mA, ICONT = "H" level	_	_	95	μVrms
Cor	Overcurrent protection value	I _{L1}	29	OUT1 = 90 %, ICONT = "H" level	100	200	400	mA
	Rise time	t R1	29	Pin 9, 14, 17 control OUT1 = 1.0 μF, OUT1 = 36 Ω , OUT1 = 90 %	_	_	200	μs
	Nise unie	t _{R2}	29	VCC control OUT1 = 1.0 μF, OUT1 = 36 Ω , OUT1 = 90 %	_	_	150	ms

(Continued)

(Ta = -30 to +85 °C, VCC = 3.1 V to 4.8 V)

	Paramatar	Symbol	Pin No.	Conditions		Value		Unit
	Parameter	Symbol	Pili No.	Conditions	Min.	Тур.	Max.	Unit
	Output voltage	Vo2s	30	OUT2 = 0 to -500 μA, ICONT = "L" level	1.71	1.80	1.89	V
	Output voltage	V _{O2} F	30	OUT2 = 0 to -50 mA, ICONT = "H" level	1.71	1.80	1.89	V
	Input stability	Line	30	OUT2 = 0 to -50 mA, ICONT = "H" level	_	_	20	mV
	Load stability	Load	30	OUT2 = 0 to -50 mA, ICONT = "H" level	-30	_	0	mV
ock [REG2]	Pipple rejection	R.R	30	VIN = 0.2 Vrms, f = 1 kHz, OUT2 = 0 to -50 mA, ICONT = "H" level	50	_	_	dB
e control blo	Ripple rejection	N.N		VIN = 0.2 Vrms, f = 10 kHz, OUT2 = 0 to -50 mA, ICONT = "H" level	50	_	_	dB
Constant voltage control block [REG2]	Noise	V _{NOVL2}	30	f = 10 Hz to 20 kHz, VCC = 3.6 V, OUT2 = -50 mA, ICONT = "H" level	_	_	95	μVrms
Cor	Overcurrent protection value	IL2	30	OUT2 = 90 %, ICONT = "H" level	65	130	260	mA
	Rise time	t R1	30	$\begin{aligned} &\text{Pin 9, 14, 17 control} \\ &\text{OUT2} = 1.0 \ \mu\text{F,} \\ &\text{OUT2} = 36 \ \Omega, \\ &\text{OUT2} = 90 \ \% \end{aligned}$	_	_	200	μs
	INSC IIIIC	t _{R2}	30	VCC control OUT2 = 1.0 μF, OUT2 = 36 Ω , OUT2 = 90 %	_	_	150	ms

(Continued)

(Ta = -30 to +85 °C, VCC = 3.1 V to 4.8 V)

	Parameter	Symbol	Pin No.	Conditions		Value		Unit
	rarameter	Symbol	PIII NO.	Conditions	Min.	Тур.	Max.	Onn
	Output voltage	Voss	27	OUT3 = 0 to -500 μA, ICONT = "L" level, CONT2 = "L" level	(1.81) 1.91 (2.11)	(1.90) 2.00 (2.20)	(1.99) 2.09 (2.29)	V
	Output voltage	Vosf	27	OUT3 = 0 to -70 mA, ICONT = "H" level, CONT2 = "L" level	(1.81) 1.91 (2.11)	(1.90) 2.00 (2.20)	(1.99) 2.09 (2.29)	V
	Input stability	Line	27	OUT3 = 0 to -70 mA, ICONT = "H" level, CONT2 = "L" level			20	mV
	Load stability	Load	27	OUT3 = 0 to -70 mA, ICONT = "H" level, CONT2 = "L" level	-30	—	0	mV
ock [REG3]	Ripple rejection	R.R	27	VIN = 0.2 Vrms, f = 1 kHz, OUT3 = 0 to -70 mA, ICONT = "H" level, CONT2 = "L" level	50	_	_	dB
Constant voltage control block [REG3]	Rippie rejection			VIN = 0.2 Vrms, f = 10 kHz, OUT3 = 0 to -70 mA, ICONT = "H" level, CONT2 = "L" level	50	_	_	dB
Constant voll	Noise	V _{NOVL3}	27	f = 10 Hz to 20 kHz, VCC = 3.6 V, OUT3 = -70 mA, ICONT = "H" level, CONT2 = "L" level,	_	_	95	μVrms
	Overcurrent protection value	l _{L2}	27	OUT3 = 90 %, ICONT = "H" level, CONT2 = "L" level	65	170	340	mA
		t _{R1}	27	Pin 9, 14, 17 control OUT3 = 1.0 μ F, OUT3 = 27 Ω , OUT3 = 90 %, CONT2 = "L" level	_	_	200	μs
	Rise time	t _{R2}	27	$\label{eq:VCC control} \begin{split} &\text{VCC control} \\ &\text{OUT3} = 1.0 \ \mu\text{F}, \\ &\text{OUT3} = 27 \ \Omega, \\ &\text{OUT3} = 90 \ \%, \\ &\text{CONT2} = \text{``L''} \ \text{level} \end{split}$	_	_	150	ms

(Continued)

(Ta = -30 to +85 °C, VCC = 3.1 V to 4.8 V)

	Devementes	Cumb al	Din No	Conditions		Value		11:0:4
	Parameter	Symbol	Pin No.	Conditions	Min.	Тур.	Max.	Unit
	Output voltage	V _{O4} s	22	OUT4 = 0 to -500 μA, ICONT = "L" level	2.41	2.50	2.59	V
	Output voltage	V _{O4} F	22	OUT4 = 0 to -60 mA, ICONT = "H" level	2.41	2.50	2.59	V
	Input stability	Line	22	OUT4 = 0 to -60 mA, ICONT = "H" level	_	_	20	mV
	Load stability	Load	22	OUT4 = 0 to -60 mA, ICONT = "H" level	-30	_	0	mV
ock [REG	Ripple rejection	R.R	22	VIN = 0.2 Vrms, f = 1 kHz, OUT4 = 0 to -60 mA, ICONT = "H" level	50	_	_	dB
control blo	Ripple rejection	K.K	22	VIN = 0.2 Vrms, f = 10 kHz, OUT4 = 0 to -60 mA, ICONT = "H" level	50	_	_	dB
Constant voltage control block [REG4]	Noise	V _{NOVL4}	22	f = 10 Hz to 20 kHz, VCC = 3.6 V, OUT4 = -60 mA, ICONT = "H" level		_	95	μVrms
Const	Overvoltage protection value	I _{L4}	22	OUT4 = 90 %, ICONT = "H" level	80	160	320	mA
	Rise time	t R1	22	Pin 9, 14, 17 control OUT4 = 1.0 μ F, OUT4 = 42 Ω , OUT4 = 90 %	_	_	200	μs
	Rise time	t _{R2}	22	VCC control OUT4 = 1.0 μ F, OUT4 = 42 Ω , OUT4 = 90 %	_	_	150	ms
	Output voltage	Vo	10	VREF1M = 0 mA, CONT5 = "H" level	1.19	1.23	1.27	V
	Output current	lo	10	CONT5 = "H" level	-1		_	mA
VREF1M	Invalid current	Iccvr	40	VREF1M = -1 mA, VCC = 3.6 V, CONT5 = "H" level	_	0.3	1.4	mA
>	Input stability	Line	10	VREF1M = 0 to -1 mA, CONT5 = "H" level	_	_	20	mV
	Load stability	Load	10	VREF1M = 0 to -1 mA, CONT5 = "H" level	-30		0	mV

(Continued)

 $(Ta = -30 \text{ to } +85 \text{ }^{\circ}C, \text{ VCC} = 3.1 \text{ V to } 4.8 \text{ V})$

					(1a = -30 10 +	Value	0	
	Parameter	Symbol	Pin No.	Conditions	Min.	Тур.	Max.	Unit
	Ripple rejection	R.R	10	VIN = 0.2 Vrms, f = 1 kHz, VREF1M = 0 to -1 mA, CONT5 = "H" level	50	_	_	dB
1M	Tappio rejection	KiK	10	VIN = 0.2 Vrms, $f = 1 kHz$, $VREF1M = 0 to -1 mA$, $CONT5 = "H" level$	44	49	_	dB
VREF1M	Noise	Vnovl	10	f=10 Hz to 20 kHz, VCC = 3.6 V, VREF1M = 0 to -1 mA, CONT5 = "H" level	_	_	95	μVrms
	Rise time	ṫ̀R	10	VREF1M = 1.2 k Ω , VREF1M = 90 %, CONT5 = "H" level	_	10	30	μs
		VIL	5, 6, 18, 24, 25, 26		0.0	_	0.3	V
		ViH	5, 6, 18, 24, 25, 26		0.7 × OUT1	_	OUT1	V
	Input voltage	VIL	9, 11, 14, 17		0.0	_	0.3 × Vcc	V
		VIH	9, 11, 14, 17	_	0.7 × Vcc	_	Vcc	V
		Vıl	36	Ta = -20 °C to +75 °C	0.0	_	0.3	V
		VIH	36	Ta = -20 °C to +75 °C	1.62	_	OUT1	V
ock	VCONT pin	Vol	16	VCONT = 1 mA	0.0	_	0.4	V
IB IC	output voltage	Vон	16	VCONT = -1 mA	2.0	_	Vcc	V
OFF control Block	XRST pin	Vol	35	XRST = 20 μA	0.0	_	0.2	V
FCC	output voltage	Vон	35	$XRST = -100 \mu A$	OUT1 – 0.2	_	OUT1	V
/0F	VBDET1 pin	Vol	34	VBDET1 = 20 μA	0.0	_	0.2	V
/NO	output voltage	Vон	34	VBDET1 = -20 μA	OUT1 – 0.2	_	OUT1	V
	VBDET2 pin	Vol	33	VBDET2 = 20 μA	0.0	_	0.2	V
	output voltage	Vон	33	VBDET2 = -20 μA	OUT1 – 0.2	_	OUT1	V
	CHARGE pin	Vol	32	CHARGE = 20 μA	0.0	_	0.2	V
	output voltage	Vон	32	CHARGE = -20 μA	OUT1 – 0.2	_	OUT1	V
	FULL pin	Vol	31	FULL = 20 μA	0.0		0.2	V
	output voltage	Vон	31	FULL = -20 μA	OUT1 – 0.2	_	OUT1	V
	SW1 ON resistance	Ron	23	SW1 = -600 μA, CONT5 = "H" level	_	_	500	Ω
	XON delay	txon	11, 15, 16	RC1 = 1 μF	300	600	900	ms

