TLC5733A 20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER WITH HIGH-PRECISION CLAMP

SLAS104A - JULY 1995 - REVISED NOVEMBER 1996

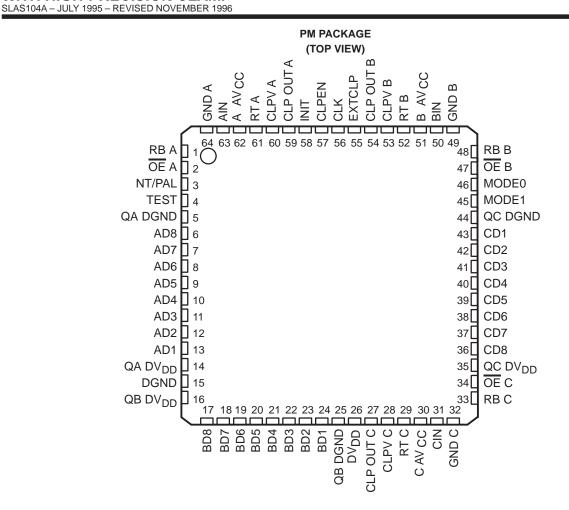
- 3-Channel CMOS ADC
- 5-V Single-Supply Operation or 5-V Analog Supply with Digital Supply from 2.7 V to 5.25 V
- 8-Bit Resolution
- Differential Linearity Error . . . ±0.5 LSB Max
- Linearity Error . . . ±0.75 LSB Max
- Maximum Conversion Rate
 20 Megasamples per Second
 (MSPS) Min
- Analog Input Voltage Range
 2 V_{I(PP)} Min
- 64-Pin Shrink QFP Package

- Analog Input Bandwidth . . . >14 MHz
- Suitable for YUV or RGB Applications
- Digital Clamp Optimized for NTSC or PAL YUV Component
- High-Precision Clamp . . . ±1 LSB
- Automatic Clamp Pulse Generator
- Output-Data Format Multiplexer
- Low Power Consumption

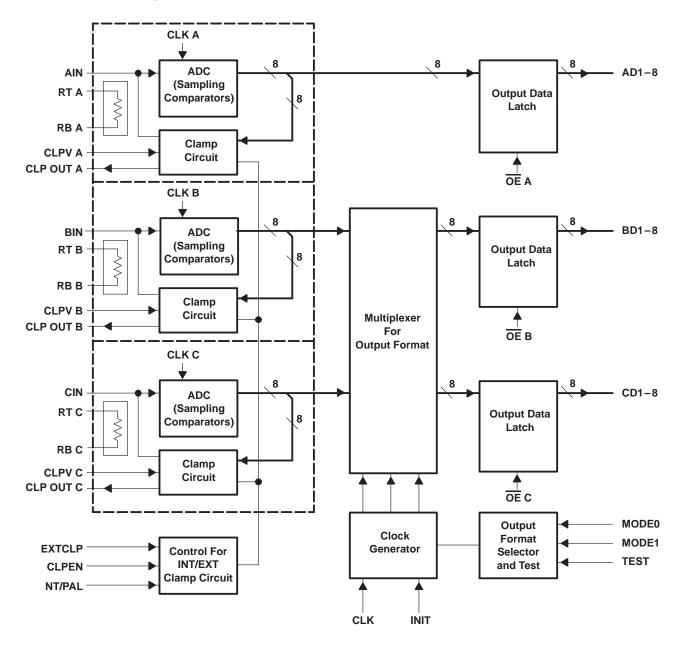
description

The TLC5733A is a 3-channel 8-bit semiflash analog-to-digital converter (ADC) that operates from a single 5-V power supply. It converts a wide-band analog signal (such as a video signal) to digital data at sampling rates up to 20 MSPS minimum. The TLC5733A contains a feed-back type high-precision clamp circuit for each ADC channel for video (YUV) applications and a clamp pulse generator that detects COMPOSITE SYNC[†] pulses automatically. A clamp pulse can also be supplied externally. The output-data format multiplexer selects a ratio of Y:U:V of 4:4:4, 4:1:1, or 4:2:2. For RGB applications, the 4:4:4 output format without clamp function can be used. The TLC5733A is characterized for operation from –20°C to 75°C.

AVAILABLE OPTIONS


т.	PACKAGE
'A	QUAD FLATPACK
-20°C to 75°C	TLC5733AIPM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


† COMPOSITE SYNC refers to the externally generated synchronizing signal that is a combination of vertical and horizontal sync information used in display and TV systems.

functional block diagram

TLC5733A 20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER WITH HIGH-PRECISION CLAMP SLAS104A – JULY 1995 – REVISED NOVEMBER 1996

