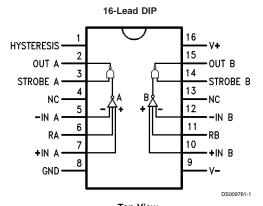


February 1996

DS9627 Dual Line Receiver

General Description


The DS9627 is a dual-line receiver which meets the electrical interface specifications of EIA RS-232C and MIL-STD-188C. The input circuitry accommodates ±25V input signals and the differential inputs allow user selection of either inverting or non-inverting logic for the receiver operation. The DS9627 provides both a selectable hysteresis range and selectable receiver input resistance. When pin 1 is tied to V-, the typical switching points are at 2.6V and -2.6V, thus meeting RS-232-C requirements. When pin 1 is open, the typical switching points are at 50 μA and $-50~\mu A$, thus satisfying the requirements of MIL-STD-188C LOW level interface. Connecting the RA and/or RB pins to the (-) input yields an input impedance in the range of 3 k $\!\Omega$ to 7 k $\!\Omega$ and satisfies RS-232-C requirements; leaving RA and/or RB pins unconnected, the input resistance will be greater than $6 \text{ k}\Omega$ to satisfy MIL-STD-188C.

The output circuitry is TTL/DTL compatible and will allow "collector-dotting" to generate the wired-OR function. A TTL/DTL strobe is also provided for each receiver.

Features

- EIA RS-232-C input standards
- MIL-STD-188C input standards
- Variable hysteresis control
- High common mode rejection
- **R** control (5 kΩ or 10 kΩ)
- Wired-OR capability
- Choice of inverting and non-inverting inputs
- Outputs and strobe TTL compatible

Connection Diagram

Top View
Order Number DS9627MJ/883
See NS Package Number J16A
For Complete Military 883 Specifications, see RETS Data Sheet.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range -65°C to +175°C
Operating Temperature Range -55°C to +125°C
Lead Temperature (Soldering, 60 sec.) 300°C
Internal Power Dissipation (Note 5) 400 mW
V+ to GND 0V to +15V
V- to GND 0V to -15V

Input Voltage Referred to GND ± 25 V Strobe to GND -0.5V to +5.5V Applied Output Voltage -0.5V to +15V

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
Temperature (T _A)	-55	+125	°C

Electrical Characteristics (Notes 2, 3)

Hysteresis, -IN A, -IN B, RA and RB Open for MIL-STD-188C, unless otherwise specified

Symbol	Characteristics	Conditions		Min	Max	Units
V _{OL}	Output Voltage LOW	V+ = 10.8V, V- = -13.2V,			0.4	V
		$V_{I}^{+} = 0.6V, I_{OL} = 6.4 \text{ mA}$				
V _{OH}	Output Voltage HIGH	V ⁺ = 10.8V, V ⁻ = -13.2V,		2.4		V
		$V_{I}^{+} = 0.6V, I_{OH} = -0.5 \text{ mA}$				
Ios	Output Short Circuit	V+ = 13.2V, V ⁻ = -10.8V,		-3.0		mA
	Current (Note 4)	$V_{I+} = 0.6V, V_{O} = 0V$				
I _{IH} (ST)	Input Current HIGH	V ⁺ = 10.8V,	V _{ST} = 2.4V		40	μΑ
	(Strobe)	$V^- = -13.2V, V_1^+ = 0.6V$	$V_{ST} = 5.5V$		1.0	mA
R _I	Input Resistance	$V^{+} = 13.2V, V^{-} = -13.2V,$		6.0		kΩ
		$-3.0V \le V_1^+ \le 3.0V$				
I _{TH+}	Positive Threshold Current	$\pm 10.8 \text{V} \le \text{V}_{\text{CC}} \le \pm 13.2 \text{V},$			100	μA
		V _O = 2.4V				
I _{TH} ⁻	Negative Threshold Current	$\pm 10.8 \text{V} \le \text{V}_{\text{CC}} \le \pm 13.2 \text{V},$		-100		μΑ
		V _O = 0.4V				
$V_{IL}(ST)$	Input Voltage LOW (Strobe)	$V_{I}^{+} = -0.6V$			0.8	V
V _{IH} (ST)	Input Voltage HIGH (Strobe)	$V^{+} = 13.2V, V^{-} = -10.8V,$		2.0		V
		$V_1^+ = -0.6V$				
l ⁺	Positive Supply Current	$\pm 10.8 \text{V} \le \text{V}_{\text{CC}} \le \pm 13.2 \text{V}$			18	mA
		$V_{I}^{+} = -0.6V$				
I-	Negative Supply Current	±10.8V ≤ V _{CC} ≤ ±13.2V	·	-16		mA
		$V_1^+ = 0.6V$				

