

Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

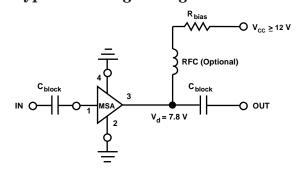
MSA-0986

86 Plastic Package

Features

- Broadband, Minimum Ripple Cascadable 50 Ω Gain Block
- * 7.2 \pm 0.5 dB Typical Gain Flatness from 0.1 to 3.0 GHz
- **3 dB Bandwidth:** 0.1 to 5.5 GHz
- * 10.5 dBm Typical $P_{1 dB}$ at 2.0 GHz
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available^[1]

Note:


 Refer to PACKAGING section "Tapeand-Reel Packaging for Semiconductor Devices."

Description

The MSA-0986 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for very wide bandwidth industrial and commercial applications that require flat gain and low VSWR.

The MSA-series is fabricated using HP's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Typical Biasing Configuration

MSA-0986 Absolute Maximum Ratings

Parameter Absolute Maximum			
Device Current	65 mA		
Power Dissipation ^[2,3]	500 mW		
RF Input Power	+13dBm		
Junction Temperature	150°C		
Storage Temperature	−65 to +150°C		

Thermal Resistance^[2,4]:

 $\theta_{jc} = 140^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{CASE} = 25^{\circ}C.$

3. Derate at 7.1 mW/°C for $T_C > 80$ °C.

4. See MEASUREMENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I_{d} = 35 mA, Z_{0} = 50 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 2.0 GHz	dB	6.0	7.2	
ΔG_P	Gain Flatness	f = 0.1 to 3.0 GHz	dB		± 0.5	
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		5.5	
VSWR	Input VSWR	f = 1.0 to 3.0 GHz			1.6:1	
	Output VSWR	f = 1.0 to 3.0 GHz			1.8:1	
NF	50Ω Noise Figure	f = 2.0 GHz	dB		6.2	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 2.0 GHz	dBm		10.5	
IP ₃	Third Order Intercept Point	f = 2.0 GHz	dBm		23.0	
t _D	Group Delay	f = 2.0 GHz	psec		95	
Vd	Device Voltage		V	6.2	7.8	9.4
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-16.0	

Notes:

1. The recommended operating current range for this device is 25 to 45 mA. Typical performance as a function of current is on the following page.

2. Referenced from 0.1 GHz gain (G_P).

Part Number Ordering Information

Part Number	No. of Devices	Container		
MSA-0986-TR1	1000	7" Reel		
MSA-0986-BLK	100	Antistatic Bag		

For more information, see "Tape and Reel Packaging for Semiconductor Devices".

 \mathbf{S}_{21} **S**₁₁ S_{12} S_{22} Freq. GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang k 0.02 -1053.72 145 .198 18 .38 -102 0.73 .36 11.4-14.10.05 .24 -1458.5 2.65-13.7.205 5.25 -1431.08 156.22 -164 7.72.43 .211 .22 0.1 166 -13.54 -1581.17 0.2 .21 -1797.52.37167 -13.5.212 .22 -1721.20 1 .21 165 7.42.34 162 -13.4.214 .22 179 1.20 0.4 -1.22 .212 -2 .22 7.42.33 156 -13.51.21 0.6 155175.22 -2 .213 .23 0.8 145 7.32.33149 -13.4171 1.21.23 1.0 136 7.3 2.32142 -13.4.214 -4 .24 167 1.20 .24 7.2 2.30 .217 .26 1.5118 125-13.3-6157 1.19 .25 7.2 .224 2.0 106 2.28 109 -13.0-10.28 148 1.16 .26 7.2 .224 .33 2.5100 2.29 -13.0139 94 -121.15 .224 .26 94 7.12.2677 -13.0-15.34 128 3.0 1.15.229 .26 2.2360 3.595 7.0-12.8-21.36 116 1.14 4.0.28 96 6.72.1743 -13.1.221 -25.35 104 1.18 .31 100 2.10 26 -13.6.210 -31 .32 94 1.23 4.56.5 9 5.0.37 101 6.0 2.00 -14.2.196 -35 .26 86 1.30 -7.44 97 5.41.86 -14.9-38 1.38 5.5.181 .19 88 -22 6.0 .51 94 4.6 1.69.162 -37 107 1.47 -15.8.14

MSA-0986 Typical Scattering Parameters ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}C$, $I_d = 35 mA$)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

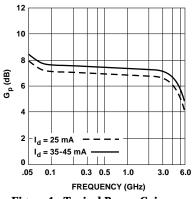


Figure 1. Typical Power Gain vs. Frequency.

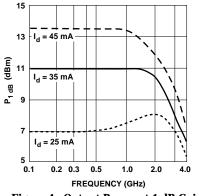


Figure 4. Output Power at 1 dB Gain Compression vs. Frequency.

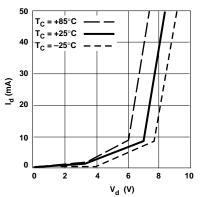
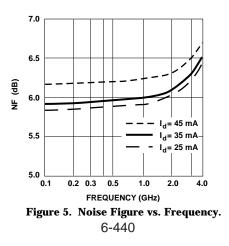



Figure 2. Device Current vs. Voltage.

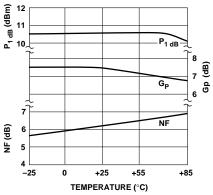
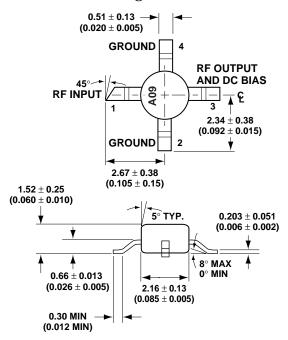



Figure 3. Output Power at 1 dB Gain Compression, Noise Figure and Power Gain vs. Case Temperature, f = 2.0 GHz, $I_d = 35$ mA.

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)