(Continued)

(Ta = -30 to +85 °C, VCC = 3.1 V to 4.8 V)

	Darameter	Symbol	Pin No.	Conditions		Value		Unit
	Parameter	Syllibol	PIII NO.	Conditions	Min.	Тур.	Max.	Unit
	Detection voltage (rise)	VsH	29	_	_	2.3*		V
POR	Detection voltage (fall)	VsL	29	_	2.15	2.2	2.25	V
	Rise delay	t POR	29, 35	C1 = 0.1 μF	34	85	136	ms
		Vcce	40	Initial power detected	2.62	2.75	2.87	V
lock		Vccd	40	Power supply dorop detected	2.38	2.50	2.61	V
on b	Detection	Vccr	40	Power supply recovery detected	3.35	3.50	3.65	V
Power supply drop detection block	voltage	Vccf	40	Initial or power supply drop determined Ta = +25 °C		2.0*		V
ply dro	Vccr temperature correlation	Vcct	40	_		-2.2	_	mV/ °C
er sup	Power supply	t DET1	34	$\label{eq:critical_critical} \begin{split} \text{CR1} &= 10 \; \mu\text{F}, \\ \text{CR1} &= 1.8 \; \text{M}\Omega \end{split}$	5	10	15	s
Pow	drop detection time	t _{DET2}	33	$\label{eq:crossing} \begin{split} \text{CR2} &= 1.5 \; \mu\text{F}, \\ \text{CR2} &= 1.8 \; \text{M}\Omega \end{split}$	0.75	1.5	2.25	S
	Standby supply current	Icc1	40	REG1 to REG4 : OFF, CONT5 = "L" level, ICONT = "L" level, VCC = 4.8 V	_	22	50	μΑ
Power supply control unit overall	Power-on invalid current (receiving standby)	Icc2	40	REG3 : OFF, CONT5 = "L" level, ICONT = "L" level, VCC = 4.8 V, OUT1 = $-200 \mu A$, OUT2 = $-100 \mu A$, OUT4 = $-100 \mu A$, Excluding OUT1, 2, 4 load current	_	60	110	μА
Power supply	Power-on invalid current (call in progress)	Іссз	40	REG1 to REG4: ON, CONT5 = "L" level, ICONT = "H" level, CONT2 = "L" level, VCC = 4.8 V, OUT1 = -70 mA, OUT2 = -50 mA, OUT3 = -70 mA, OUT4 = -60 mA, Excluding OUT1, 2, 4 load current	_	260	600	μА

^{*:} Standard setting value

(Continued)

(Ta = +3 to +48 $^{\circ}$ C, VIN = 5.3 V, BATSENESE = GND)

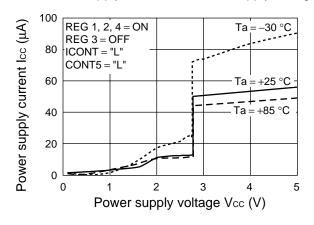
	Parameter	Sym-	Pin No.	Conditions		Value		Unit
	Parameter	bol	PIII NO.	Conditions	Min.	Тур.	Max.	Unit
	Range of charging operation	VIN	1	Ta = -10 °C to +60 °C, BATSENSE = OPEN	_	_	5.5	V
	operation		1	During charging	3.4	5.3	5.9	V
	Low voltage stop	V _{ADL}	1	Ta = -10 °C to +60 °C, BATSENSE = OPEN/GND	2.70	3.05	3.40	V
	Over voltage stop	Vadh	1	Ta = -10 °C to +60 °C, BATSENSE = OPEN/GND	5.9	6.2	6.5	V
	Reference voltage	VREFTH	47	Ta = 0 °C to +50 °C, VREFTH = 0 to -1 mA	1.64	1.70	1.76	V
	Output current	IREFTH	47	Ta = 0 °C to +50 °C	-1			mA
	Output voltage	V _{BAT1}	4	Ta = -10 °C to +60 °C, BATSEL = OPEN	4.070	4.112	4.154	V
ınit		V _{BAT2}	4	Ta = -10 °C to +60 °C, BATSEL = "L" level	4.170	4.212	4.254	V
Charge control unit		V _{ВРТ}	4	Overvoltage stop	4.257	4.327	4.397	V
con		V _{BFT}	4	Rapid charging start voltage	3.015	3.115	3.215	V
rge		VBRC	4	Recharging start voltage	3.877	3.942	4.007	V
Cha		V _{BPC}	4	Preliminary charging start voltage	2.015	2.115	2.215	V
		ΔV_{B}	4	V _{BAT2} — V _{BRC}	0.215	0.271	0.327	V
		Іғт	3, 4	Rapid charging current VBFT < VBAT < VBPT, RSENSE = $0.333~\Omega$	565	590	615	mA
		Ісмр	3, 4	Charge control current VBFT < VBAT < VBPT, RSENSE = $0.333~\Omega$	46	53	60	mA
	Output current	I PC	3, 4	Preliminary charging current VBPC < VBAT < VBFT, RSENSE = $0.333~\Omega$	72	80	95	mA
		Ireco	3, 4	Over discharge recovery charging current VBAT < V _{BPC} , VIN = 5.6 ± 0.2 V	0.8	2.1	10.0	mA

(Continued)

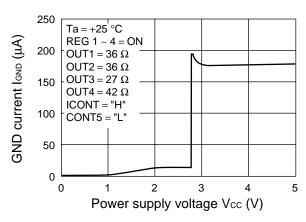
(Ta = +3 to +48 $^{\circ}$ C, VIN = 5.3 V, BATSENESE = GND)

	Parameter	Symbol	Pin No.	Conditions		Value		Unit
	T arameter		FIII NO.	Conditions	Min.	Тур.	Max.	Oilit
		t FT	4	$\begin{aligned} &ROSC = 56 \text{ k}\Omega, \\ &COSC = 100 \text{ pF} + 19 \text{ pF}, \\ &Rapid \text{ charging} \\ &V_{BFT} < VBAT < V_{BPT} \end{aligned}$	216	240	264	min
	Timer	tec	4	$\begin{aligned} &ROSC = 56 \text{ k}\Omega,\\ &COSC = 100 \text{ pF} + 19 \text{ pF},\\ &Preliminary charging}\\ &V_{BPC} < VBAT < V_{BFT} \end{aligned}$	14.4	16.0	17.6	min
		t reco	4	$\begin{aligned} &ROSC = 56 \text{ k}\Omega,\\ &COSC = 100 \text{ pF} + 19 \text{ pF},\\ &Over \text{ discharge recovery}\\ &charging\\ &VBAT < V_{BPC} \end{aligned}$	13.5	15.0	16.5	S
. =	Initial determination delay	too	1	ROSC = 56 kΩ, COSC = 100 pF + 19 pF, Ta = -10 °C to $+60$ °C	30	45	60	ms
itrol un	Full charge determination delay	t DIC	_	$\begin{aligned} &ROSC = 56 \; k\Omega, \\ &COSC = 100 \; pF + 19 \; pF \end{aligned}$	78	117	156	ms
Charge control unit	Overvoltage stop determination delay	t BOV	_	$\begin{aligned} &ROSC = 56 \; k\Omega, \\ &COSC = 100 \; pF + 19 \; pF \end{aligned}$	0.30	0.46	0.62	s
Char	Charging restart determination delay	t RC	_	$\begin{aligned} &ROSC = 56 \; k\Omega, \\ &COSC = 100 \; pF + 19 \; pF \end{aligned}$	153	230	312	ms
		Тнст	48	VREFTH = 1.7 V, Ta = -10 °C to +60 °C, 3 °C detected	1.154 0	1.189 3	1.223 6	°C
	Battery tempera-	Тнѕ∪	48	VREFTH = 1.7 V, Ta = -10 °C to +60 °C, 41 °C detected (initial)	0.539 38	0.571 41	0.601 45	°C
	ture detection	Тном1	48	VREFTH = 1.7 V, Ta = -10 °C to +60 °C, 48 °C detected	0.463 45	0.488 48	0.511 51	°C
		Тном1	48	VREFTH = 1.7 V, Ta = -10 °C to +60 °C, 41 °C detecxted (restart)	0.539 38	0.571 41	0.601 45	°C
	BATSENSE pin	VIL	43	Battery present	0.0	_	$0.3 \times VIN$	V
	input voltage	Vін	43	Battery not present	$0.7 \times VIN$	_	VIN	V

(Continued)

