TENTATIVE TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC ## TA8044F ### 3.3V / 5V DUAL-VOLTAGE REGULATOR WITH WATCHDOG TIMER Designed specifically for use in 3.3V microcomputers, this IC contains two constant-voltage power supplies for 3.3V and 5V uses and various system reset functions. This IC's Power Supply Output 1 provides an output voltage of 3.4V and contains an output transistor capable of producing 10mA of output current. With an external boost transistor connected, this IC can supply a large output current. A 400mA current limiter is included. Power Supply Output 2 provides an output voltage of 5.1V which can be turned on or off from the EN pin. This output uses an external output transistor. Any desired current limiter value can be set using an external adjusting resistor. For a system reset, it has a low-voltage monitor/poweron reset/watchdog timer at Power Supply Output 2. Weight: 0.14g (Typ.) #### **FEATURES** Power Supply Output 1 Output voltage : 3.4V ± 0.15V • Output current : 10mA (built-in transistor) / 300 mA (when urrent boost transistor connected) Current limiter : 400mA Power Supply Output 2 Output voltage : 5.1V + 0.15V - 0.18V • Output current : 600mA (External transistor) Current limiter : Variable using external adjusting resistor Reset functions : Low-voltage monitor and power-on watchdog timer Low standby current : 800 μA (Max) ullet Wide operating temperature range : –40°C to 125°C Compact flat packageSSOP-16pin : 16-pin SSOP 961001EBA1 - TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. - The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. - The information contained herein is subject to change without notice. #### **BLOCK DIAGRAM AND PIN ASSIGNMENT** #### PIN DESCRIPTION | PIN No. | SYMBOL | DESCRIPTION | | | | | |---------|------------------|--|--|--|--|--| | 1 | V _{IN1} | Power supply input pin for V _{CC1} . It contains a 400mA (Typ.) current limiter. | | | | | | 2 | V _{S1} | Current limiter pin for VCC1. A 45M Ω sense resistor is included between pin 1 and this pin. | | | | | | 3 | OUT1 | Power supply input pin for V _{CC1} . When using an external current boost transistor, connect the base of a PNP transistor to this pin. No external transistor is required when using the IC at a load current of 10mA or less. In this case, connect the power supplies by shorting pins 1, 2, and 3. | | | | | | 4 | V _{CC1} | Voltage detection / output pin for V _{CC1} . When using a current boost transistor, connect the collector of a PNP transistor to this pin. When used with a load current of 10mA or less, this pin serves as an output pin for the 3.3V power supply. | | | | | | 5 | COMP1 | Phase compensating pin for V_{CC1} . Connect a phase compensating capacitor between pin 4 and this pin. | | | | | | 6 | EN | On/off control pin for V _{CC2} . The 5V output is turned on when EN is high and turned off when EN is low. A 100k Ω pull-down resistor is included in GND. | | | | | | 7 | GND | Grounded | | | | | | 8 | RESET | Power-on reset/watchdog timer reset output pin. Generates a reset signal that is determined by C_T and R_T at the TC pin. If no clock is fed to the CK input, this pin generates a reset pulse intermittently. This is an NPN transistor collector output, with a 100kΩ pull-up resistor built into VCC2. | | | | | | 9 | TC | Time setup pin for the reset and watchdog timers. Connect resistor R_T to V_{CC2} and capacitor C_T to GND. | | | | | | 10 | СК | Clock input pin for the watchdog timer. If used only as a power-on reset timer, pull up this input to V _{CC2} . | | | | | | 11 | V _{CC3} | This pin contains a 7.5V Zener diode. To use this pin, short it to pin 13. When the V _{CC2} voltage becomes abnormal, the Zener diode suppresses the voltage. | | | | | | 12 | COMP2 | Phase compensating pin for V _{CC2} . Connect a phase compensating capacitor between pin 13 and this pin. | | | | | | 13 | V _{CC2} | Voltage detection pin for the 5V constant-voltage power supply, V _{CC2} . It also supplies power to the reset timer block. | | | | | | 14 | OUT2 | This pin is used to connect the base of an external PNP transistor. The output voltage is controlled by an internal op-amp to maintain it stably at 5V. Since the recommended current of I _{OUT} is 10mA, an output current of up to 600mA can be flowed if HFE of the external transistor is 60 or more. | | | | | | 15 | V _{S2} | Detection pin for the V_{CC2} current limiter. A voltage drop occurring in the external resistor Rs between pins 15 and 16 is monitored. The current limiter is actuated when the voltage drop exceeds 0.3V.
