

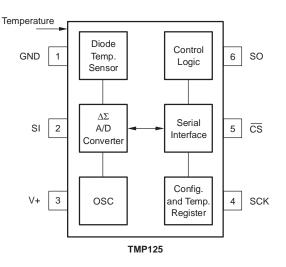
2°C Accurate Digital Temperature Sensor with SPI[™] Interface

FEATURES

- DIGITAL OUTPUT: SPI-Compatible Interface
- RESOLUTION: 10-Bit, 0.25°C
- ACCURACY: ±2.0°C (max) from -25°C to +85°C ±2.5°C (max) from -40°C to +125°C
- LOW QUIESCENT CURRENT: 50µA (max)
- WIDE SUPPLY RANGE: 2.7V to 5.5V
- TINY SOT23-6 PACKAGE
- OPERATION FROM –40°C to +125°C

APPLICATIONS

- BASE STATION EQUIPMENT
- COMPUTER PERIPHERAL THERMAL PROTECTION
- NOTEBOOK COMPUTERS
- DATA ACQUISITION SYSTEMS
- TELECOM EQUIPMENT
- OFFICE MACHINES


TMP125 RELATED PRODUCTS

FEATURES	PRODUCT
2°C Digital Temp Sensors with Two-Wire Interface	TMP100/101
1.5°C Digital Temp Sensors with Two-Wire Interface	TMP75/175
1.5°C Digital Temp Sensors with SPI	TMP121/123
1.5°C Programmable Digital Temp Sensors with SPI	TMP122/124

DESCRIPTION

The TMP125 is an SPI-compatible temperature sensor available in the tiny SOT23-6 package. Requiring no external components, the TMP125 is capable of measuring temperatures within 2° C of accuracy over a temperature range of -25° C to $+85^{\circ}$ C and 2.5° C of accuracy over -40° C to $+125^{\circ}$ C. Low supply current, and a supply range from 2.7V to 5.5V, make the TMP125 an excellent candidate for low-power applications.

The TMP125 is ideal for extended thermal measurement in a variety of communication, computer, consumer, environmental, industrial, and instrumentation applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPI is a registered trademark of Motorola. All other trademarks are the property of their respective owners.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage+7V
Input Voltage ⁽²⁾
Input Current ±10mA
Output Short Circuit ⁽³⁾ Continuous
Operating Temperature Range55°C to +125°C
Storage Temperature Range60°C to +150°C
Junction Temperature (T _J max)+150°C
Lead Temperature (soldering)+300°C
ESD Rating (Human Body Model) 4000V
(Charged Device Model) 1000V

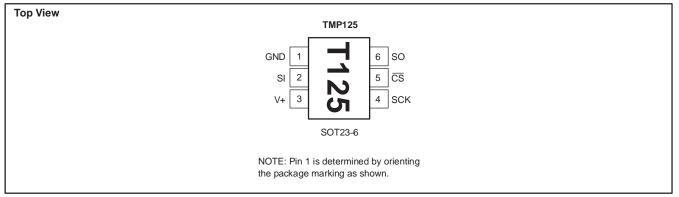
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not supported.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current limited to 10mA or less.

(3) Short-circuit to ground.

ORDERING INFORMATION(1)

No.	


This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

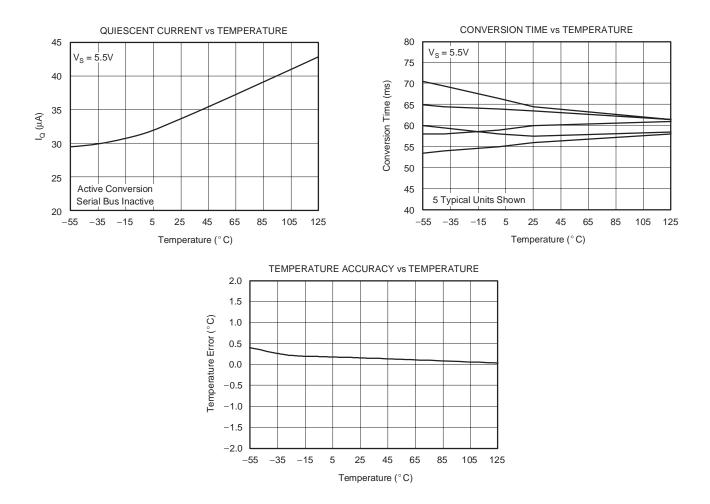
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	PACKAGE MARKING
TMP125	SOT23-6	DBV	T125

(1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS


At T_A = –40°C to +125°C and V_S = +2.7V to 5.5V, unless otherwise noted.