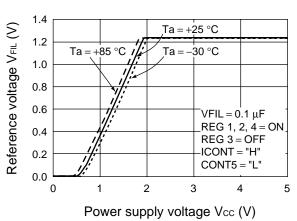

(Ta = +3 to +48 °C, VIN = 5.3 V, BATSENESE = GND)

Parameter		Symbol	Pin No.	·	Value			Unit
				Conditions	Min.	Тур.	Max.	Unit
Charge control unit	BATSEL pin input	VIL	46	4.2 V battery selected	0.0	_	0.3×VIN	V
	voltage	ViH	46	4.1 V battery selected	$0.7 \times VIN$		VIN	V
	LEDR pin ON resistance	Ron	38	LEDR = 5 mA	_	_	80	Ω
	LEDG pin ON resistance	Ron	37	LEDG = 5 mA	_	_	80	Ω
	LEDR, LEDG pin output current	lo	37, 38	_	_	_	10	mA
	Supply current	Ivin	1	VIN = 5.8 V, Fast charging	_	1.5	3.0	mA
	Leak current	Isen	3, 4	ISENSE+=ISENSE-=4.8 V, VCC = 4.8 V, VIN = CONT = GND	_	_	1	μА
	Test mode ISENSE- pin clamp voltage	V _{PR}	4	BATSENSE = OPEN, Vadl < VIN < Vadh, Ta = -10 °C to +60 °C	4.75	4.88	5.01	V
	Test mode CONT pin voltage	V _{THR}	2	$\begin{aligned} &BATSENSE = OPEN, \\ &V_{ADL} < VIN < V_{ADH}, \\ &VISENSE- = 2.5 \; V, \\ &CONT = 10 \; \mu A \end{aligned}$		_	0.1	V
	Test mode response time	Rтор	_	BATSENSE = OPEN, external FET, gate capacitor < 1000 pF, Ta = -10 °C to +60 °C	_		100	μs
	BATSENSE response time	Rttovr	_	BATSENSE = GND→OPEN or OPEN→GND, external FET, gate capacitor< 1000 pF, Ta = -10 °C to +60 °C	_		30	ms
	Thermal protection	T _{H+}	_	VADL < VIN < VADH	125		158	°C

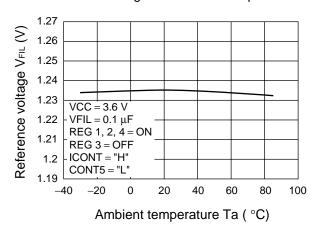

■ TYPICAL CHARACTERISTICS

Power Supply Control Unit Overall

Power supply current vs. Power supply voltage

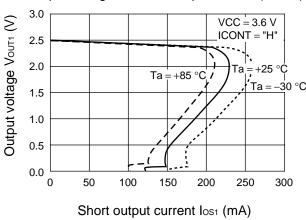


GND current vs. Power supply voltage

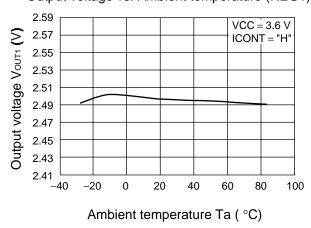


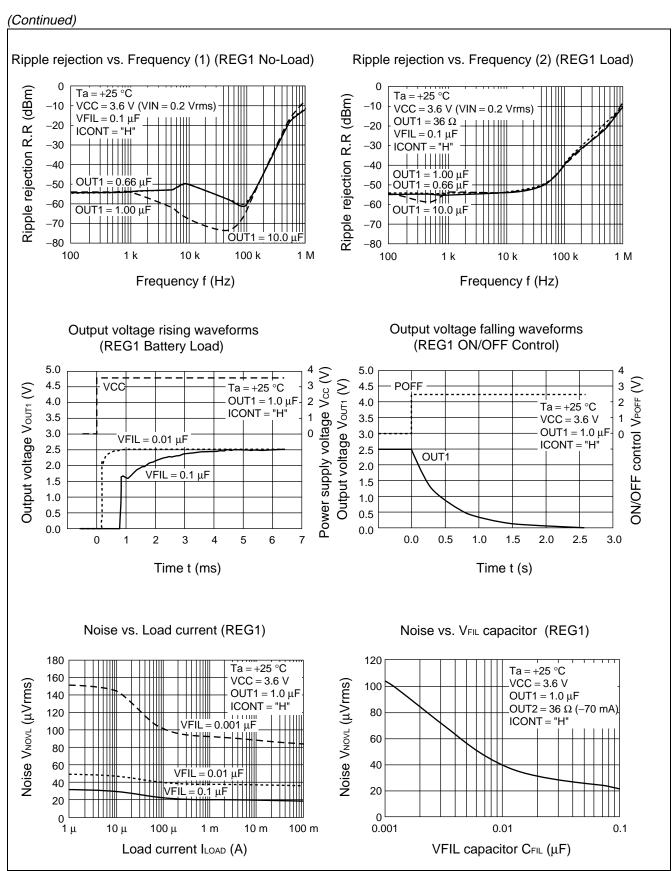
• Reference Voltage Block

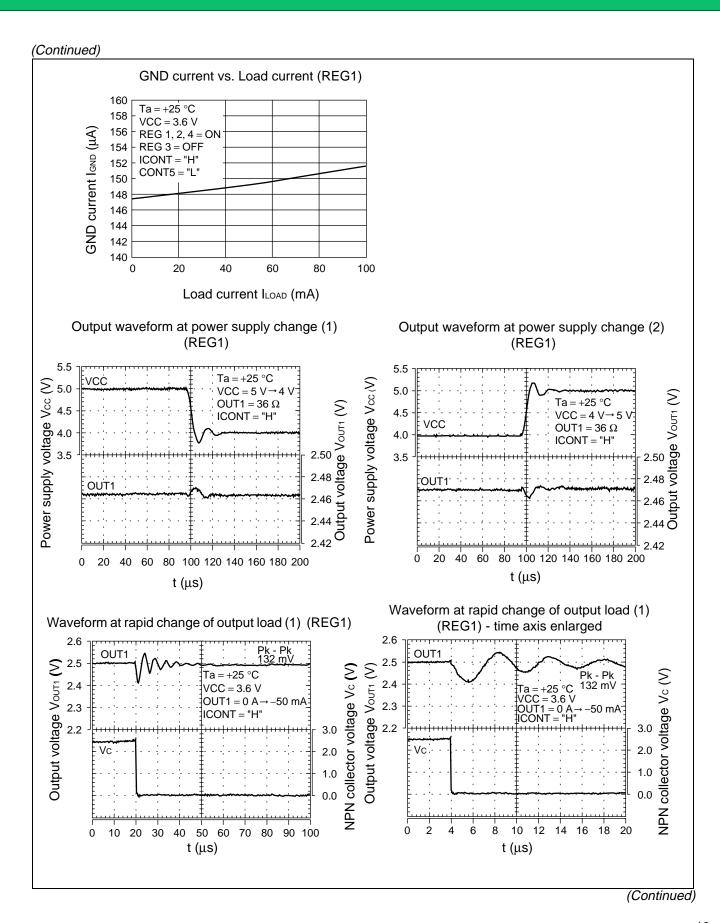
Reference voltage vs. Power supply voltage

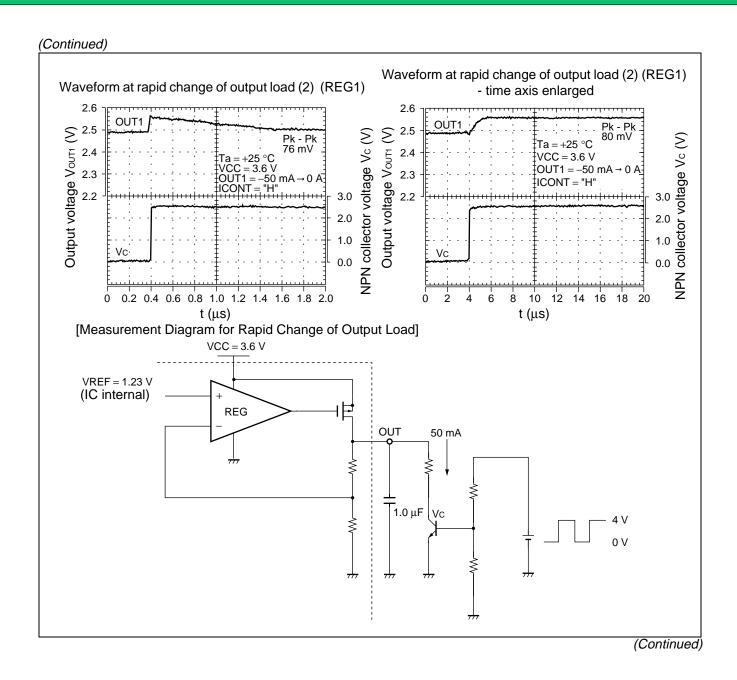


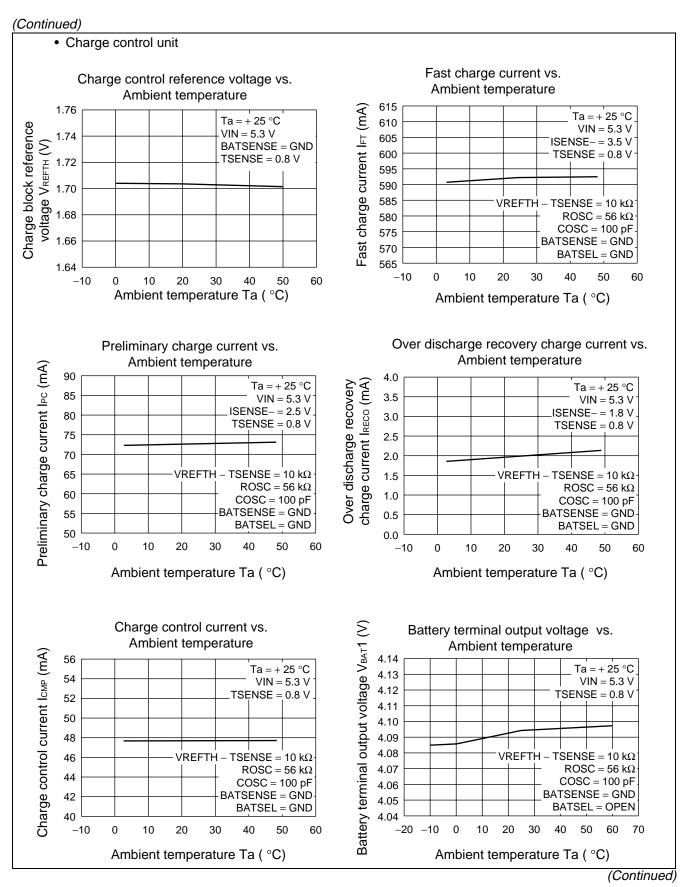
Reference voltage vs. Ambient temperature