Terminal Functions

TERMINAL								
NAME	NO.	1/0	DESCRIPTION					
A AVCC	62	+-	Analog supply voltage of ADC A					
AD8-AD1	6-13	0	Data output of ADC A (LSB: AD1, MSB:AD8)					
AIN	63	Ī	Analog input of ADC A					
B AV _{CC}	51	H	Analog supply voltage of ADC B					
BD8-BD1	17-24	0	Data output of ADC B (LSB: BD1, MSB:BD8)					
BIN	50	Ī	Analog input of ADC B					
C AV _{CC}	30	H	Analog supply voltage of ADC C					
CD8-CD1	36-43	0	Data output of ADC C (LSB:CD1, MSB: CD8) When MODE0 = L, MODE1 = L, CD8 outputs MSB flag of BD8-BD5 When MODE0 = L, MODE1 = L, CD7 outputs MSB flag of BD8-BD5 When MODE0 = L, MODE1 = H, CD8 outputs B channel flag of CD8-BD1 When MODE0 = L, MODE1 = H, CD8 outputs B channel flag of CD8-BD1					
CIN	31	ı	Analog input of ADC C					
CLK	56	I	Clock input. The clock frequency is normally $4 \times$ the frequency subcarrier (fsc) for most video systems (see Table 3). The nominal clock frequency is 14.31818 MHz for National Television System Committee (NTSC) and 17.745 MHz for phase alteration line (PAL).					
CLPEN	57	I	Clamp enable. When using an internal clamp pulse, CLPEN should be high. When using an external clamp pulse, CLPEN should be low.					
CLP OUT A	59	0	Clamping bias current of ADC A. A resistor-capacitor combination that sets the clamp timing.					
CLP OUT B	54	0	Clamping bias current of ADC B. A resistor-capacitor combination that sets the clamp timing.					
CLP OUT C	27	0	Clamping bias current of ADC C. A resistor-capacitor combination that sets the clamp timing.					
CLPV A	60	0	Clamping level of ADC A. A capacitor is connected to CLPV A to set the clamp timing. The clamp level at CLPV A is connected to an output code of 16 (0010000).					
CLPV B	53	0	Clamping level of ADC B. A capacitor is connected to CLPV B to set the clamp timing. The clamp level at CLPV B is connected to an output code of 128 (1000000).					
CLPV C	28	0	Clamping level of ADC C. A capacitor is connected to CLPV C to set the clamp timing. The clamp level at CLPV C is connected to an output code of 128 (1000000).					
DGND	15	ı	Digital ground					
DV_DD	26	ı	Digital supply voltage					
EXTCLP	55	I	External clamp pulse input. When EXTCLP and CLPEN are low, the internal clamp circuit cannot be used. The external clamp pulse when used is active high.					
GND A	64	T	Ground of ADC A					
GND B	49	Т	Ground of ADC B					
GND C	32	T	Ground of ADC C					
INIT	58	I	Output initialized. The output data is synchronous when INIT is taken high from low. INIT is a control terminal that allows the external system to initialize the TLC5733A data conversion cycle. INIT is usually used at power up or system reset.					
MODE0	46	ı	Output format mode selector 0. When MODE1 is low and MODE0 is low, output data format1 is selected. When MODE1 is low and MODE0 is high, output data format2 is selected. When MODE1 is high and MODE0 is low, output data format3 is selected. A high level on MODE1 and a high level on MODE0 is not used.					
MODE1	45	ı	Output format mode selector 1. When MODE1 is low and MODE0 is low, output data format1 is selected. When MODE1 is low and MODE0 is high, output data format2 is selected. When MODE1 is high and MODE0 is low, output data format3 is selected. A high level on MODE1 and a high level on MODE0 is not used.					
NT/PAL	3	T	NTSC/PAL control. NTSC/PAL should be low for NTSC and high for PAL.					
OE A	2	I	Output enable A. OE A enables the output of ADC A.					
OE B	47	ı	Output enable B. OE B enables the output of ADC B.					

Terminal Functions (Continued)

TERMI	NAL	1.,_	
NAME	NO.	1/0	DESCRIPTION
OE C	34	I	Output enable C. OE C enables the output of ADC C.
QA DGND	5	ı	Digital ground for output of ADC A
QA DV _{DD}	14	I	Digital supply voltage for output of ADC A
QB DGND	25	I	Digital ground for output of ADC B
QB DV _{DD}	16	I	Digital supply voltage for output of ADC B
QC DGND	44	I	Digital ground for output of ADC C
QC DV _{DD}	35	I	Digital supply voltage for output of ADC C
RB A	1	I	Bottom reference voltage of ADC A. The nominal externally applied dc voltage between RT A and RB A is 2 V for video signals.
RB B	48	I	Bottom reference voltage of ADC B. The nominal externally applied dc voltage between RT B and RB B is 2 V for video signals.
RB C	33	I	Bottom reference voltage of ADC C. The nominal externally applied dc voltage between RT C and RB C is 2 V for video signals.
RT A	61	I	Top reference voltage of ADC A. The nominal externally applied dc voltage between RT A and RB A is 2 V for video signals.
RT B	52	I	Top reference voltage of ADC B. The nominal externally applied dc voltage between RT B and RB B is 2 V for video signals.
RT C	29		Top reference voltage of ADC C. The nominal externally applied dc voltage between RT C and RB C is 2 V for video signals.
TEST	4	ı	Test. TEST should be tied low when using this device.

absolute maximum ratings†

Supply voltage, V _{CC} , V _{DD}	7 V
Reference voltage input range, V _{ref(RT A)} , V _{ref(RT B)} , V _{ref(RT C)} , V _{ref(RB A)} ,	
V _{ref} (RB B), V _{ref} (RB C)	AGND to V _{CC}
Analog input voltage range	AGND to V _{CC}
Digital input voltage range, V _I	DGND to V _{DD}
Digital output voltage range, VO	DGND to V _{DD}
Operating free-air temperature range, T _A	−20°C to 75°C
Storage temperature range, T _{stg} –	55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TLC5733A 20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER WITH HIGH-PRECISION CLAMP