				TMP125		
PARAMETER		CONDITIONS	MIN	ТҮР	MAX	UNIT
TEMPERATURE INPUT						
Range			-40		+125	°C
Accuracy (temperature error)		–25°C to +85°C		±0.5	±2.0	°C
		-40°C to +125°C		±1.0	±2.5	°C
Resolution				10		Bits
Temperature Measurement Noise				0.1		LSB
DIGITAL INPUT/OUTPUT						
Input Logic Levels:						
VIH			0.7(V+)			V
VIL					0.3(V+)	V
Input Current, SI, SCK, CS	IIN	$0V = V_{IN} = V +$			±1	μΑ
Output Logic Levels:						
V _{OL} SO		I _{SINK} = 3mA			0.4	V
V _{OH} SO		ISOURCE = 2mA	(V+)−0.4			V
Input Capacitance, SI, SCK, CS				2.5		pF
Conversion Time		10-Bit		60		ms
Update Rate				120		ms
POWER SUPPLY						
Operating Range			2.7		5.5	V
Quiescent Current, at $T_A = 25^{\circ}C$	lQ	Serial Bus Inactive		36	50	μΑ
over Temperature		–40°C to +125°C			60	μΑ
Shutdown Current				0.1	1	μΑ
over Temperature					1	μΑ
TEMPERATURE RANGE						
Specified Range			-40		+125	°C
Operating Range			-55		+125	°C
Storage Range			-60		+150	°C
Thermal Resistance	θ_{JA}	SOT23-6 Surface-Mount		200		°C/W

TYPICAL CHARACTERISTICS

At $T_A = -40^{\circ}C$ to $+125^{\circ}C$ and $V_S = +2.7V$ to 5.5V, unless otherwise noted.

APPLICATIONS

The TMP125 10-bit, read-only digital temperature sensor is optimal for thermal management and thermal protection applications. The TMP125 is specified for a temperature range of -40° C to $+125^{\circ}$ C, with operation extending down to -55° C. It is specified for a supply voltage range of 2.7V to 5.5V, and also features a hardware shutdown to provide power savings. Quiescent current is reduced to 1µA during analog shutdown.

The TMP125 communicates through a serial interface that is SPI-compatible. Temperature is converted to a 10-bit data word with 0.25°C resolution. The TMP125 is optimal for low power applications, with a 120ms conversion period for reduced power consumption.

The sensing device of the TMP125 is the chip itself. Thermal paths run through the package leads as well as the plastic package, and the lower thermal resistance of metal causes the leads to provide the primary thermal path.

The TMP125 requires no external components for operation, though a 0.1μ F supply bypass capacitor is recommended. Figure 1 shows typical connection for the TMP125.

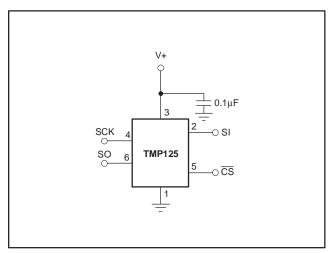


Figure 1. Typical Connections for the TMP125

COMMUNICATING WITH THE TMP125

The TMP125 continuously converts temperatures to digital data. Temperature data is read by pulling \overline{CS} low. Once \overline{CS} is pulled low, temperature data from the last completed conversion prior to dropping \overline{CS} is latched into

the shift register and clocked out at SO on the falling SCK edge. The 16-bit data word is clocked out sign bit first, followed by the MSB. Any portion of the 16-bit word can be read before raising \overline{CS} . However, all 16 bits must be clocked to allow shutdown of the TMP125. The TMP125 typically requires 60ms to complete a conversion, with results updated every 120ms.

The TMP125 will go into idle mode for 60ms, requiring only $20\mu A$ of current. A new conversion begins every 120ms. Figure 2 describes the conversion timing for the TMP125.

TEMPERATURE REGISTER

The Temperature Register of the TMP125 is a 16-bit, read-only register that stores the output of the most recent conversion. However, temperature is represented by only 10-bits, which are in signed two's complement format. The first bit of the Temperature Register, D15, is a leading zero. Bits D14 and D5 are used to indicate temperature. Bits D4 to D0 are the same as D5. (See Table 1.) Data format for temperature is summaraized in Table 2. When calculating the signed two's complement temperature value, be sure to use only the 10 data bits.

Following power-up or reset, the Temperature Register will read 0°C until the first conversion is complete.

D15	D14	D13	D12	D11	D10	D9	D8
0	Т9	T8	T7	T6	T5	T4	T3
D7	D6	D5	D4	D3	D2	D1	D0
T2	T1	T0	T0	T0	Т0	Т0	T0
Table 1. Temperature Degister							

Table 1. Temperature Register

TEMPERATURE (°C)	DIGITAL OUTPUT D14D5
+127	01 1111 1100
+125	01 1111 0100
+100	01 1001 0000
+75	01 0010 1100
+50	00 1100 1000
+25	00 0110 0100
+10	00 0010 1000
+0.25	00 0000 0001
0	00 0000 0000
-0.25	11 1111 1111
-25	11 1001 1100
-50	11 0011 1000
-55	11 0010 0100

Table 2. Temperature Data Format

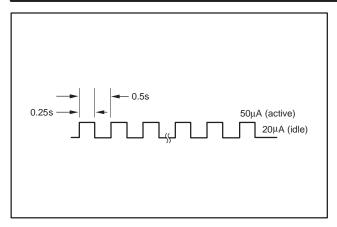


Figure 2. Conversion Time and Period

Timing Diagrams

The TMP125 is SPI-compatible. Figure 3 describes the output data of the TMP125. Figure 4, Figure 5, and Figure 6 describe the various timing requirements, with parameters defined in Table 3.

