8-BIT SERIAL TO PARALLEL CONVERTER

■ GENERAL DESCRIPTION

The NJU3712 is an 8-bit serial to parallel converter especially apply to MPU outport expander.

The effective outport assignment of MPU is available as the connection between NJU3712 and MPU is required only 4 lines.

Up to 5MHz signal can be input to the serial data input terminal and the data is output from parallel output buffer through serial in parallel out shift register and parallel data latches.

Furthermore, the NJU3712 output the serial data from SO terminal through the shift register, therefore output bit number can increase by cascade connection.

The hysteresis input circuit realized wide noise margin and high driverbility output buffer (25mA) can drive LED directly.

5V±10%

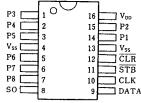
25mA

5MHz or more

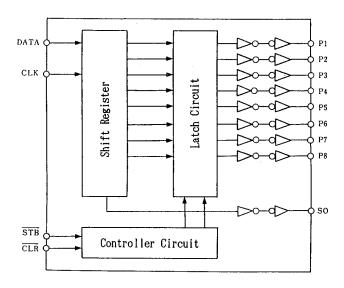
DIP/DMP 16

■ PACKAGE OUTLINE

NJU3712D


PIN CONFIGURATION

NJU3712M


■ FEATURES

- 8-Bit Serial In Parallel Out
- Cascade Connection
- Hysteresis Input
- Operating Voltage
- Operating Frequency
- Output Current
- C-MOS Technology
- Package Outline

0.5V typ P3 1 2

■ BLOCK DIAGRAM

■ TERMINAL DESCRIPTION

NO.	SYMBOL	FUNCTION	NO.	SYMBOL	FUNCTION		
1	P3	Parallel Converts Data Output Terminals	9	DATA	Serial Data Input Terminal		
2	P4		10	CLK	Clock Signal Input Terminal		
3	P5		11	STB	Strove Signal Input Terminal		
4	Vss	GND	12	CLR	Clear Signal Input Terminal		
5	P6	Parallel Converts	13	Vss	GND		
6	P7	- Parallel Converts - Data Output Terminals	14	P1	Parallel Converts		
7	P8		15	P2	Data Output Terminals		
8	SO	Serial Data Output Terminal	16	V _{DD}	Power Supply Terminal		

■ FUNCTIONAL DESCRIPTION

(1) Reset

When the "L" level is input to the $\overline{\text{CLR}}$ terminal, all latches are reset and all parallel conversion output are "L" level.

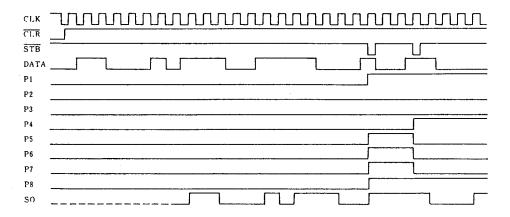
Normally, the CLR terminal should be "H" level.

(2) Data Transmission

In the STB terminal is "H" level and input the clock signal to the CLK terminal, the serial data input from DATA terminal shift in the shift register by synclonizing at rising edge of the clock signal.

When the \overline{STB} terminal change to "L" level, the data in the shift register transfer to the latch. Even if the \overline{STB} terminal is "L" level, the input clock signal shift the data in the shift register, therefore, the clock signal control is needed.

(3) Cascade Connection


The serial data input from \overline{DATA} terminal output from the SO terminal through internal shift register unrelated the \overline{CLR} and \overline{STB} status.

Furthermore, the 4 input terminals have a hysteresis characteristics by using the schmitt trigger structure to protect the noise.

CLK	STB	CLR	O P E R A T I O N						
Х	Х	L	All latch are reset (the data in the shift register is no change).						
^	^		All of Parallel convert output are "L".						
个	Пнн		The serial data input from DATA terminal input to the shift regist						
٦L	п	Н	In this stage, the data in the latch is no change.						
L			The data in the shift register transfer to the latch. And the data						
Н] .	Н		in the latch output from parallel output.					
	L		The CLK input in the STB="L" and CLR="H" state, the data shift in						
\bigcap			the shift register and latched data also change in accordance with						
			the shift register.						