SLAS104A - JULY 1995 - REVISED NOVEMBER 1996

recommended operating conditions

		MIN	NOM	MAX	UNIT
	V _{CC} -AGND	4.75	5	5.25	V
Supply voltage‡	V _{DD} -DGND	2.7	5	5.25	V
	AGND-DGND	-100	0	100	mV
Reference input vol	tage, V _{ref} (RT A), V _{ref} (RT B), V _{ref} (RT C)	V _{ref(RB)} +2		VCC	V
Reference input vol	tage, V _{ref} (RB A), V _{ref} (RB B), V _{ref} (RB C)	0		V _{ref(RT)} -2	V
Analog input voltage		0		V _{ref(RT)}	V
High-level input volt	age, V _{IH}	2			V
Low-level input volta	age, V _{IL}	0.8			V
High-level pulse du	ration, t _{W(H)}	25		ns	
Low-level pulse dur	ation, t _{W(L)}	25			ns
Setup time for INIT	input, t _{su1}	5			ns
Operating free-air temperature range, T _A				75	°C

[‡] Within the electrical and operating characteristics table, when the term V_{DD} is used, all XDV_{DD} terminals are tied together, and when the term V_{CC} is used, all XAV_{CC} terminals are tied together.

electrical characteristics at V_{DD} = 2.7 V to 5.25 V, V_{CC} = 5 V, $V_{ref(RT)}$ = 2.5 V, $V_{ref(BB)}$ = 0.5 V, $f_{(CLK)}$ = 20 MHz, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Clamp level accuracy			±1		LSB
R _{ref}	Reference voltage resistor	Measured between RT and RB	160	220	350	Ω
Ci	Analog input capacitance	$V_{I} = 1.5 V + 0.07 V_{rms}$		16		pF
ΊΗ	High-level input current	$V_{DD} = MAX^{\dagger},$ $V_{IH} = V_{DD},$ $V_{CC} = 5V$			5	
Ιμ	Low-level input current	$V_{DD} = MAX^{\dagger},$ $V_{IL} = 0,$ $V_{CC} = 5V$			5	μΑ
Vон	High-level output voltage	All DV _{DD} terminals = 2.7 V to 5.25 V, $I_{OH} = -1 \text{ mA}$	DV _{DD} -0.7 V			V
VOL	Low-level output voltage	All DV _{DD} terminals = 2.7 V to 5.25 V, I_{OL} = 2 mA			0.8	V
IOH(Ikg)	High-level output leakage current	$V_{DD} = MAX^{\dagger},$ $V_{OH} = V_{DD},$ $V_{CC} = 5V$			16	
I _{OL(lkg)}	Low-level output leakage current	$V_{DD} = MIN^{\dagger},$ $V_{OL} = 0,$ $V_{CC} = 5V$		·	16	μΑ
ICC	Supply current	f _C = 20 MSPS, NTSC ramp wave input		50	75	mA

[†] Conditions marked MIN or MAX are as stated in recommended operating conditions.

TLC5733A 20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER WITH HIGH-PRECISION CLAMP

SLAS104A - JULY 1995 - REVISED NOVEMBER 1996

operating characteristics at V_{DD} = 2.7 V to 5.25 V, V_{CC} = 5 V, $V_{ref(RT)}$ = 2.5 V, $V_{ref(RB)}$ = 0.5 V, $f_{(CLK)}$ = 20 MHz, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST COND	MIN	TYP	MAX	UNIT	
EZS	Zero-scale error	V _{ref} = REFT – REFB = 2 V	-18	-43	-68	mV	
EFS	Full-scale error	V _{ref} = REFT – REFB = 2 V		-20	0	20	mV
		f(CLK) = 20 MHz,	V _I = 0.5 V to 2.5 V		±0.4	±0.75	
EL	Linearity error	f(CLK) = 20 MHz, T _A = -20°C to 75°C	$V_{I} = 0.5 \text{ V to } 2.5 \text{ V}$		±0.4	±1	LSB
		f(CLK) = 20 MHz,	V _I = 0.5 V to 2.5 V		±0.3	±0.5	
ED	Linearity error, differential	f _(CLK) = 20 MHz, T _A = -20°C to 75°C	V _I = 0.5 V to 2.5 V		±0.3	±0.75	LSB
f _C	Maximum conversion rate	$V_I = 0.5 V - 2.5 V$,	f _I = 1-kHz ramp waveform	20			MSPS
BW	Analog input bandwidth	At – 1 dB			14		MHz
t _{pd}	Digital output delay time	C _L = 10 pF			18	30	ns
	Differential gain	NTSC 40 IRE‡ modulation wave,	f _C = 14.3 MSPS		1%		
	Differential phase	NTSC 40 IRE‡ modulation wave,	f _C = 14.3 MSPS		0.7		deg
	Aperture jitter time				30		ps
	Sampling delay time				4		ns

[‡] Institute of Radio Engineers

detailed description

clamp function

The clamp function is optimized for a YUV video signal and has two clamp modes. The first mode uses the COMPOSITE SYNC signal as the input to the EXTCLP terminal to generate an internal clamp pulse and the second mode uses an externally generated clamp pulse as the input to the EXTCLP terminal.

