

PRELIMINARY CUSTOMER PROCUREMENT SPECIFICATION

Z86E64 CMOS Z8 OTP MICROCONTROLLER

FEATURES

Device	ROM (KB)	RAM* (Bytes)	l/O Lines	Voltage Range			
Z86E64	32	236	52	4.5-5V			
Note: *General-Purpose							

- Low-Power Consumption: 200 mW (max)
- Fast Instruction Pointer: 0.75 µs @ 16 MHz
- Two Standby Modes: STOP and HALT
- Full-Duplex UART

- All Digital Inputs are TTL Levels
- Auto Latches
- RAM and ROM Protect
- Two Programmable 8-Bit Counter/Timers, Each with 6-Bit Programmable Prescaler
- Six Vectored, Priority Interrupts from Eight Different Sources
- Low EMI Mode Option
- 68-Pin Leaded Chip-Carrier

GENERAL DESCRIPTION

The Z86E64 is a member of the Z8 single-chip microcontroller family. The Z86E64 can address both external memory and pre-programmed ROM, which enables this Z8 MCU^{TM} to be used in high-volume applications where code flexibility is required.

The Z86E64 is a pin compatible, One-Time-Programmable (OTP) version of the Z86C64. The Z86E64 contains 32 KB of EPROM memory in place of the 32 KB of ROM on the Z86C64.

There are three basic address spaces available to support this wide range of configuration: Program Memory, Data Memory, and 236 general-purpose registers.

The Z86E64 offers a flexible I/O scheme, an efficient register and address space structure, multiplexed capabilities between address/data, I/O, and a number of ancillary features that are useful in many industrial and advanced scientific applications. For applications demanding powerful I/O capabilities, the Z86E64's dedicated input and output lines are grouped into six ports. Each port consists of eight lines, except port 6, which has four lines. Each port is configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

The Z86E64 offers two on-chip counter/timers with a large number of user-selectable modes, and an Universal Asynchronous Receiver/Transmitter (UART). See figure 1 for-Functional Block description.

Note: All Signals with a preceding front slash, "/", are active Low, for example: B//W (WORD is active Low); /B/W (BYTE is active Low, only). Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{CC}	V _{DD}
Ground	GND	V _{SS}

GENERAL DESCRIPTION (Continued)

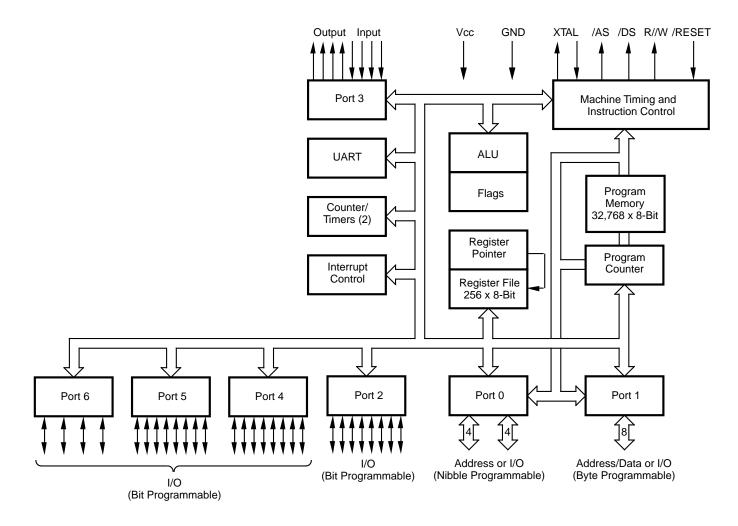


Figure 1. Z86E64 Functional Block Diagram

PIN DESCRIPTION

2il 05

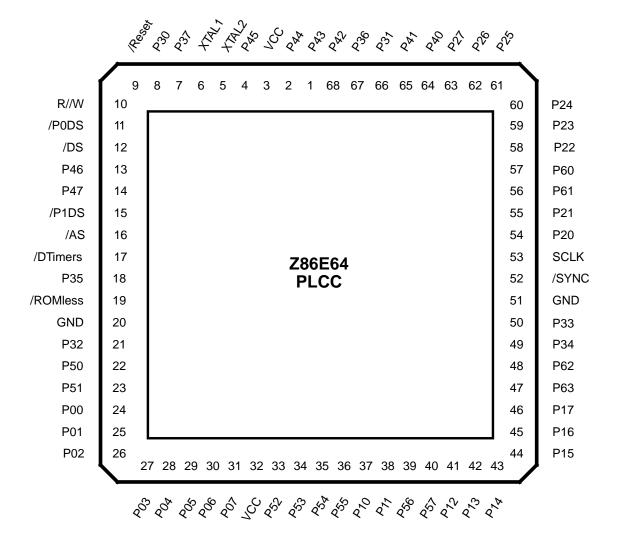


Figure 2. Z86E64 68-Pin PLCC Pin Assignments

PIN DESCRIPTION (Continued)