Note) X: Don't care

■ TIMING CHART

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

			a-20 0)
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage Range	V _{DD}	- 0.5 ~ + 7.0	٧
Input Voltage Range	V ₁	V_{ss} -0.5 ~ V_{DD} +0.5	٧
Output Voltage Range	Vo	V _{s s} −0. 5 ~ V _{DD} +0. 5	٧
Output Current	lo	±25	mΑ
Power Dissipation	Po	700 (DIP) 300 (DMP)	Wim
Operating Temperature Range	Topr	−25 ~ +85	°C
Storage Temperature Range	Tstg	−65 ~ +150	°C

DC ELECTRICAL CHARACTERISTICS

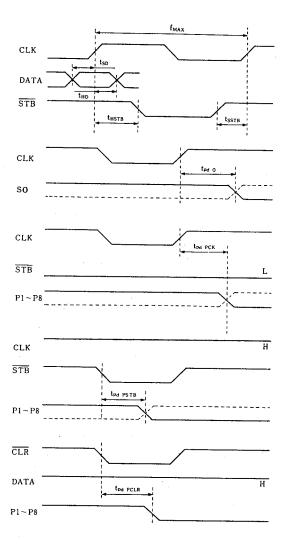
 $(V_{DD}=4.5\sim5.5V, V_{SS}=0V, Ta=25^{\circ}C)$

PARAMETER		SYMBOL	CONDITION		MIN	TYP	MAX	UNIT	
Operating Current		saa	ViH=Vdd, ViL=Vss				0.1	mA	
Output Voltage	High-Level	Vон	Пон=-0.4mA	SO Terminal	4.0		VDD	٧	
	Low-Level	Vol	low=+3.2mA		Vss		0.4		
	High-Level	ViH			0.7Vpp		VDD	v	
Input Voltage	Low-Level	VIL			Vss		0.3Vpb	۷	
Input Leakage Current		Li	V₁=0~Vɒɒ		-10		10	μA	
High-Level Output Voltage			Іон=−25mA		Vpp-1.5		VDD		
		Vоно	Гон=-15mA		Voo-1.0		VDD	٧	
			он=-10mA	P1∼P8 Terminals	Vpp-0.5		VDD		
Low-Level Output Voltage			low=+25mA	ierminais	Vss		1.5		
		Vold	lo∟=+15mA	(Note 1)	Vss		0.8	٧	
			loL=+10mA		Vss		0.4		
Output Short Current				SO Terminal			10		
		os	Vo=0V, V:=7V	(Note 2)			-10	mA	
		losp	Vo=7V, V:=0V	P1~P8			20	mA	
			Vo=0V, V1=7V	Terminals (Note 2)			-20		

Note 1) Specified value represent output current per pin. When use, total current consideration and less than power dissipation rating operation should be required.

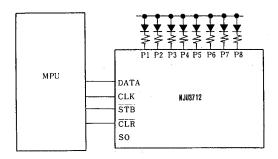
Note 2) Vpp=7V, Vss=0V, 1 second per pin.

■ SWITCHING CHARACTERISTICS

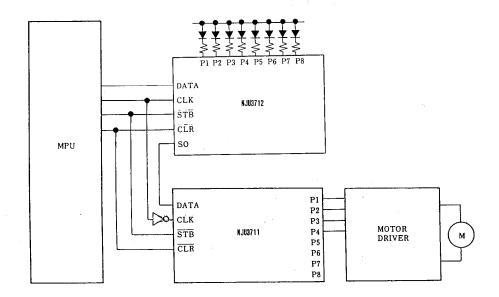

 $(V_{DD}=4.5V\sim5.5V, V_{ss}=0V, T_{a}=-20\sim75^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Set-Up Time	tsp	DATA - CLK	20			ns
Hold Time	tho	CLK - DATA	20			ns
Set-Up Time	tssтв	STB - CLK	30			ns
Hold Time	tнятв	CLK - STB	30			ns
	tod O	CLK - SO			70	ns
	tod PCK	CLK - P1∼P8			100	ns
Output Delay Time	tod РЅТВ	STB − P1~P8			80	ns
	tod PCLR	CLR − P1~P8			80	ns
Max. Operating Frequency	fmax		5			MHz

*) Cour=50pF



SWITCHING CHARACTERISTICS TEST WAVEFORM



APPLICATION CIRCUIT (1)

■ APPLICATION CIRCUIT (2) (Combined with NJU3711)

NJU3712

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.