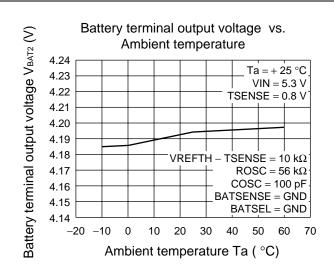


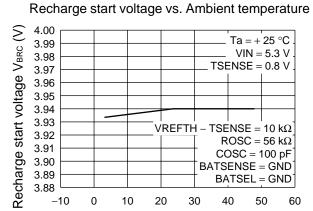

Constant Voltage Control Block

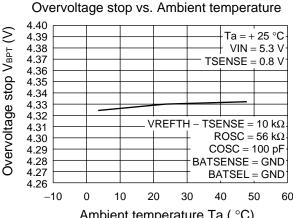

Output voltage vs. Short output current (REG1)



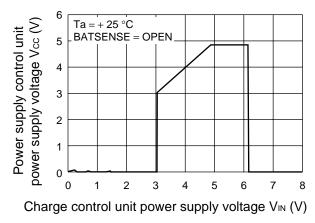

Output voltage vs. Ambient temperature (REG1)



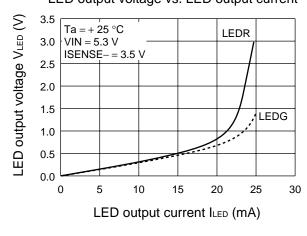



.

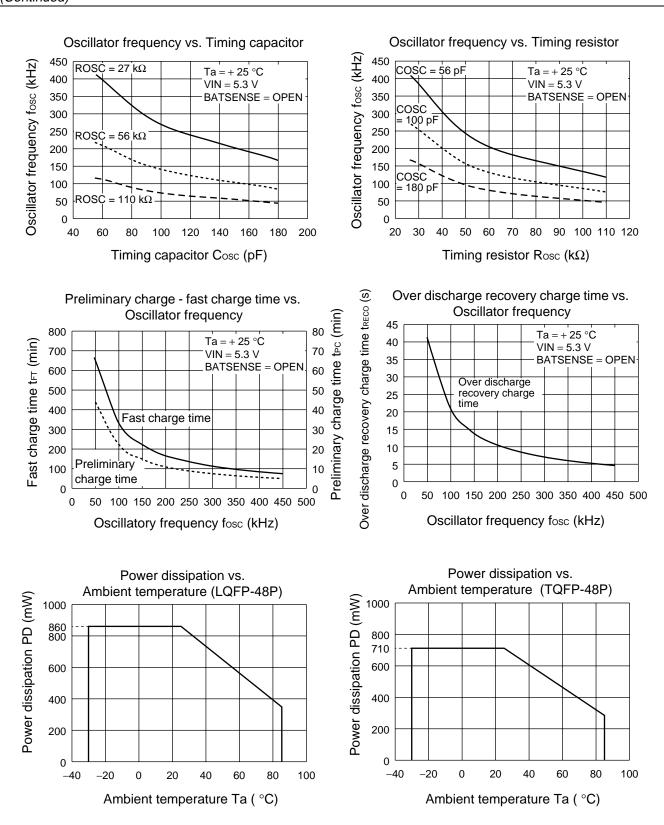
(Continued)



Ambient temperature Ta (°C)



Overvoltage stop VBPT (V) Ambient temperature Ta (°C)


Power supply control unit power supply voltage vs. Charge control unit power supply voltage (Transparent Mode)

LED output voltage vs. LED output current

■ FUNCTIONAL DESCRIPTION

1. Power Supply Control Unit

(1) Reference Voltage Block

The reference voltage circuit uses the voltage supplied from the VCC terminal (pin 40) and generates a temperature compensated reference voltage (1.23 V (Typ.)), for use as the reference voltage for the power supply control unit.

(2) Constant Voltage Control Block (REG1)

This constant voltage control block (REG1) uses the voltage supplied from the reference voltage and generates the output voltage (2.5 V) from the OUT1 terminal (pin 29).

An external load current can be obtained from the OUT1 terminal up to a maximum of 70 mA.

Also, by setting the ICONT terminal (pin 36) to "L" level the MB3893A can be placed in low current consumption (standby) mode. In standby mode, REG1 is On with a maximum output load of 500 μ A, and REG3 is Off. In this state, ripple rejection and noise levels are not assured.

(3) Constant Voltage Control Block (REG2)

This constant voltage control block (REG2) uses the voltage supplied from the reference voltage and generates the output voltage (1.8 V) from the OUT2 terminal (pin 30).

An external load current can be obtained from the OUT2 terminal up to a maximum of 50 mA.

Also, by setting the ICONT terminal (pin 36) to "L" level the MB3893A can be placed in low current consumption (standby) mode. In standby mode, REG2 is On with a maximum output load of 500 μ A, and REG3 is Off. In this state, ripple rejection and noise levels are not assured.

(4) Constant Voltage Control Block (REG3)

This constant voltage control block (REG3) uses the voltage supplied from the reference voltage and generates the output voltage from the OUT3 terminal (pin 27).

An external load current can be obtained from the OUT3 terminal up to a maximum of 70 mA.

Also, the output voltage can be changed to 1.9V or 2.2 V by mask option.

(5) Constant Voltage Control Block (REG4)

This constant voltage control block (REG4) uses the voltage supplied from the reference voltage and generates the output voltage (2.5 V) from the OUT4 terminal (pin 22).

An external load current can be obtained from the OUT4 terminal up to a maximum of 60 mA.

Also, by setting the ICONT terminal (pin 36) to "L" level the MB3893A can be placed in low current consumption (standby) mode. In standby mode, REG4 is On with a maximum output load of 500 μ A, and REG3 is Off. In this state, ripple rejection and noise levels are not assured.

(6) VREF1M

This block takes the reference voltage (1.23 V (Typ.)) generated by the reference voltage block, and uses a voltage follower to produce a temperature compensated reference voltage (1.23 V (Typ.)) at the VREF1M terminal (pin 10).

Also, an external load current can be obtained from the VREF1M terminal up to a maximum of 1 mA.

(7) ON/OFF Control Block

This block controls regulator On/Off switching according to the voltage levels of the POFF terminal (pin 18), CONT2 terminal (pin 26), CONT5 terminal (pin 6), ICONT terminal (pin 36), DRST terminal (pin 5), XON terminal (pin 11), ONOFF1 terminal (pin 9), ONOFF2 terminal (pin 17), and CONT1 terminal (pin 14).

(8) POR Block

When the output voltage from the regulator (OUT1) exceeds 2.3 V (Typ.), the XRST terminal (pin 35) goes to "H" level following a delay time (85 ms (Typ.)) set by capacitors (0.1 μ F (Typ.)) connected between the C1 terminal (pin 7) and the GND1 terminal (pin 8) and GND2 terminal (pin 39). Also, when the regulator (OUT1) output voltage falls below 2.2 V ((Typ.)), the XRST terminal goes back to "L" level.

(9) Initial Power Supply Drop Detection 1

This block controls MB3893A operation when VCC startup occurs at VCC voltage of 2.0V (Typ.) or greater. When VCC voltage exceeds 2.75V (Typ.) the VCONT terminal (pin 16) voltage goes to "H" level, and the regulated voltage is output from the OUT1 terminal (pin 29), OUT2 terminal (pin 30), and OUT4 terminal (pin 22). When VCC voltage falls below 3.1V (Typ.), the voltage at the OUT1, OUT2, and OUT4 terminals is outside of rated values. Then when VCC voltage falls below 2.5V (Typ.), the VCONT terminal (pin 16) voltage goes to "L" level, and the OUT1, OUT2, and OUT4 terminals go to "L" level (regulator "OFF" state). Hereafter this is referred to as "L" level. As long as the VCC voltage rises again before dropping below 2.0V (Typ.), the VCONT pin voltage will return to "H" level once VCC reaches 3.5 V (Typ.), and the regulated voltage is output from the OUT1, OUT2, and OUT4 terminals.

(10) Transient Power Supply Drop Detection 2

This block detects two types of power supply drop times according to the time constants CR1 and CR2, and produces the related output at the VBDET1 terminal (pin 34) and VBDET2 terminal (pin 33).