In the first mode, the device detects false pulses in the COMPOSITE SYNC signal by monitoring the rising and falling edges of the COMPOSITE SYNC signal pulses. This monitoring prevents faulty operation caused by disturbances and missing pulses of the COMPOSITE SYNC signal input on EXTCLP and external spike noise. When fault pulses are detected, the device internally generates a train of clamp pulses at the proper positions (1H) by an internal 910-counter for NTSC and a 1136-counter for PAL. The device checks clamp pulses for 1H time and generates clamp pulses at correct positions when COMPOSITE SYNC pulses are in error in time.

The internal counter continually produces a horizontal sync period (1H) that is NTSC or PAL compatible as selected by the condition of the NT/PAL terminal.

clamp voltages and selection

Table 1 shows the clamping level during the clamp interval. Table 2 shows the selection of the internal or external clamp pulse. With either NTSC or PAL, the internal clamp pulse is always used.

 CHANNEL OF ADC
 OUTPUT CODE
 APPLICATION

 ADC A • VI(A)
 00010000
 Y

 ADC B • VI(B)
 10000000
 (U, V)

 ADC C • VI(C)
 10000000
 (U, V)

Table 1. Clamp Level (Internal Connection Level)

Table 2. Clamp Level (Internal Connection Level)

	CONDITION	FUNCTION (EACH ADC)			
CLPEN	EXTCLP	NT/PAL	INTERNAL CLAMP	CLAMP PULSE	
,	Л	Don't Care	Inactive	External clamp pulse	
-	L	Don't Care	Inactive	No clamping	
н	COMPOSITE SYNC input	L	Active	Synchronous with NTSC	
Н	COMPOSITE SYNC input	Н	Active	Synchronous with PAL	

The clamp circuit is shown in Figure 6. The clamp voltage is stored on capacitor C2 during the back porch of the horizontal blanking period.

During the clamp pulse the input to channel A is clamped to:

 $V_C(A) = (16/256) \times (voltage difference from terminal RT A to RB A)$

 $V_C(B) = (128/256) \times (voltage difference from terminal RT B to RB B)$

 $V_{\rm C}({\rm C}) = (128/256) \times ({\rm voltage\ difference\ from\ terminal\ RT\ C\ to\ RB\ C})$

COMPOSITE SYNC time monitoring

When CLPEN is high, COMPOSITE SYNC generates an internal clamp pulse on the horizontal blanking interval back porch. The TLC5733A has a timing window into which the horizontal sync tip must occur. There is a noise time window for the falling edge and one for the rising edge (see Figure 1, Figure 2, and Table 3).

correct COMPOSITE SYNC timing

The Noise Gate 1 signal provides the timing window for the COMPOSITE SYNC falling edge. After an interval A of 867 clocks for NTSC or 1075 for PAL from the last falling edge of COMPOSITE SYNC, Noise Gate 1 signal goes high for 43 clocks for NTSC or 61 clocks for PAL (interval B). The falling edge of the input signal to the EXTCLP terminal can occur at any time within this window to be a valid COMPOSITE SYNC falling edge.

The Noise Gate 2 signal provides the timing window for the COMPOSITE SYNC rising edge. On the falling edge of the horizontal sync tip, the internal logic generates Noise Gate 2 as a low signal for 58 clocks (interval C) for both NTSC and PAL and then returns to a high active state. At this time if the input to EXTCLP is still low, it is considered a valid COMPOSITE SYNC signal.

normal clamp pulse generation

On the rising edge of COMPOSITE SYNC, the internal logic generates an internal delay (interval D) and then generates the internal positive clamp pulse 54 clocks wide (interval F).

clamp operation with incorrect COMPOSITE SYNC timing

noise suppression

If the input to EXTCLP goes low prior to Noise Gate 1 going high (within 43 clocks for NTSC or 61 clocks for PAL of the normal 1H timing for the falling edge of COMPOSITE SYNC) then that input is not considered a valid COMPOSITE SYNC and is ignored.

If the input to EXTCLP is high when Noise Gate 2 goes to the high state, the input signal is considered noise and is ignored.

Therefore, the correct signal must be high for a maximum of 43 clocks for NTSC or 61 clocks for PAL, before the 1H timing, to be a valid sync signal. Also, the input to EXTCLP must be at least 58 clocks wide (interval C) to be valid.

This function of monitoring the timing eliminates spurious noise spikes from falsely synchronizing the system.

timing error of COMPOSITE SYNC

The internal counter resets to zero on the first falling edge of COMPOSITE SYNC. After that time, if there is a missing COMPOSITE SYNC signal, then the internal logic waits an interval of 76 clocks (interval E) for NTSC or 93 for PAL from the counter zero count and then generates an internal clamp pulse 54 clocks wide (interval F).

This function maintains the synchronization pattern when COMPOSITE SYNC is not present.

summary of device operation with COMPOSITE SYNC

This internal timing allows the TLC5733A to correctly position the clamp pulse when an external COMPOSITE SYNC input:

- Is delayed with respect to the horizontal sync period
- Is early with respect to the horizontal sync period
- Is nonexistent during the horizontal sync period
- Has falling edge noise spikes within the horizontal sync period

The device operation is summarized as follows for these improper external clamp conditions:

- Under all four conditions on EXTCLP, the internal clamp generation circuit generates a clamp pulse at the proper time after the horizontal sync period as shown in Figure 1.
- The TLC5733A internal clamp circuit generates an internal clamp pulse each 1H time for the entire time interval that the COMPOSITE SYNC input is missing.

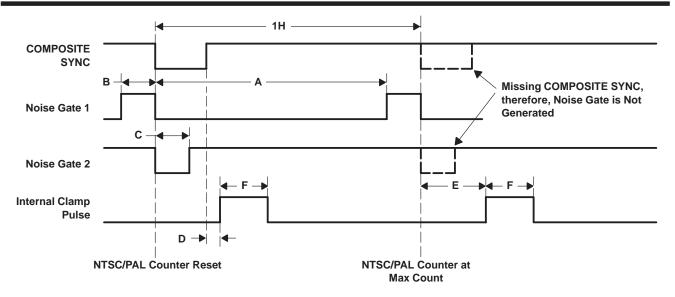


Figure 1. COMPOSITE SYNC and Internal Clamp Timing

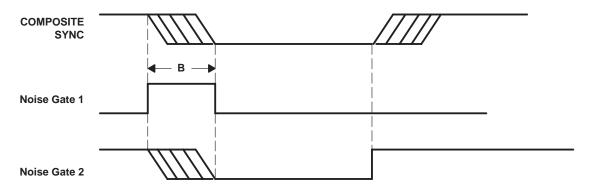


Figure 2. Proper COMPOSITE SYNC Timing

Table 3. Sync and Clamp Timing for NTSC and PAL with CLK = 4 fsc

TIME	NT fsc = 3.		PAL fsc = 4.43 MHz			
INTERVAL	NO. OF CLOCKS	TIME (μs)	NO. OF CLOCKS	TIME (μs)		
А	867	60.6	1075	60.7		
В	43	3	61	3.5		
С	58	4.05	58	3.27		
D	6	0.42	6	0.34		
E	76	5.3	93	5.25		
F	54	3.77	84	4.74		

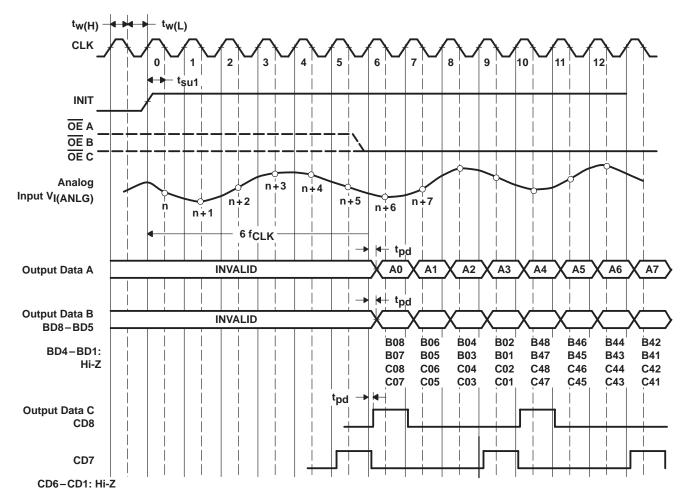
using an external clamp pulse

When CLPEN is taken low, EXTCLP accepts an externally generated active-high clamp pulse. This pulse must occur within the horizontal-blanking interval back porch. CLPEN low inhibits the internal counters and no internal clamp pulse is generated.

output digital code (for each channel of ADC)

Table 4. Input Signal Versus Digital Output Code

INPUT SIGNAL		DIGITAL OUTPUT CODE							
VOLTAGE	VOLTAGE STEP MSB							LSB	
V _{ref(RT)}	255	1	1	1	1	1	1	1	1
•	•		•	•	•	•	•	•	•
	•		•	•	•	•	•	•	•
•	128	1	0	0	0	0	0	0	0
•	127	0	1	1	1	1	1	1	1
•	•		•	•	•	•	•	•	•
	•		•	•	•	•	•	•	•
V _{ref(RB)}	0	0	0	0	0	0	0	0	0


output data format

The TLC5733A can select three output data formats to various TV/VCR (video) data processing by the combination of MODE0 and MODE1. The output is synchronous when INIT is taken high.

Table 5. Output Data Format Selection

COND	ITION	OUTPUT DATA				
MODE1	MODE0	OUTPUT DATA FORMAT	RATIO OF Y:U:V			
L	L	Format 1	4:1:1			
L	Н	Format 2	4:4:4			
Н	L	Format 3	4:2:2			
Н	Н	Not used	N/A			

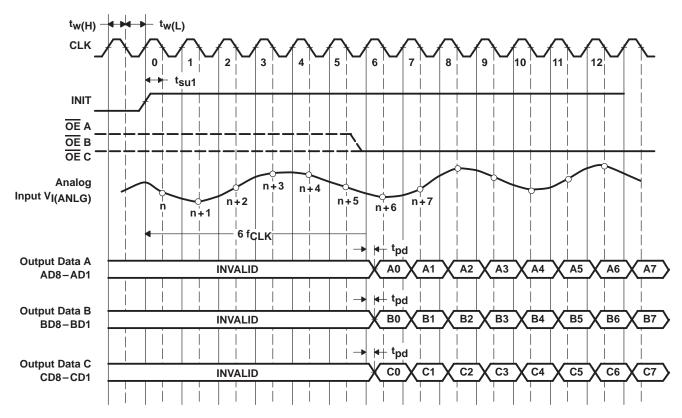
output data format (continued)

○ = Input signal sampling point

Figure 3. Format 1, 4:1:1

output data format (continued)