Electrical Characteristics

+IN A and -IN B connected to ground, RA and RB connected to -IN A and -IN B and Hysteresis connected to V^- for RS-232C, unless otherwise specified

Symbol	Characteristics	Conditions	Min	Max	Units
R _I	Input Resistance	$3.0V \le V_1 \le 25V$	3.0	7.0	kΩ
		$-3.0V \le V_1 \le -25V$	3.0	7.0	kΩ
V _I	Input Voltage		-2.0	2.0	V
V _{TH+}	Positive Threshold Voltage			3.0	V
V _{TH} _	Negative Threshold Voltage		-3.0		V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified Min/Max limits apply across the -55°C to +125°C temperature range.

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

Note 5: Rating applies to ambient temperatures up to +125°C. Above 125°C ambient, derate linearity at 120°C/W.

Electrical Characteristics

 V_{CC} = ±12V for MIL-STD-188C and RS-232C, T_A = 25°C

Symbol	Characteristics	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay to High Level	See Figure 1		250	ns
t _{PHL}	Propagation Delay to Low Level	See Figure 1		250	ns

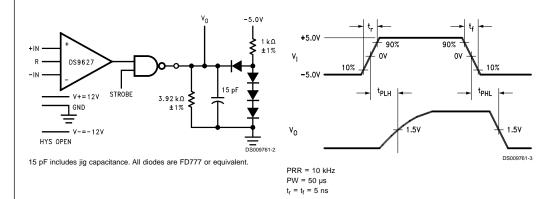
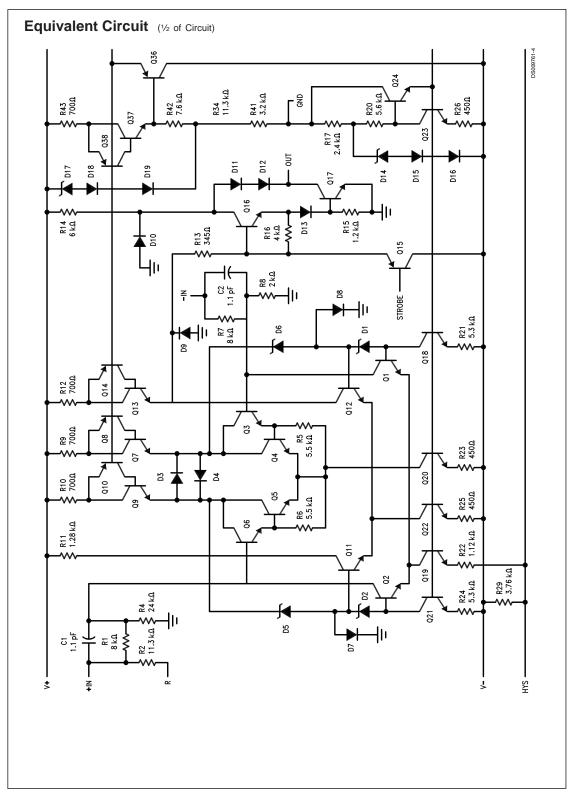
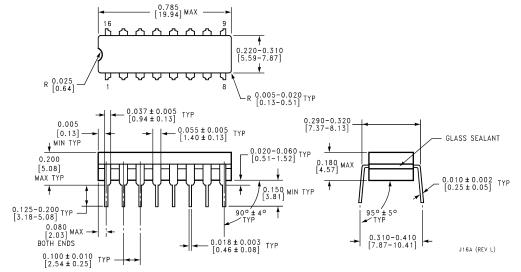




FIGURE 1. Switching Time Test Circuit and Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Dual-In-Line Package Order Number DS9627MJ/883 NS Package Number J16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 68
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507