2. Charge Control Block

The charge control block checks VIN, battery voltage, and battery temperature before charging. If the results are within normal ranges, charging begins. During charging, the charging times and current levels are varied according to battery voltage. The VIN and battery temperature are monitored, and if either exceeds the normal range charging is stopped. Conditions are then monitored for a fixed time (16 min (Typ.)) and a resume charging/abnormal termination determination is made.

The MB3893A also provides an overcharge protection function, as well as a function that stops charging when a rise in IC junction temperature is detected.

Once charging has stopped due to any of these abnormal conditions, it can be resumed by re-input of VIN, or by removing and replacing the battery.

(1) Constant Current/Constant Voltage Charging

The MB3893A applies a constant current charge according to the battery voltage level, selecting over discharge recovery charging (2.1 mA (Typ.)), preliminary charging (80 mA (Typ.)) or rapid charging (590 mA (Typ.)). Once battery voltage reaches 4.1 V (4.2 V), constant voltage charging is applied until the charge current falls to 53 mA (Typ.) at constant voltage.

(2) Timer Function

The timer switches the charging time according to the battery voltage level, between over discharge recovery charging (15 s (Typ.)), preliminary charging (16 min (Typ.)), and rapid charging (240 min (Typ.)).

(3) Temperature/AC Adapter Voltage Detection

This block detects the battery temperature and AC adapter voltage, and stops charging if either is outside of the normal charging range. If normal conditions are restored within a set time (16 min (Typ.)), charging is resumed, otherwise an abnormal termination is determined.

(4) Over-Charge Protection

If battery voltage exceeds 4.3 V (Typ.) this block determines an abnormal condition, and stops charging.

■ SETTING THE XON DELAY TIME

When the XON terminal (pin 11) voltage changes from "H" to "L" level, the VCONT signal (pin 16) rises. The time constant of the capacitor (C_{RC1}) and resistor (R_{RC1}) connected to the RC1 terminal (pin 15) determine the delay time before the rise of the VCONT signal (pin 16).

XON delay time: $txon (ms) = 598.3 \times C_{RC1} (\mu F)$

■ SETTING THE XRST DELAY TIME

The time constant of the capacitor (C_{C1}) connected to the C1 terminal (pin 7) determines the delay time between the rise of the OUT1 terminal (pin 29) voltage above 2.3 V (Typ.) and the rise of the XRST terminal (pin 35) voltage.

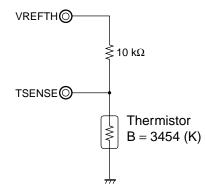
XRST delay time : tpor (s)
$$\Rightarrow \frac{1.23 \text{ (V)} \times \text{Cc}_1 \text{ (}\mu\text{F)}}{1.45 \text{ (}\mu\text{A)}}$$

■ SETTING THE POWER SUPPLY DROP DETECTION TIME

When the VCC terminal (pin 40) voltage falls below 2.0 V (Typ.) the CR1 terminal (pin 12) and CR2 terminal (pin 13) are opened, and the capacitors (CcR1, CcR2) connected to the CR1 and CR2 terminals are discharged through the respective resistors (RcR1, RcR2). The discharge time (cutoff detection time) of the CR1 and CR2 pins can be set according to the time constants of the capacitors and resistors connected to the CR1 and CR2 terminals respectively, between 0.89 V (Typ.) to 0.51 V (Typ.).

Cutoff detection time : tDET1 (s)
$$\Rightarrow$$
 -CCR1 (μ F) \times RCR1 (M Ω) \times In (0.51 (V) /0.89 (V)) tDET2 (s) \Rightarrow -CCR2 (μ F) \times RCR2 (M Ω) \times In (0.51 (V) /0.89 (V))

■ BATTERY TEMPERATURE DETECTION


The battery temperature sensor uses the thermistor shown below. The thermistor temperature coefficient is set by the following formula.

Thermistor temperature coefficient : B = $\frac{InR1 - InR2}{1 / T1 - 1 / T2}$ = 3454 (K)

T1: 276 (K) = 3 (°C) R1: 23.27 (k Ω)

T2: 321 (K) = 48 ($^{\circ}$ C)

R2: $4.026 (k\Omega)$

■ SETTING THE OSCILLATOR PERIOD

The oscillator period is set by connecting a timing capacitor (Cosc) to the COSC terminal (pin 44), and a timing resistor (Rosc) to the ROSC terminal (pin 45).

Oscillator period : tosc (
$$\mu$$
s) \doteqdot 1.073 \times 10⁻³ \times {Cosc (pF) + C_P (pF) } \times Rosc ($k\Omega$)
C_P : Board capacitor \doteqdot 19 (pF)

■ SETTING THE OVER DISCHARGE RECOVERY CHARGE TIME

When battery voltage is less than the preliminary charge start voltage (2.115 V (Typ.)), the over discharge recovery charge time is set by the following formula.

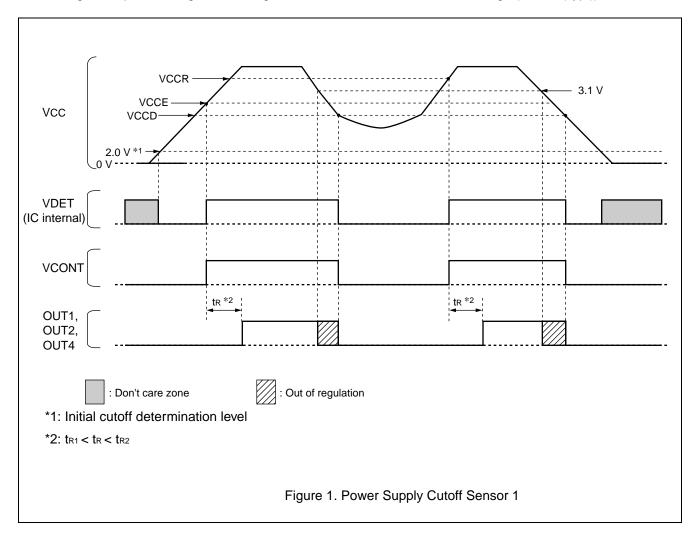
Over discharge recovery charge time: t_{RECO} (s) \pm Tosc (s) \times 2²¹

■ PRELIMINARY CHARGE TIME

When battery voltage is higher than the preliminary charge start voltage (2.115 V (Typ.)), and lower than the fast charge start voltage (3.115 V (Typ.)), the preliminary charge time is set by the following formula.

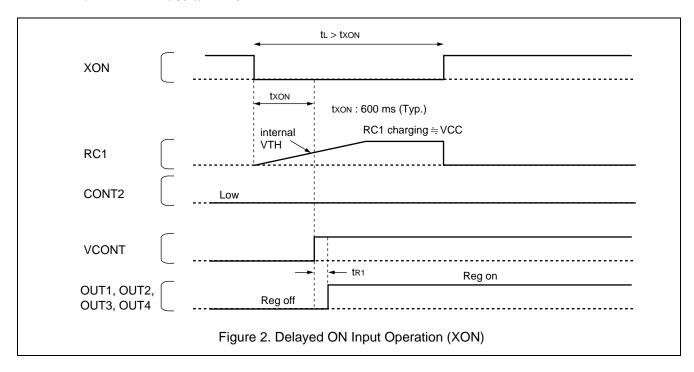
Preliminary charge time : t_{PC} (min)
$$\Rightarrow \frac{\text{tosc (s)} \times 2^{27}}{60}$$

■ RAPID CHARGE TIME

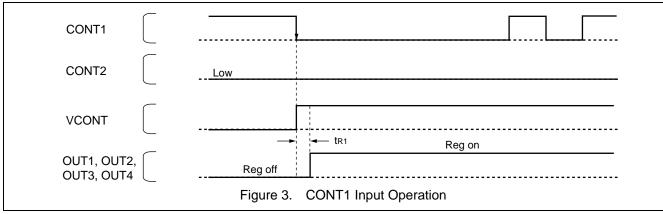

When battery voltage is higher then the fast charge start voltage (2.115 V (Typ.)), and lower than the overvoltage stop voltage (4.325 V (Typ.)), the rapid charging time is determined by the following formula.

Rapid charging time : t_{FT} (min)
$$\Rightarrow \frac{\text{tosc (s)} \times (2^{27} + 2^{28} + 2^{29} + 2^{30})}{60}$$

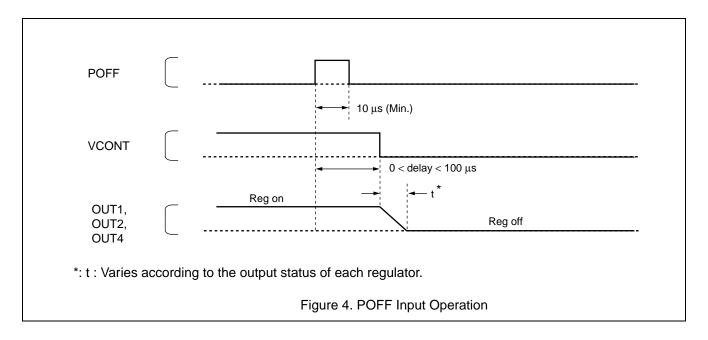
■ POWER SUPPLY CONTROL UNIT TIMING CHART


1. Power Supply Drop Detection 1

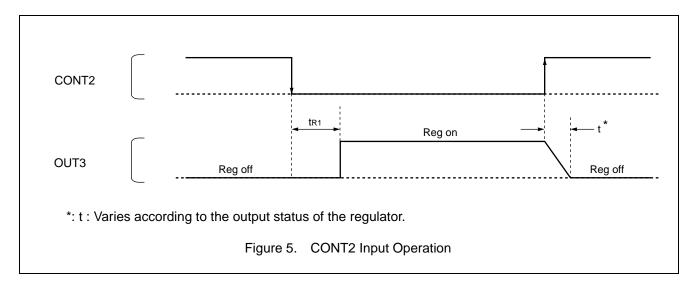
As Figure 1 shows, there is a "don't care zone" where VCC voltage is below 2 V. When VCC voltage is above VCCE voltage (2.75 V (Typ.)), the VCONT terminal (pin 16) goes to "H" level, and after a delay time (t_R) the OUT1 terminal (pin 29), the OUT2 terminal (pin 30), and the OUT4 terminal (pin 22) output their regulated voltages. When VCC voltage falls below VCCD voltage (2.50 V (Typ.)), a power supply drop detection is determined and the VCONT terminal goes to "L" level, and therefore the OUT1, OUT2, and OUT4 terminals also go to "L" level. If the VCC voltage rises again before falling below 2 V, the OUT1, OUT2, and OUT4 terminals will once again output their regulated voltages once VCC exceeds the VCCR voltage (3.50 V (Typ.))