Table 6. Format 1


					OUTPU	T DATA			
CHANNEL OF ADC	ВІТ	CLK (see Note 1)							
ABO		6	7	8	9	10	11	12	13
А	AD8 AD7 AD6 AD5 AD4 AD3 AD2	A08 A07 A06 A05 A04 A03 A02	A18 A17 A16 A15 A14 A13 A12	A28 A27 A26 A25 A24 A23 A22	A38 A37 A36 A35 A34 A33 A32	A48 A47 A46 A45 A44 A43 A42	A58 A57 A56 A55 A54 A53 A52	A68 A67 A66 A65 A64 A63 A62	A78 A77 A76 A75 A74 A73 A72
	AD1	A01	A11	A21	A31	A41	A51	A61	A71
В	BD8 BD7 BD6 BD5 BD4 BD3 BD2 BD1	B08 B07 C08 C07 Hi-Z Hi-Z Hi-Z	B06 B05 C06 C05 Hi-Z Hi-Z Hi-Z	B04 B03 C04 C03 Hi-Z Hi-Z Hi-Z	B02 B01 C02 C01 Hi-Z Hi-Z Hi-Z	B48 B47 C48 C47 Hi-Z Hi-Z Hi-Z	B46 B45 C46 C45 Hi-Z Hi-Z Hi-Z	B44 B43 C44 C43 Hi-Z Hi-Z Hi-Z	B42 B41 C42 C41 Hi-Z Hi-Z Hi-Z
С	CD8 CD7 CD6 CD5 CD4 CD3 CD2 CD1	H L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z	L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z	L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z	L H Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z	H L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z	L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z	L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z	L H Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z

NOTES: 1. The value of the first sampling clock at A/D conversion is CLK 0.

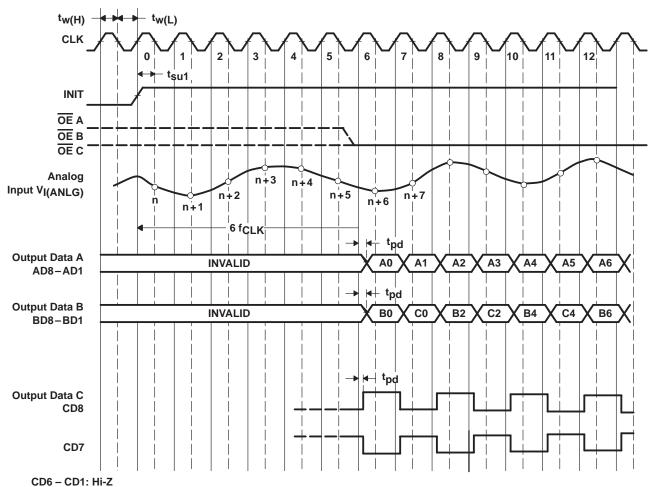
^{2.} A06 is an example of an entry in the table where A is the ADC channel, 0 is the sampling order, and 6 is the bit number.

output data format (continued)

○ = Input signal sampling point

Figure 4. Format 2, 4:4:4

output data format (continued)


Table 7. Format 2

CHANNEL OF ADC	BIT	OUTPUT DATA							
		CLK (see Note 1)							
		6	7	8	9	10	11	12	13
	AD8	A08	A18	A28	A38	A48	A58	A68	A78
	AD7	A07	A17	A27	A37	A47	A57	A67	A77
	AD6	A06	A16	A26	A36	A46	A56	A66	A76
Α	AD5	A05	A15	A25	A35	A45	A55	A65	A75
_ ^	AD4	A04	A14	A24	A34	A44	A54	A64	A74
	AD3	A03	A13	A23	A33	A43	A53	A63	A73
	AD2	A02	A12	A22	A32	A42	A52	A62	A72
	AD1	A01	A11	A21	A31	A41	A51	A61	A71
	BD8	B08	B18	B28	B38	B48	B58	B68	B78
	BD7	B07	B17	B27	B37	B47	B57	B67	B77
	BD6	B06	B16	B26	B36	B46	B56	B66	B76
В	BD5	B05	B15	B25	B35	B45	B55	B65	B75
	BD4	B04	B14	B24	B34	B44	B54	B64	B74
	BD3	B03	B13	B23	B33	B43	B53	B63	B73
	BD2	B02	B12	B22	B32	B42	B52	B62	B72
	BD1	B01	B11	B21	B31	B41	B51	B61	B71
С	CD8	C08	C18	C28	C38	C48	C58	C68	C78
	CD7	C07	C17	C27	C37	C47	C57	C67	C77
	CD6	C06	C16	C26	C36	C46	C56	C66	C76
	CD5	C05	C15	C25	C35	C45	C55	C65	C75
	CD4	C04	C14	C24	C34	C44	C54	C64	C74
	CD3	C03	C13	C23	C33	C43	C53	C63	C73
	CD2	C02	C12	C22	C32	C42	C52	C62	C72
	CD1	C01	C11	C21	C31	C41	C51	C61	C71

NOTES: 1. The value of the first sampling clock at A/D conversion is CLK 0.

^{2.} A06 is an example of an entry in the table where A is the ADC channel, 0 is the sampling order, and 6 is the bit number.