Ex.) When the current limiter need to be actuated at a load current of 600mA $Rs = 0.3V/600mA = 0.5\Omega$ | | | | | | 16 | V _{IN2} | Power supply input pin. An internal 6V constant voltage is connected to this pin for supplying power to the $V_{\text{CC1/2}}$ current limiters, voltage regulating circuit for V_{CC1} , reference voltage source, and the EN input circuit. | | | | | #### **TIMING CHART** #### **MAXIMUM RATINGS** (Ta = 25°C) | CHARACTERISTIC | SYMBOL | RATING | UNIT | | |-------------------------|------------------|-----------------|------|--| | Input Voltage | VIN | 60 (1s) | V | | | Output Current | lOUT1 | 10 | mA | | | Output Current | lOUT2 | | | | | Operating Temperature | T _{opr} | - 40∼125 | °C | | | Storage Temperature | T _{stg} | - 55∼150 | °C | | | Lead Temperature (Time) | T _{sol} | 260 (10s) | °C | | #### **SSOP16-P-225 HEAT RESISTANCE DATA** (Ta = 25°C) | CHARACTERISTIC | RATING | CONDITION | UNIT | |-----------------|--------|--------------------------------|------| | $R_{ hetaj-a}$ | 200 | Single unit | °C/W | | P _{D1} | 0.6 | Single unit | W | | P _{D2} | 0.78 | Mounted on 50×50×1.6mm, 30% Cu | W | # ELECTRICAL CHARACTERISTICS $\left(\begin{array}{l} V_{CC}=6 \text{ to } 16V,\ I_{LOAD-1}=10\text{mA},\ I_{LOAD-2}=10\text{mA},\ Ta=-40{\sim}\,125^{\circ} \text{ Cunless otherwise specified} \end{array}\right)$ | | , , , , , , , , , , , , , , , , , , , | | | · | | <u>/</u> | | | |------------------------------|---------------------------------------|----------------------|----------------------|---------------------------------------|----------|--|------|-------| | CHARACTERISTIC | SYMBOL | PIN | TEST
CIR-
CUIT | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | | | \\ 1 | V _{CC} -1 | _ | Ta = −40~105°C | 3.28 | 3.4 | 3.52 | V | | Output Voltage | V _{REG} -1 | | _ | Ta = −40~125°C | 3.25 | 3.4 | 3.55 | | | Output voltage | V _{REG} -2 | V _{CC} -2 | _ | Ta = −40~105°C | 4.95 | 5.1 | 5.25 | | | | | | _ | Ta = −40~125°C | 4.92 | 5.1 | 5.25 | | | Input Stability | V _{LINE} | V _{CC} -1/2 | _ | V _{IN} = 6~40V | _ | 0.1 | 0.5 | % | | Load Stability | V _{LOAD-1} | V _{CC} -1 | _ | $I_{LOAD} = 1 \sim 300 \text{mA}$ | | 0.2 | 1.0 | % | | Load Stability | V _{LOAD-2} | V _{CC} -2 | | $I_{LOAD} = 1 \sim 300 \text{mA}$ | _ | 0.2 | 1.0 | | | Temperature
Coefficient | _ | V _{CC} -1/2 | _ | _ | _ | 0.01 | _ | % /°C | | Current Limiter | ILIMIT | V _{CC} -1 | _ | _ | _ | 400 | _ | mA | | Current Limiter
Detection | VLIMIT | V _{CC} -2 | _ | _ | _ | 0.3 | _ | V | | Standby Current | IST | <u> </u> | _ | V _{IN} = 14V | — | 400 | 800 | μΑ | | | V _{TH1} | V _{CC} -1 | _ | _ | 3.0 | 3.15 | 3.3 | V | | Reset Detection | ∆V _{TH1} | | _ | V _{CC} -1 – V _{TH1} | 0.2 | 0.25 | 0.3 | | | Voltage | V _{TH2} | V _{CC} -2 | _ | _ | 4.55 | 4.75 | 4.92 | | | | ∆V _{TH2} | VCC-2 | _ | V _{CC} -2 – V _{TH2} | 0.3 | 0.35 | 0.4 | | | Power-on Reset | T _{POR} | RESET | _ | _ | _ | 1.6 x
C _T × R _T | - | | | Watchdog Timer | TWD | RESET | _ | _ | _ | 1.1 x
C _T × R _T | _ | _ | | Reset Timer | T _{RST} | RESET | _ | | _ | 700 ×
C _T | | | #### **EXAMPLE OF APPLICATION CIRCUIT (1)** Built-in 3.3V power supply +5V power supply **EXAMPLE OF APPLICATION CIRCUIT (2)** 3.3V power supply with current boost transistor + 5V power supply, 5V/3V series connected **EXAMPLE OF APPLICATION CIRCUIT (3)** 3.3V power supply with current boost transistor +5V power supply, 5V/3V parallel connected Unit: mm #### **OUTLINE DRAWING** SSOP16-P-225-1.00A Weight: 0.14g (Typ.)