2. Delayed ON Input Operation (XON)

As Figure 2 shows, When the XON terminal (pin 11) changes from "H" to "L" level, the capacitor connected to the RC1 terminal (pin 15) starts to charge. After the delay interval (t_{XON} : 600ms (Typ.)), once the RC1 terminal exceeds the internal threshold voltage the VCONT terminal (pin 16) goes to "H" level, and the OUT1 (pin 29), OUT2 (pin 30), OUT3 (pin 27), and OUT4 (pin 22) terminals then output their respective regulated voltages after a delay interval (t_{R1}). Note however that for the OUT3 terminal to output its regulated voltage, it is necessary for the CONT2 terminal (pin 26) to be at "L" level. Also, for the XON pin to return from "L" level to "H" level, a delay interval (t_{XON} : 600 ms (Typ.)) is required.


3. CONT1 Input Operation

As Figure 3 shows, when the CONT1 terminal (pin 14) goes from "H" to "L" level, the VCONT terminal (pin 16) goes to "H" level, and the OUT1 (pin 29), OUT2 (pin 30), OUT3 (pin 27), and OUT4 (pin 22) terminals then output their respective regulated voltages after a delay interval (tk1). Note however that for the OUT3 terminal to output its regulated voltage, it is necessary for the CONT2 terminal (pin 26) to be at "L" level. Also once the OUT1, OUT2, OUT3, and OUT4 terminals have started to output their regulated voltages, the voltage at the OUT1, OUT2, OUT3, and OUT4 terminals will not change even if the CONT1 terminal goes from "L" to "H" level, or from "H" level to "L" level.

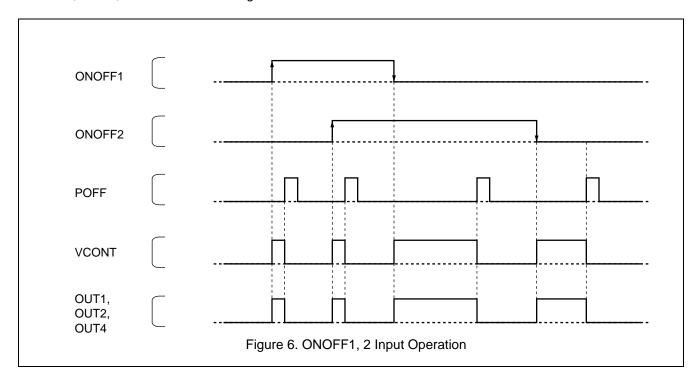

4. POFF Input Operation

As Figure 4 shows, once when the POFF terminal (pin 18) goes to "H" level, then after a delay interval (0 < delay < 100 μ s) the VCONT terminal (pin 16) goes to "L" level, and the OUT1 (pin 29), OUT2 (pin 30), and OUT4 (pin 22) terminals then after a delay interval (t) go to "L" level. Also, a minimum of 10 μ s is required to set the POFF signal to "H" level.

5. CONT2 Input Operation

As Figure 5 shows, when the CONT2 terminal (pin 26) goes from "H" to "L" level, the OUT3 terminal (pin 27) after a delay interval (tR1) outputs its regulated voltage. When the CONT2 terminal goes from "L" to "H" level, then the OUT3 terminal returns to "L" level after the required fall time (t).

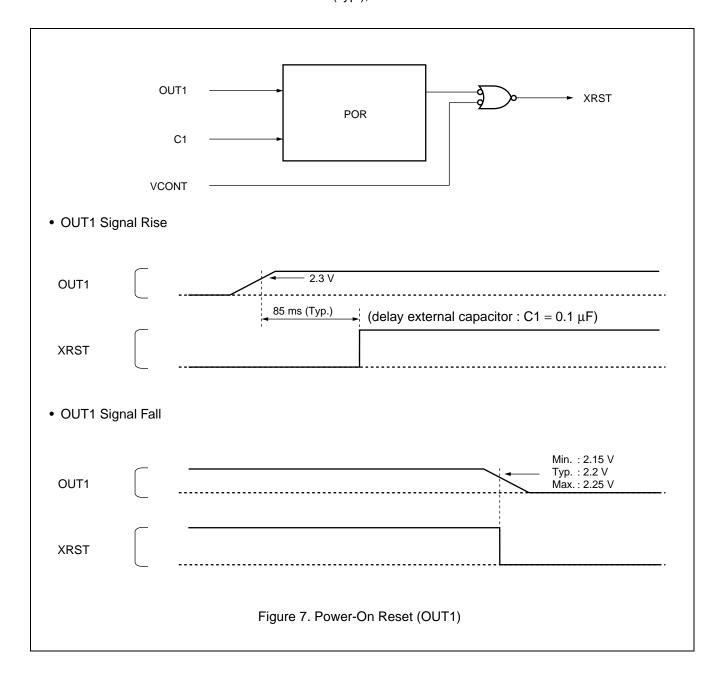
6. ONOFF1, 2 Input Operation


As Figure 6 shows, when the ONOFF1 terminal (pin 9) goes from "L" level to "H" level, the VCONT terminal (pin 16) goes to "H" level, and the OUT1 (pin 29), OUT2 (pin 30), OUT3 (pin 27), and OUT4 (pin 22) terminals output their respective regulated voltages.

The next time the POFF terminal (pin 18) goes from "L" level to "H" level, the VCONT terminal (pin 16) goes to "L" level, and the OUT1 (pin 29), OUT2 (pin 30), and OUT4 (pin 22) terminals go to "L" level. Then when the ONOFF2 terminal (pin 17) goes from "L" level to "H" level, the VCONT terminal returns to "H" level, and the OUT1, OUT2, OUT3 and OUT4 terminals output their respective regulated voltages.

The next time the POFF terminal goes from "L" level to "H" level, the VCONT terminal goes to "L" level, and the OUT1, OUT2, and OUT4 terminals go to "L" level. Then when the ONOFF1 terminal goes from "L" level to "H" level, the VCONT terminal returns to "H" level, and the OUT1, OUT2 and OUT4 terminals output their respective regulated voltages.

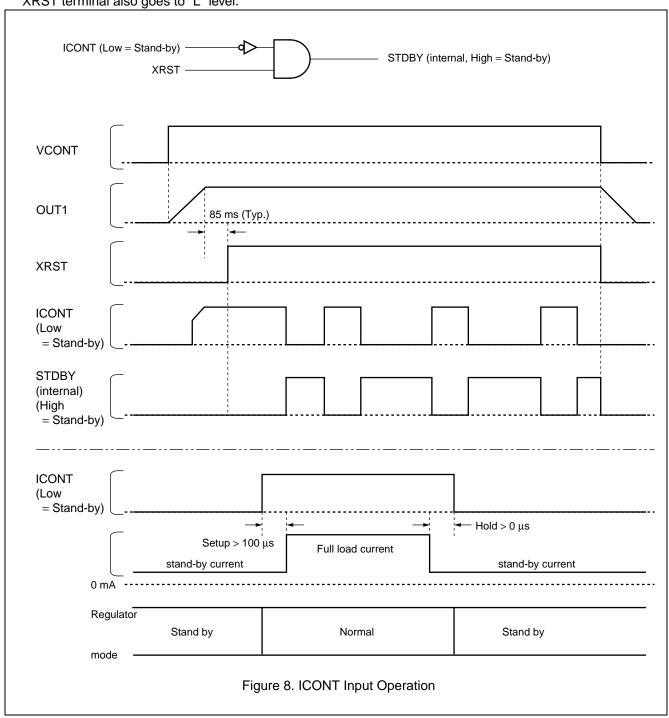
The next time the POFF terminal goes from "L" level to "H" level, the VCONT terminal goes to "L" level, and the OUT1, OUT2, and OUT4 terminals go to "L" level. Then when the ONOFF2 terminal goes from "H" level to "L" level, the VCONT terminal returns to "H" level, and the OUT1, OUT2 and OUT4 terminals output their respective regulated voltages.


The next time the POFF terminal goes from "L" level to "H" level, the VCONT terminal goes to "L" level, and the OUT1, OUT2, and OUT4 terminals go to "L" level.

7. Power-On Reset (OUT1)

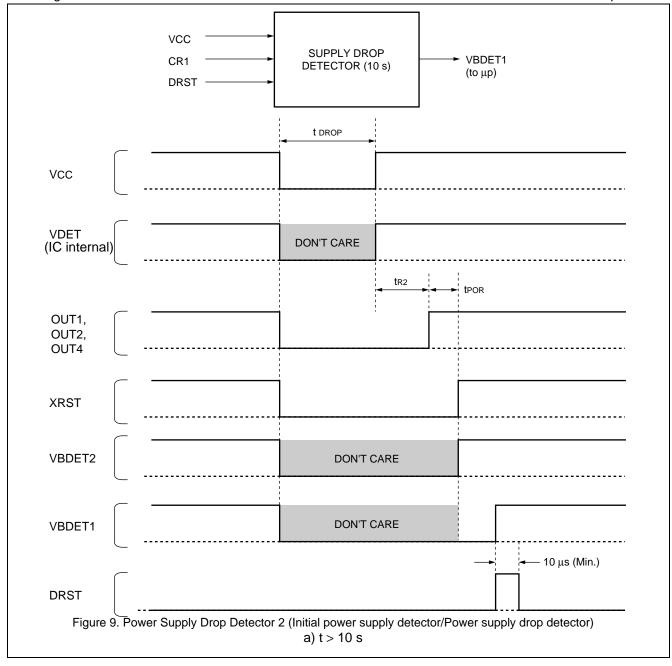
As Figure 7 shows, when the OUT1 terminal (pin 29) exceeds 2.3 V (Typ.), then after a delay interval (85 ms (Typ.)) the XRST terminal (pin 35) goes to "H" level.

When the OUT1 terminal falls back below 2.2 V (Typ.), the XRST terminal returns to "L" level.

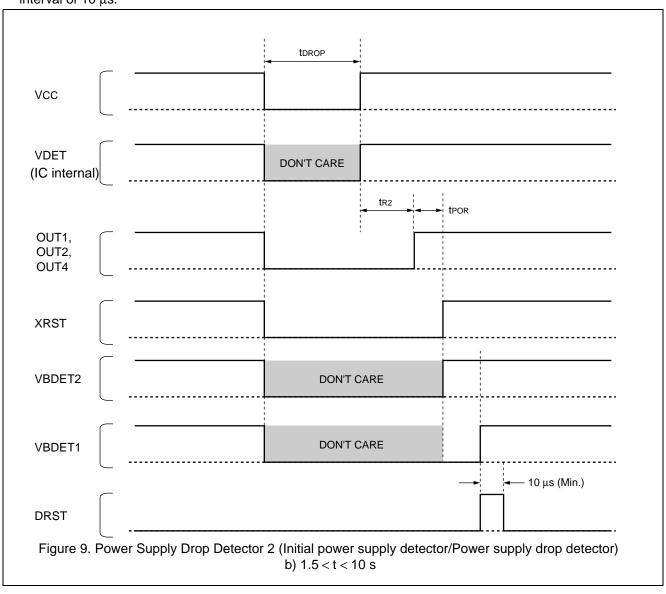


8. ICONT Input Operation

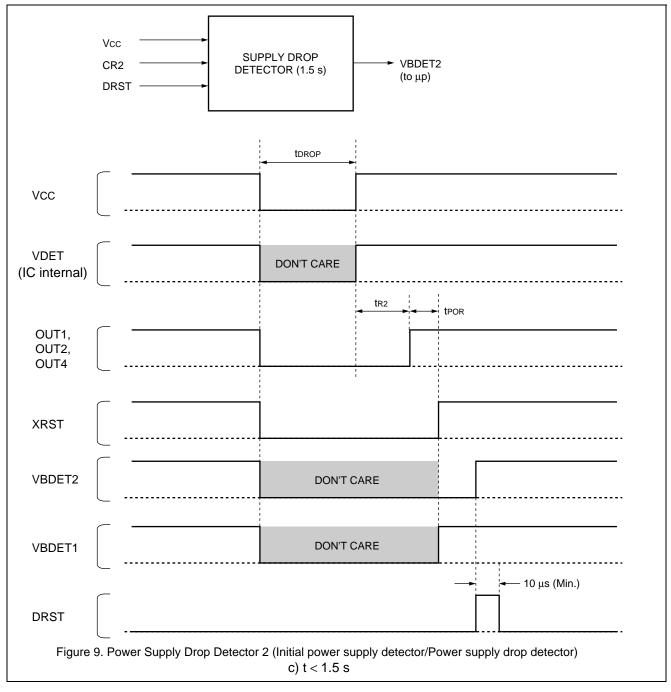
As Figure 8 shows, when the VCONT terminal (pin 16) goes from "L" level to "H" level, the OUT1 terminal (pin 29) outputs its regulated voltage. Then, after a delay interval (85 ms (Typ.)) the XRST terminal (pin 35) goes to "H" level.


If after the XRST terminal has gone to "H" level the ICONT terminal (pin 36) goes to "L" level, the MB3893A goes into standby mode, reducing the IC internal current consumption. When the ICONT terminal returns to "H" level normal operation is restored.

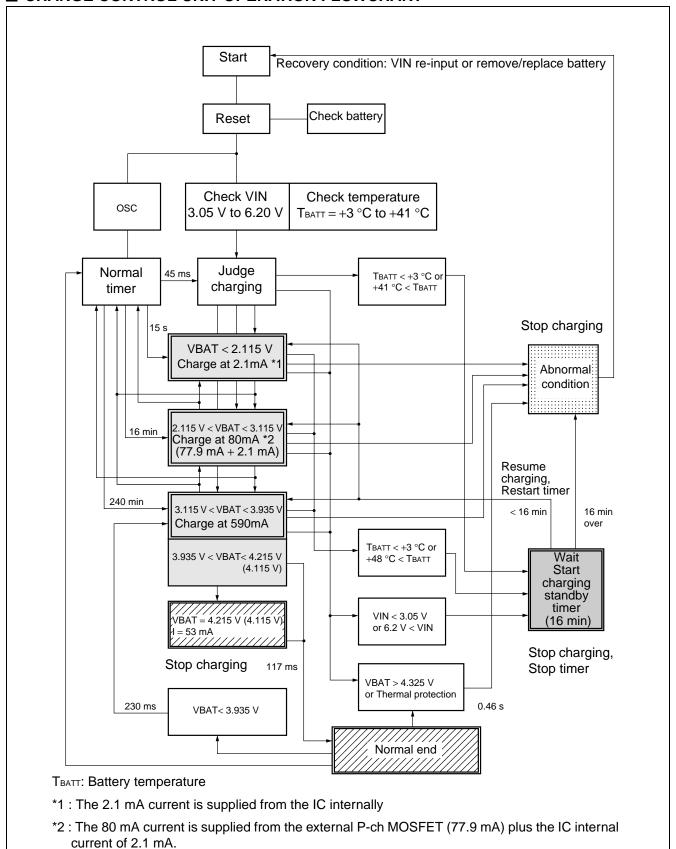
When the VCONT terminal goes from "H" level to "L" level, the OUT1 terminal goes to "L" level. At this time the XRST terminal also goes to "L" level.


9. Power Supply Drop Detector 2 (Initial power supply detector/power supply drop detector) a) t > 10 s

The MB3893A power supply drop detection intervals are set to t_{DET1} (10 s (Typ.)) and t_{DET2} (1.5 s (Typ.)) so that, as shown in Figure 9(a), when VCC goes from "H" level to "L" level, the OUT1 (pin 29), OUT2 (pin 30), and OUT4 (pin 22) terminals go to "L" level, and the XRST terminal (pin 35) also goes to "L" level. At this time, the VBDET1 terminal (pin 34) and VBDET2 terminal (pin 33) also go to "L" level. When VCC drops for a fixed interval (t > 10 s), and then returns to "H" level, the OUT1, OUT2, and OUT4 terminals after a delay interval (t_{R2}) output their regulated voltages, and the XRST terminal after a delay interval (t_{POR}) goes to "H" level. During the interval between the VCC drop and XRST terminal return to "H" level the VBDET1 terminal and VBDET2 terminal are in undefined state. Also once the XRST terminal returns to "H" level the VBDET1 terminal is at "L" level and the VBDET2 terminal is at "H" level. At this time, if the DRST terminal (pin 5) goes to "H" level, the VBDET1 terminal also goes to "H" level. Note that the DRST terminal must be at "H" level for at least an interval of 10 μs.


b) 1.5 < t < 0 s

The MB3893A power supply drop detection intervals are set to t_{DET1} (10 s (Typ.)) and t_{DET2} (1.5 s (Typ.)) so that, as shown in Figure 9(b), when VCC goes from "H" level to "L" level, the OUT1 (pin 29), OUT2 (pin 30), and OUT4 (pin 22) terminals go to "L" level, and the XRST terminal (pin 35) also goes to "L" level. At this time, the VBDET1 terminal (pin 34) and VBDET2 terminal (pin 33) also go to "L" level. When VCC drops for a fixed interval (1.5 s < t < 10 s), and then returns to "H" level, the OUT1, OUT2, and OUT4 terminals after a delay interval (tR2) output their regulated voltages, and the XRST terminal after a delay interval (t_{POR}) goes to "H" level. During the interval between the VCC drop and XRST terminal return to "H" level the VBDET1 terminal and VBDET2 terminal are in undefined state. Also once the XRST terminal returns to "H" level the VBDET1 terminal is at "H" level and the VBDET2 terminal is also at "H" level. At this time, if the DRST terminal (pin 5) goes to "H" level, the VBDET1 and VBDET2 terminals remain at "H" level. Note that the DRST terminal must be at "H" level for at least an interval of 10 μ s.



c) t < 1.5 s

The MB3893A power supply drop detection intervals are set to t_{DET1} (10 s (Typ.)) and t_{DET2} (1.5 s (Typ.)) so that, as shown in Figure 9(c), when VCC goes from "H" level to "L" level, the OUT1 (pin 29), OUT2 (pin 30), and OUT4 (pin 22) terminals go to "L" level, and the XRST terminal (pin 35) also goes to "L" level. At this time, the VBDET1 terminal (pin 34) and VBDET2 terminal (pin 33) also go to "L" level. When VCC drops for a fixed interval (t < 1.5 s), and then returns to "H" level, the OUT1, OUT2, and OUT4 terminals after a delay interval (t_{R2}) output their regulated voltages, and the XRST terminal after a delay interval (t_{POR}) goes to "H" level. During the interval between the VCC drop and XRST terminal return to "H" level the VBDET1 terminal and VBDET2 terminal are in undefined state. Also once the XRST terminal returns to "H" level the VBDET1 terminal is at "H" level and the VBDET2 terminal is at "L" level. At this time, if the DRST terminal (pin 5) goes to "H" level, the VBDET2 terminal goes to "H" level. Note that the DRST terminal must be at "H" level for at least an interval of 10 μs.

■ CHARGE CONTROL UNIT OPERATION FLOWCHART

■ CHARGE CONTROL UNIT LED OPERATION TABLE

• FULL, CHARGE, LEDR Operation Table

Switch Operating condition OUT1			O itala	Signal pin				
		Switch	FULL CHARGE		Li	LEDR		
		OUT1		ON	ON	ON	ON/OFF	
LEDEN			_	_	Н	L		
No operation	VIN OFF		Н	Н	_	_		
No operation	VIN ON, BATSENSE open		Н	Н	Н	Н		
Over discharge reco	very cha	rging 2.	.1 mA	_	_	_	L	
Preliminary charging	g 80 mA			Н	L	Н	L	
Rapid charging 590	mA			Н	L	Н	L	
Charging completed	ı			L	Н	Н	Н	
3.935 V recharging				Н	L	Н	L	
	2.1 m			_	_	_	Н	
Temperature detect 3 °C or lower	ion	80 mA		Н	Н	Н	Н	
		590 mA		Н	Н	Н	Н	
				_	_	_	Н	
Temperature detect 41 °C or 48 °C or gr				Н	Н	Н	Н	
7		590 mA		Н	Н	Н	Н	
	:	2.1 mA		_	_	_	Н	
VIN Low < 3.05 V VCC < VIN	-	80 mA		Н	Н	Н	Н	
VOO < VIIV		590 mA		Н	Н	Н	Н	
	:	2.1 mA		_	_	_	Н	
VIN High > 6.20 V	80 mA 590 m			Н	Н	Н	Н	
			1	Н	Н	Н	Н	
		15 s Time out		_	_	_	L↔H	
		16 min Time out		Н	L↔H	Н	L↔H	
Battery abnormal		VCC < 3.935 V 240 min Time out		Н	L↔H	Н	L↔H	
		VCC > 3.935 V 240 min Time out		L	Н	Н	Н	
	7	VCC >	4.325 V	Н	L↔H	Н	L↔H	

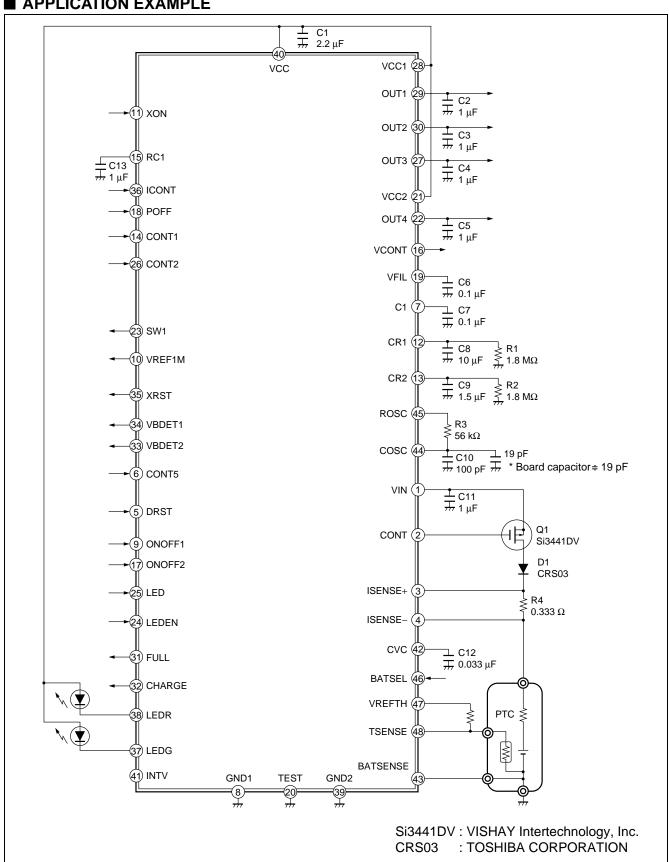
LEDR, CHARGE = $L \leftrightarrow H$: Blinking, LEDR = L: ON, H: OFF

LEDEN, FULL, CHARGE: Power supply is OUT1, therefore undefined when OUT1 = OFF.

OUT1=OFF during over discharge recovery charging (2.1 mA) and 15 s time out

• LEDG Operation Table

LED	LEDG		
L	Н		
Н	L		


LEDG = L : ON, H : OFF

LED, LEDG: Power supply is OUT1, therefore undefined when OUT1 = OFF.

■ ABOUT CAPACITOR CONNECTED TO VCC PIN

When the VCC voltage exceeds 2.75 V (Typ.), the VCONT terminal (pin 16) goes to "H" level, and the OUT1 (pin 29), OUT2 (pin 30), and OUT4 (pin 22) terminals rise. When each of these respective OUT terminals rises, a rush current flows to the capacitor connected to that OUT terminal. At this time the internal impedance of the battery causes VCC to drop, and if VCC voltage goes below 2.5 V (Typ.), the OUT terminal voltage regurns to "L" level (regulator OFF mode).t is necessary to set the capacitor connected between VCC and GND taking into consideration the internal impedance of the battery, so that the VCC drop does not go below 2.5 V.

■ APPLICATION EXAMPLE

■ USAGE PRECAUTIONS

1. Never use settings exceeding maximum rated conditions.

Exceeding maximum rated conditions may cause permanent damage to the LSI. Also, it is recommended that recommended operating conditions be observed in normal use. Exceeding recommended operating conditions may adversely affect LSI reliability.

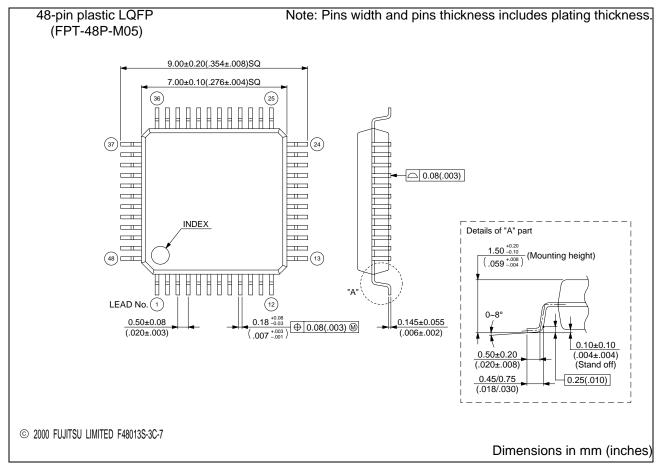
2. Use this device within recommended operating conditions.

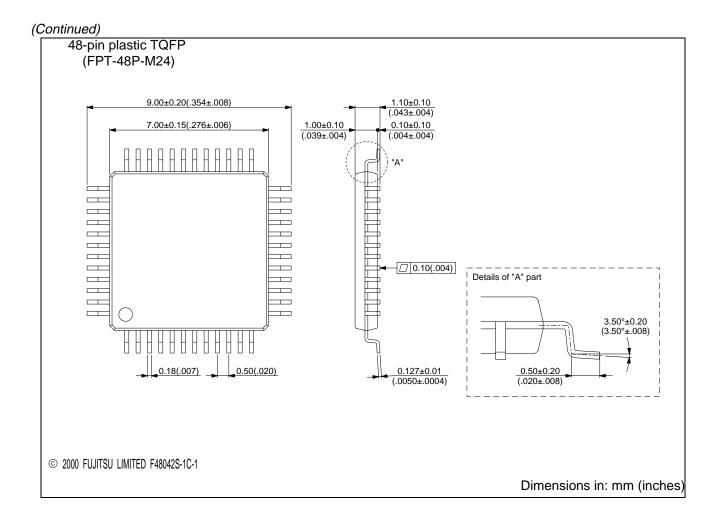
Recommended operating conditions are values within which normal LSI operation is warranted. Standard electrical characteristics are warranted within the range of recommended operating conditions and within the listed conditions for each parameter.

3. Printed circuit board ground lines should be set up with consideration for common impedance.

4. Take appropriate static electricity measures.

- Containers for semiconductor materials should have anti-static protection or be made of conductive material.
- After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
- Work platforms, tools, and instruments should be properly grounded.
- Working personal should be grounded with resistance of 250 k Ω to 1 M Ω between body and ground.


5. Do not apply negative voltages.


The use of negative voltages below -0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB3893APFV	48-pin plastic LQFP (FPT-48P-M05)	
MB3893APFT	48-pin plastic TQFP (FPT-48P-M24)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,

Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH

Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0012

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.