Table 1.	Z86E64 68-F	Pin PLCC Pin	Identification
----------	-------------	--------------	----------------

Pin #	Symbol	Function	Direction
1-2	P44-P43	Port 4, Pins 3,4	In/Output
3	VCC	Power Supply	Input
4	P45	Port 4, Pin 5	In/Output
5	XTAL2	Crystal, Oscillator Clock	Output
6	XTAL1	Crystal, Oscillator Clock	Input
7	P37	Port 3, Pin 7	Output
8	P30	Port 3, Pin 0	Input
9	/RESET	Reset	Input
10	R//W	Read/Write	Output
11	/P0DS	Port 0 Data Strobe	Output
12	/DS	Data Strobe	Output
13-14	P47-P46	Port 4, Pins 6,7	In/Output
15	/P1DS	Port 1, Data Strobe	Output
16	/AS	Address Strobe	Output
17	/DTIMER	DTIMER	Input
18	P35	Port 3, Pin 5	Output
19	/ROMIess	ROM/ROMless control	Input
20	GND	Ground	Input
21	P32	Port 3, Pin 2	Input
22-23	P51-P50	Port 5, Pins 0,1	In/Output
24-31	P07-P00	Port 0, Pins 0,1,2,3,4,5,6,7	In/Output
32	VCC	Power Supply	Input
33-36	P55-P52	Port 5, Pins 2,3,4,5	In/Output
37-38	P11-P10	Port 1, Pins 0,1	In/Output
39-40	P56-P57	Port 5, Pins 6,7	In/Output
41-46	P17-P12	Port 1, Pins 2,3,4,5,6,7	In/Output
47-48	P63-P62	Port 6, Pins 3,2	In/Output
49	P34	Port 3, Pin 4	Output
50	P33	Port 3, Pin 3	Input
51	GND	Ground	Input
52	/SYNC	Synchronization	Output
53	SCLK	System Clock	Output
54-55	P21-P20	Port 2, Pins 0,1	In/Output
56-57	P60-P61	Port 6, Pins 1,0	In/Output
58-63	P27-P22	Port 2, Pins 2,3,4,5,6,7	In/Output
64-65	P41-P40	Port 4, Pins 0,1	In/Output
66	P31	Port 3, Pin 1	Input
67	P36	Port 3, Pin 6	Output
68	P42	Port 4, Pin 2	In/Output

DC CHARACTERISTICS

 $V_{CC} = 4.5V \text{ to } 5.5V$

		TA = 0°C	to +70°C	Typical at		
Sym	Parameter	Min	Max	25°C	Units	Conditions
	Max Input Voltage		7		V	I _{IN} <250 μA
	Max Input Voltage		12.5V		V	P30-P33 Only in OTP mode
V _{CH}	Clock Input High Voltage	3.8	VCC		V	Driven by External Clock Generator
V _{CL}	Clock Input Low Voltage	-0.3	0.8		V	Driven by External Clock Generator
V _{IH}	Input High Voltage	2.0	VCC		V	
V _{IL}	Input Low Voltage	-0.3	0.8		V	
V _{OH}	Output High Voltage	2.4			V	I _{OH} = -2.0 mA
V _{OL}	Output Low Voltage		0.4		V	I _{OL} = +2.0 mA
V _{RH}	Reset Input High Voltage	3.8	VCC		V	
V _{RI}	Reset Input Low Voltage	-0.3	0.8		V	
IIL	Input Leakage	-10	10		μA	$0V < V_{IN} < +5.25V$
I _{OL}	Output Leakage	-10	10		μA	$0V < V_{IN} < +5.25V$
I _{IR}	Reset Input Current		-50		μA	V _{CC} = +5.25V, VRL = 0V
I _{CC}	Supply Current		50	25	mA	@ 12 MHz
			60	35	mA	@ 16 MHz
I _{CC1}	Standby Current		15	5	mA	
			20	10	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 16 MHz
I _{CC2}	Standby Current		20	5	μA	STOP Mode $V_{IN} = 0V, V_{CC} @ 12 MHz$
			20	5	μA	STOP Mode V _{IN} = 0V, V _{CC} @ 16MHz