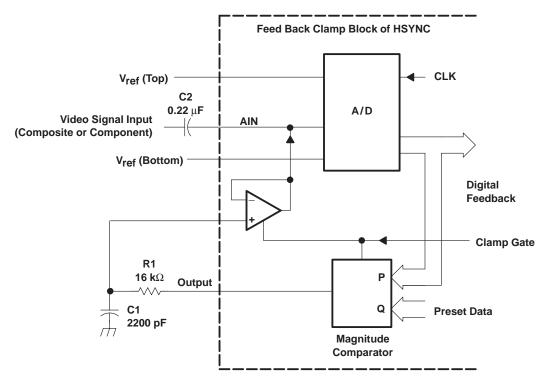
output data format (continued)

= Input signal sampling point

Figure 5. Format 3, 4:2:2

output data format (continued)

Table 8. Format 3


CHANNEL OF	BIT	OUTPUT DATA							
CHANNEL OF ADC		CLK (see Note 1)							
		6	7	8	9	10	11	12	13
	AD8	A08	A18	A28	A38	A48	A58	A68	A78
	AD7	A07	A17	A27	A37	A47	A57	A67	A77
	AD6	A06	A16	A26	A36	A46	A56	A66	A76
А	AD5	A05	A15	A25	A35	A45	A55	A65	A75
^	AD4	A04	A14	A24	A34	A44	A54	A64	A74
	AD3	A03	A13	A23	A33	A43	A53	A63	A73
	AD2	A02	A12	A22	A32	A42	A52	A62	A72
	AD1	A01	A11	A21	A31	A41	A51	A61	A71
	BD8	B08	C08	B28	C28	B48	C48	B68	C68
	BD7	B07	C07	B27	C27	B47	C47	B67	C67
	BD6	B06	C06	B26	C26	B46	C46	B66	C66
В	BD5	B05	C05	B25	C25	B45	C45	B65	C65
	BD4	B04	C04	B24	C24	B44	C44	B64	C64
	BD3	B03	C03	B23	C23	B43	C43	B63	C63
	BD2	B02	C02	B22	C22	B42	C42	B62	C62
	BD1	B01	C01	B21	C21	B41	C41	B61	C61
С	CD8	Н	L	Н	L	Н	L	Н	L
	CD7	L	Н	L	Н	L	Н	L	Н
	CD6	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
	CD5	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
	CD4	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
	CD3	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
	CD2	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
	CD1	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z

NOTES: 1. The value of the first sampling clock at A/D conversion is CLK 0.

2. A06 is an example of an entry in the table where A is the ADC channel, 0 is the sampling order, and 6 is the bit number.

APPLICATION INFORMATION

FEEDBACK CLAMP AND CHARGE PUMP ACTIVITY

INPUT DATA CONDITIONS	OUT	PUT	CHARGE PUMP CONDITIONS				
P < Q	Active	Н	Charge				
P = Q	Hold	Z	Hold				
P > Q	Active	L	Discharge				

Figure 6. Feedback Clamp Circuit

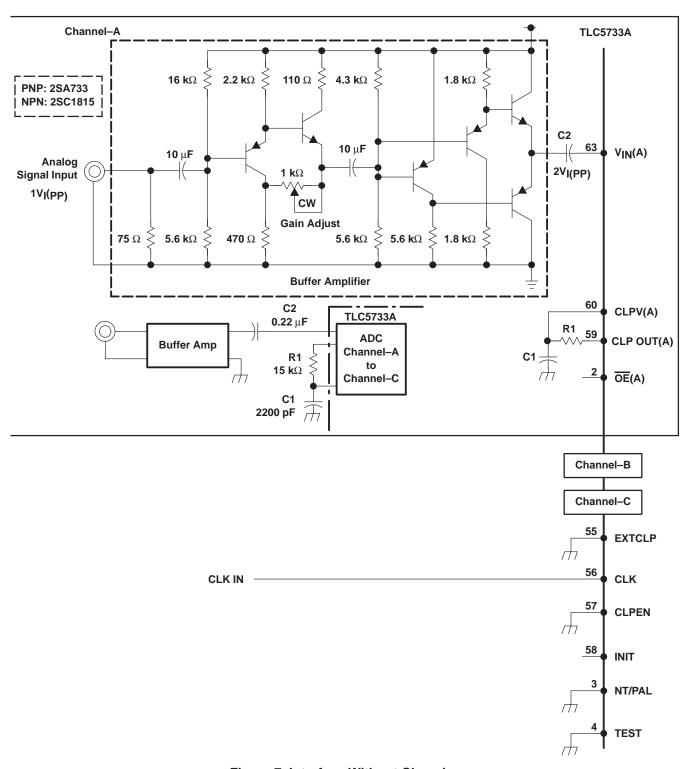


Figure 7. Interface Without Clamping

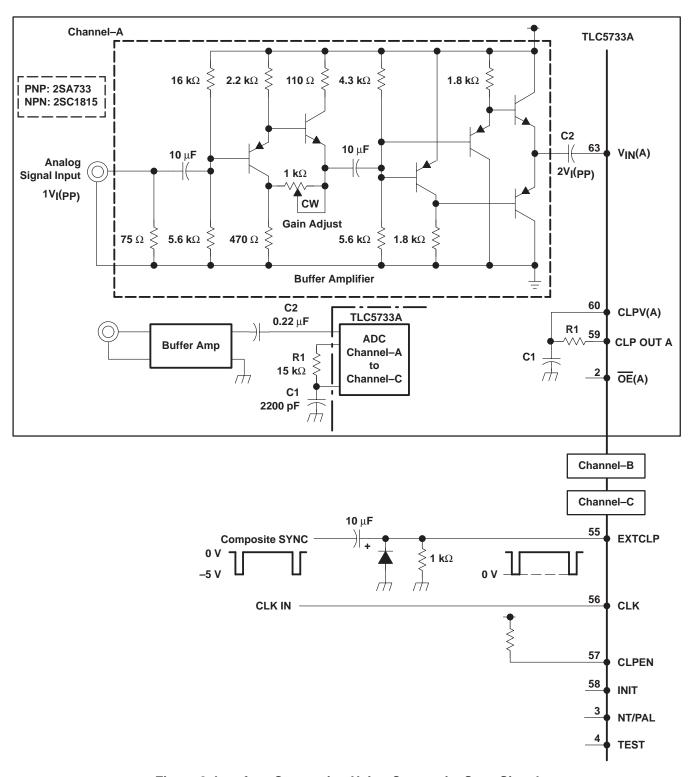


Figure 8. Interface Connection Using Composite Sync Signal

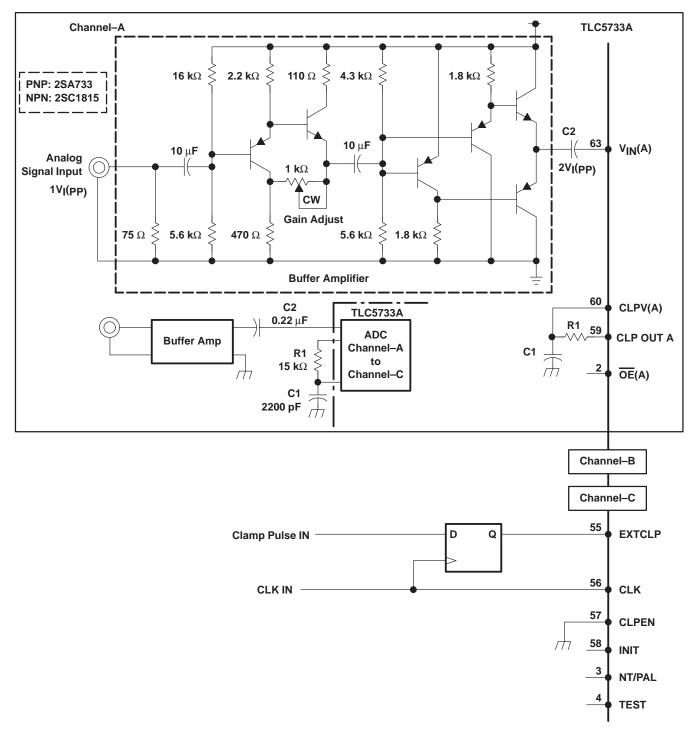
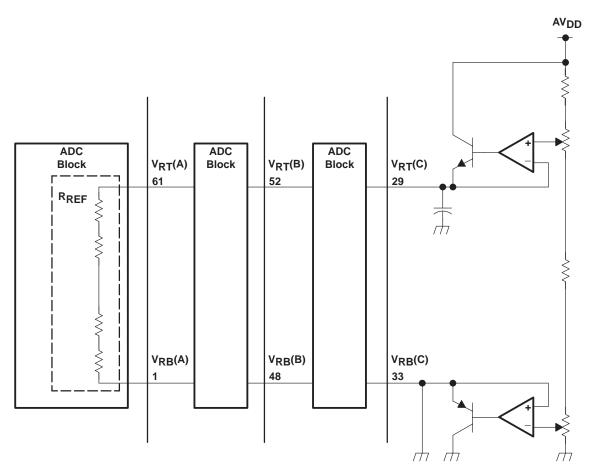
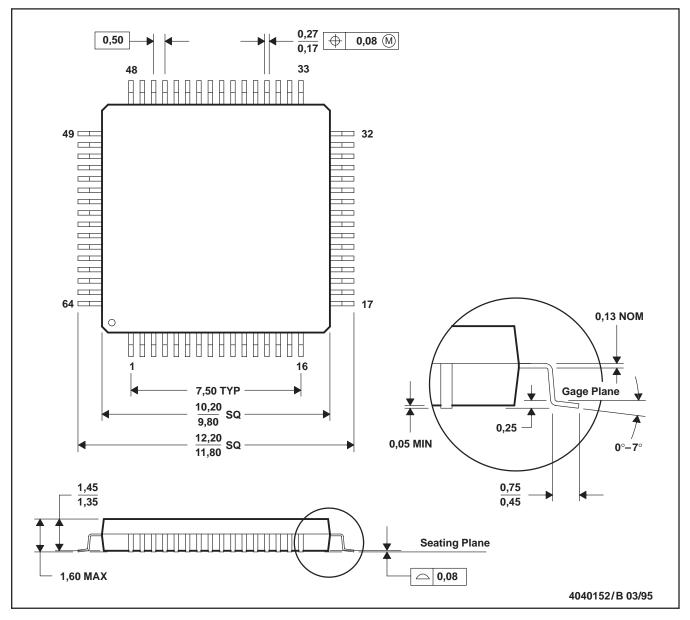


Figure 9. Interface Using External Clamp Pulse With Synchronization




Figure 10. Adjustment Circuit For Top and Bottom Reference Voltages

MECHANICAL DATA

PM (S-PQFP-G64)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MO-136

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated