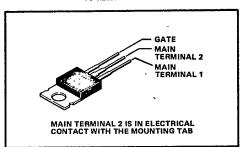
8961726 TEXAS INSTR (OPTO)

62C 36714

D

TIC216A, TIC216B, TIC216C, TIC216D, TIC216E, TIC216M, TIC216S, TIC216N **SILICON TRIACS**

REVISED OCTOBER 1984


- **Sensitive-Gate Triacs**
- 100 V to 800 V
- MAX IGT of 5 mA (Quadrants 1-3)

T-25-15

device schematic

MT 2

TO-220AB PACKAGE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

	TIC216A	TIC216B	TIC216C	TIC216D	
Repetitive peak off-state voltage, VDRM (see Note 1)	100 V	200 V	300 V	400 V	
Full-cycle RMS on-state current at (or below) 70°C case temperature IT(RMS) (see Note 2)	6A				
Peak on-state surge current, full sine wave, ITSM(see Note 3)	60 A				
Peak on-state surge current half sine wave, ITSM (see Note 4)	70 A				
Peak gate current, IGM	1 A				
Peak gate power dissipation, PGM, at (or below) 70°C case temperature (pulse duration < 200 μs)	2.2W				
Average gate power dissipation, PG(av), at (or below) 70°C case temperature (see Note 5)	0.9 W				
Operating case temperature range	- 40°C to 110°C				
Storage temperature range	- 40°C to 125°C				
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	230°C				

TIC Devices

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - This value applies for 50-Hz full sine wave operation with resistive load. Above 70°C derate linearly to 110°C case, temperature at the rate of 150 mW/°C.
 This value applies for one 50-Hz full sine wave when the device is operating at (or below) the rated value of on-state
 - current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for one 50-Hz half sine wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge gate control
 - 5. This value applies for a maximum averaging time of 20 ms.

INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

8961726 TEXAS INSTR (OPTO)

62C 36715 T-25-15

TIC216A, TIC216B, TIC216C, TIC216D, TIC216E, TIC216M, TIC216S, TIC216N **SILICON TRIACS**

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

	TIC216E	TIC216M	TIC216S	TIC216N	
Repetitive peak off-state voltage, VDRM (see Note 1)	500 V	600 V	700 V	800 V	
Full-cycle RMS on-state current at (or below) 70°C case temperature, IT(RMS) (see Note 2)	6A				
Peak on-state surge current, full sine wave, ITSM (see Note 3)	60 A				
Peak on-state surge current half sine wave, ITSM (see Note 4)	70 A				
Peak gate current, IGM	1A				
Peak gate power dissipation, P _{GM} , at (or below) 70°C case temperature (pulse duration < 200 μs)	2.2W				
Average gate power dissipation, PG(av), at (or below) 70°C case temperature (see Note 5)	0.9W .				
Operating case temperature range	- 40°C to 110°C				
Storage temperature range	-40°C to 125°C				
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	230°C				

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
2. This value applies for 50-Hz full sine wave operation with resistive load. Above 70°C derete linearly to 110°C case temperature at the rate of 100 mW/°C.

This value applies for one 50-Hz full sine wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge gate control

4. This value applies for one 50-Hz half sine wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge gate control

5. This value applies for a maximum averaging time of 20 ms.

TIC Devices

INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TIC216A, TIC161B, TIC161C, TIC161D, TIC216E, TIC216M, TIC216S, TIC216N **SILICON TRIACS**

	PARAMETER	TEST	CONDITIONS		MIN TYP	MAX	UNI
DRM	Repetitive Peak Off-State Current	V _{DRM} = Rated V _{DRM} ,	I _G = 0,	T _C = 110°C		± 2	m∆
^I GTM	Peak Gate Trigger Current	$V_{\text{supply}} = +12V^{\dagger}$,	RL = 10 Q,	t _W (g) ≥ 20 μs		5	İ
		$V_{\text{supply}} = +12V^{\dagger}$,	$R_L = 10 \Omega$,	t _{W(g)} ≥ 20 μs	•	- 5	m/
		$V_{\text{supply}} = -12V^{\dagger}$,	R _L = 10Ω,	t _W (g) ≥ 20 μs		- 5	
		$V_{\text{supply}} = -12V^{\dagger}$,	R _L = 10Ω,	t _{w(g)} ≥ 20 μs		10	
	Peak Gate Trigger Voltage	$V_{\text{supply}} = +12V^{\dagger}$,	$R_L = 10 \Omega$,	t _W (g) ≥ 20 μs		2.2	1
:		$V_{\text{supply}} = +12V^{\dagger}$	R _L = 10Ω,	t _{W(g)} ≥ 20 μs		- 2.2	l۷
VGTM		$V_{\text{supply}} = -12V^{\dagger}$,	$R_L = 10 \Omega$,	t _W (g) ≥ 20 μs	J	- 2.2	1
		$V_{\text{supply}} = -12V^{\dagger}$,	R _L = 10Ω,	t _{w(g)} ≥ 20 μs		3	
VTM	Peak On-State Voltage	I _{TM} = 8.4 A,	IG = 50 mA,	See Note 6		± 1.7	m
Ή	Holding Current	V _{supply} = +12V [†] , Initiating I _{TM} = 100 mA	I _G = 0,			+ 30	
		$V_{\text{supply}} = -12V^{\dagger}$, Initiating $I_{TM} = -100 \text{ m}$	I _G = 0,		- 30		
	Latching Current	$V_{\text{supply}} = +12V^{\dagger}$,	See Note 7		50		_ m
IL -		$V_{\text{supply}} = -12V^{\dagger}$,	See Note 7	Note 7		- 20	
dv/dt	Critical Rate of Rise of Off-State Voltage	V _{DRM} = Rated V _{DRM} ,	IG = 0,	† _C = 110°C	50) 	\ v _i
dv/dt(c)	Critical Rise of Commutation Voltage	V _{DRM} = Rated V _{DRM} ,	I _{TRM} = ±8.4A,	T _C = 70°C	5		V.

NOTES: 6. These parameters must be measured using pulse techniques, t_W ≤ 1 ms, duty cycle ≤ 2 %. Voltage-sensing contacts, separate from the current-carrying contacts, are located within 3,2 mm (1/8 inch) from the device body.
 7. The triacs are triggered by a 15-V (open-circuit ampitude) pulse supplied by a generator with the following characteristics:
 R_G = 100 Ω, t_W = 20 μs, t_f < 15 ns, t_f ≤ 15 ns, t_f = 1 kHz.

thermal characteristics

PARAMETER	MIN	TYP	MAX	UNIT
ReJC			2.5	•cw l
R _θ JA			62.5	

[†] All voltages are with respect to Main Terminal 1.