AC CHARACTERISTICS

External I/O or Memory Read or Write Timing Diagram

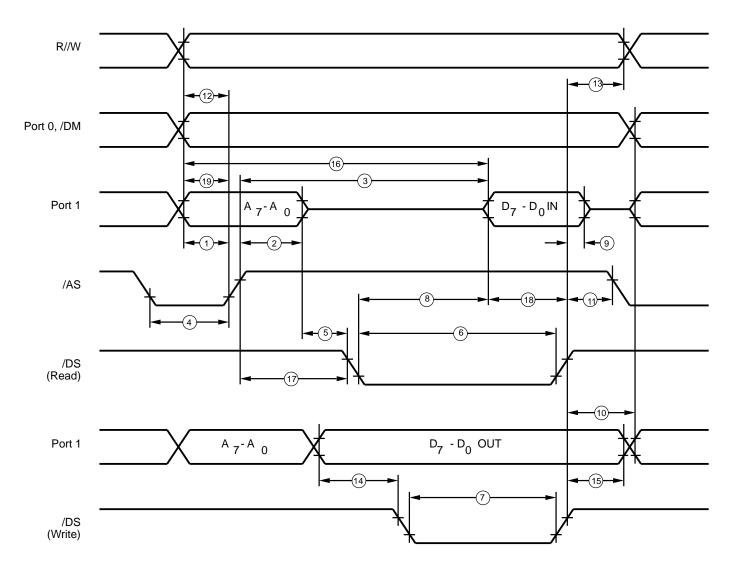


Figure 3. External I/O or Memory Read/Write Timing

External I/O or Memory Read and Write Timing Table

 $V_{CC} = 4.5V$ to 5.5V

				TA = 0 °	;			
			12	MHz	16 I	MHz		
No Symbo	Symbol	nbol Parameter		Мах	Min	Max	Units	Notes
1	TdA(AS)	Address Valid to /AS Rise Delay	35		20		ns	[2,3]
2	TdAS(A)	/AS Rise to Address Float Delay	45		30		ns	[2,3]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid		220		180	ns	[1,2,3]
4	TwAS	/AS Low Width	55		35		ns	[2,3]
5	TdAZ(DS)	Address Float to /DS Fall	0		0		ns	
6	TwDSR	/DS (Read) Low Width	185		135		ns	[1,2,3]
7	TwDSW	/DS (Write) Low Width	110		80		ns	[1,2,3]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid		130		75	ns	[1,2,3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	0		0		ns	[2,3]
10	TdDS(A)	/DS Rise to Address Active Delay	45		35		ns	[2,3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	55		30		ns	[2,3]
12	TdR/W(AS)	R//W Valid to /AS Rise Delay	30		20		ns	[2,3]
13	TdDS(R/W)	/DS Rise to R//W Not Valid	35		30		ns	[2,3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	35		25		ns	[2,3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	35		30		ns	[2,3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid		255		200	ns	[1,2,3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	55		40		ns	[2,3]
18	TdDI(DS)	Data Input Setup to /DS Rise	75		60		ns	[1,2,3]
19	TdDM(AS)	/DM Valid to /AS Fall Delay	50		30		ns	[2,3]

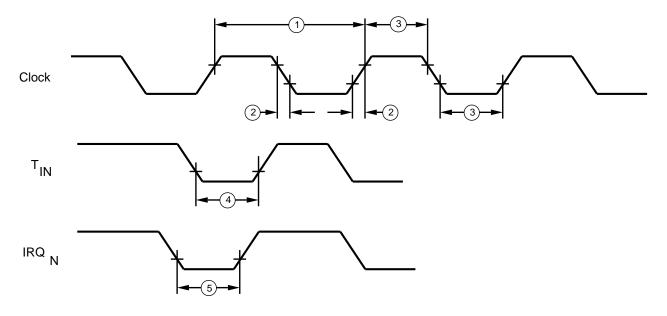
Notes:

[1] When using extended memory timing add 2 TpC.

[2] Timing numbers given are for minimum TpC.

[3] See clock cycle dependent characteristics.

Standard Test Load


All timing references use 2.0V for a logic 1 and 0.8V for a logic 0.

Clock Dependent Formulas							
Number	Symbol	Equation					
1	TdA(AS)	0.40TpC + 0.32					
2	TdAS(A)	0.59TpC – 3.25					
3	TdAS(DR)	2.38TpC + 6.14					
4	TwAS	0.66TpC - 1.65					
6	TwDSR	2.33TpC - 10.56					
7	TwDSW	1.27TpC + 1.67					
8	TdDSR(DR)	1.97TpC – 42.5					

Clock Dependent Formulas						
TdDS(A)	0.8TpC					
TdDS(AS)	0.59TpC – 3.14					
TdR/W(AS)	0.4TpC					
TdDS(R/W)	0.8TpC – 15					
TdDW(DSW)	0.4TpC					
TdDS(DW)	0.88TpC – 19					
TdA(DR)	4TpC – 20					
TdAS(DS)	0.91TpC – 10.7					
TsDI(DS)	0.8TpC – 10					
TdDM(AS)	0.9TpC – 26.3					
	TdDS(A) TdDS(AS) TdR/W(AS) TdDS(R/W) TdDW(DSW) TdDS(DW) TdDS(DW) TdA(DR) TdAS(DS) TsDI(DS)					

AC CHARACTERISTICS (Continued)

Additional Timing Diagram

AC CHARACTERISTICS

Additional Timing Table

 $V_{CC} = 4.5V$ to 5.5V

			12 N	lHz	16 M	Hz		
No	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	83	500	62.5	500	ns	[1]
2	TrC,TfC	Clock Input Rise & Fall Times		15		10	ns	[1]
3	TwC	Input Clock Width	41		31		ns	[1]
4	TwTinL	Timer Input Low Width	75		50		ns	[2]
5	TwTinH	Timer Input High Width	5TpC		5TpC			[2]
6	TpTin	Timer Input Period	8TpC		8TpC			[2]
7	TrTin,TfTin	Timer Input Rise & Fall Times	100		100		ns	[2]
8A	TwIL	Interrupt Request Input Low Times	70		50		ns	[2,4]
8B	TwIL	Interrupt Request Input Low Times	5TpC		5TpC			[2,5]
9	TwIH	Interrupt Request Input High Times	5TpC		5TpC			[2,3]

Notes:

1. Clock timing references use 3.8V for a logic 1 and 0.8V for a logic 0.

2. Timing references use 2.0V for a logic 1 and 0.8V for a logic 0.

3. Interrupt references request via Port 3.

4. Interrupt request via Port 3 (P31-P33).

5. Interrupt request via Port 30.

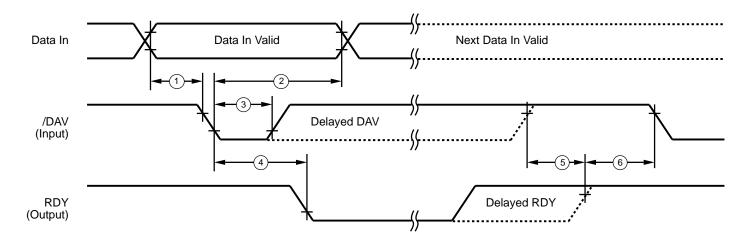


Figure 5. Input Handshake Timing

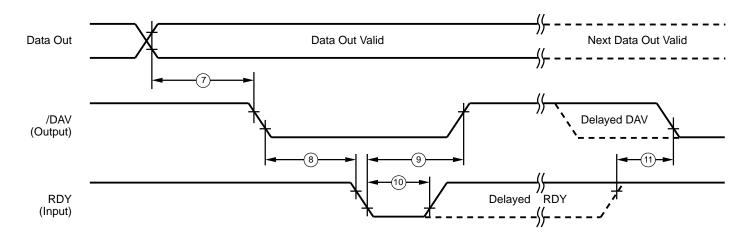


Figure 6. Output Handshake Timing

AC CHARACTERISTICS (Continued)

Handshake Timing Table

VCC = 4.5V to 5.5V

			•	TA = 0°C	to +70°0	2	Notes
			12	12 MHz		MHz	Data
No	Symbol	Parameter	Min	Max	Min	Max	Direction
1	TsDI(DAV)	Data In Setup Time	0		0		IN
2	ThDI(DAV)	Data In Hold Time	145		145		IN
3	TwDAV	Data Available Width	110		110		IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay		115		115	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay		115		115	IN
6	TdDO(DAV)	RDY Rise to DAV Fall Delay	0		0		IN
7	TcLDAV0(RDY)	Data Out to DAV Fall Delay		ТрС		ТрС	OUT
8	TcLDAV0(RDY)	DAV Fall to RDY Fall Delay	0		0		OUT
9	TdRDY0(DAV)	RDY Fall to DAV Rise Delay		115		115	OUT
10	TwRDY	RDY Width	110		110		OUT
11	TdRDY0d(DAV)	RDY Rise to DAV Fall Delay		115		115	OUT

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be found,

Low Margin:

Customer is advised that this product does not meet Zilog's internal guardbanded test policies for the specification requested and is supplied on an exception basis. Customer is cautioned that delivery may be uncertain and that, in addition to all other limitations on

© 1996 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

Zilog liability stated on the front and back of the acknowledgement, Zilog makes no claim as to quality and reliability under the CPS. The product remains subject to standard warranty for replacement due to defects in materials and workmanship.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com