PARAMETER		MIN	MAX	UNITS
SCK Period	t ₁	100		ns
Data In to Rising Edge SCK Setup Time	t2	20		ns
SCK Falling Edge to Output Data Delay	t3		30	ns
SCK Rising Edge to Input Data Hold Time	t4	20		ns
CS to Rising Edge SCK Set-Up Time	t5	40		ns
CS to Output Data Delay	t ₆		30	ns
CS Rising Edge to Output High Impedance	t7		30	ns

Table 3. Timing Description

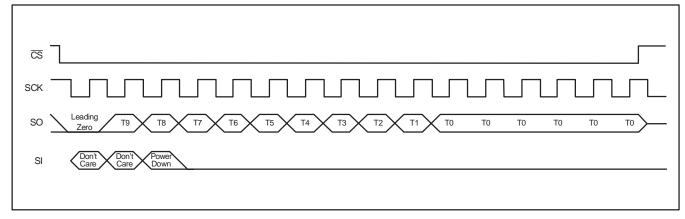


Figure 3. Data READ

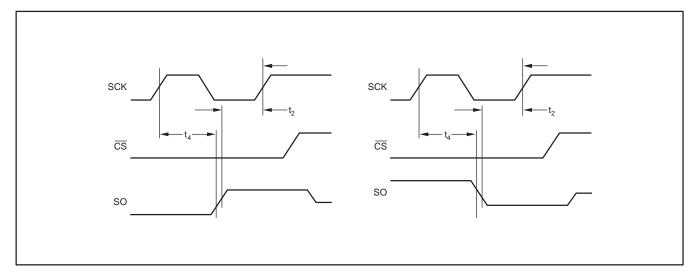
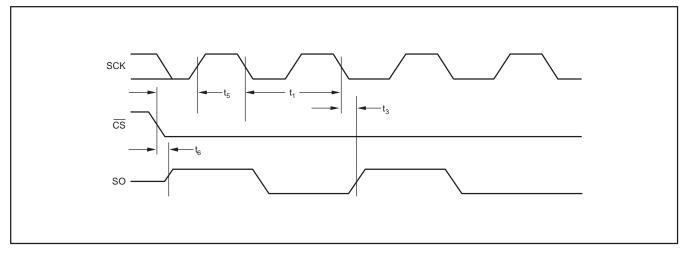



Figure 4. Input Data Timing Diagram

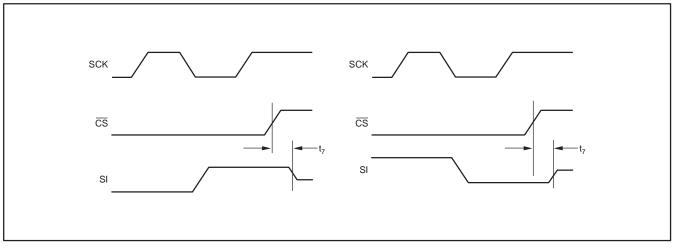


Figure 6. High Impedance Output Timing Diagram

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TMP125AIDBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TMP125AIDBVRG4	ACTIVE	SOT-23	DBV	6	3000	None	Call TI	Call TI
TMP125AIDBVT	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

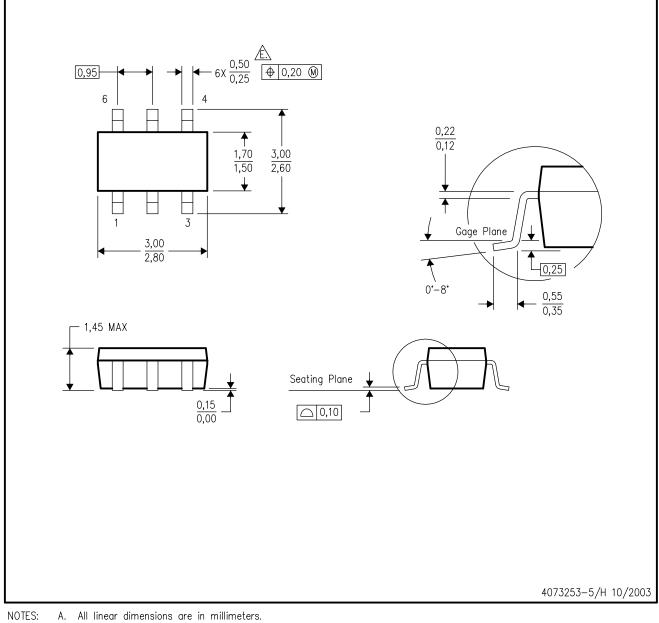
OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

- Β. This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion.
- C. D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- E Falls within JEDEC MO-178 Variation AB, except minimum lead width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated