LT6210/LT621 1

Single/Dual Programmable Supply Current, R-R Output, Current Feedback Amplifiers

feATURES

- Programmable Supply Current and Bandwidth:

10 MHz at $300 \mu \mathrm{~A}$ per Amplifier up to
200MHz at 6mA per Amplifier

- Rail-to-Rail Output:
0.05 V to 2.85 V on 3 V Single Supply
- High Slew Rate: 700V/ $\mu \mathrm{s}$
- High Output Drive:
$\pm 75 \mathrm{~mA}$ Minimum Output Current
- C-Load ${ }^{\text {TM }}$ Op Amp Drives All Capacitive Loads
- Low Distortion:
-70dB HD2 at $1 \mathrm{MHz} 2 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$
-75 dB HD3 at $1 \mathrm{MHz} 2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
- Fast Settling:

20ns 0.1\% Settling for 2V Step

- Excellent Video Performance Into 150Ω Load: Differential Gain of 0.20%, Differential Phase of 0.10°
- Wide Supply Range:

3V to 12V Single Supply
$\pm 1.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ Dual Supplies

- Small Size:

Low Profile (1mm) 6-Lead SOT-23 (ThinSOT ${ }^{\text {TM }}$),
$3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ DFN and 10-Lead MSOP Packages
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.
C-Load and ThinSOT are trademarks of Linear Technology Corporation.

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 6210 / \mathrm{LT} 6211$ are single/dual current feedback amplifiers with externally programmable supply current and bandwidth ranging from 10 MHz at $300 \mu \mathrm{~A}$ per amplifier to 200 MHz at 6 mA per amplifier. They feature a low distortion rail-to-rail output stage, $700 \mathrm{~V} / \mathrm{\mu s}$ slew rate and a minimum output current drive of 75 mA .

The LT6210/LT6211 operate on supplies as low as a single 3 V and up to either 12 V or $\pm 6 \mathrm{~V}$. The $\mathrm{I}_{\text {SET }}$ pin allows for the optimization of quiescent current for specific bandwidth, distortion or slew rate requirements. Regardless of supply voltage, the supply current is programmable from just $300 \mu \mathrm{~A}$ to 6 mA per amplifier with an external resistor or current source.

The LT6210 is available in the low profile (1mm) 6-lead SOT-23 package. The LT6211 is available in the 10-lead MSOP and the $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ DFN packages.

APPLICATIONS

- Buffers
- Video Amplifers
- Cable Drivers
- Mobile Communication
- Low Power/Battery Applications

TYPICAL APPLICATION

Line Driver Configuration for Various Supply Currents

Small Signal Response vs Supply Current

ABSOLUTE MAXIMUM RATINGS (Note 1)

,	J
Input Current ... $\pm 10 \mathrm{~mA}$	Junction Temperature (DD Package) $125^{\circ} \mathrm{C}$
Output Current .. $\pm 80 \mathrm{~mA}$	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 2) Indefinite	Storage Temperature Range
Operating Temperature Range (Note 3) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	(DD Package) $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Specified Temperature Range (Note 4) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 sec)............... $300^{\circ} \mathrm{C}$

PACKAGE/ORDEß InFORMATION

	$\square 6 \mathrm{~V}^{+}$ $\square 5$ Iset $^{\text {Sin }}$ $\square 4-1 \mathrm{~N}$ OT-23 C/W (NOTE 5)	10-LEAD (3mm UNDERSIDE MET (PCB CONNE $\tau_{\mathrm{J} \text { IMAX }}=125^{\circ} \mathrm{C}$,	GE PLASTIC DFN NNECTED TO ${ }^{-}$ OPTIONAL) º/W (NOTE 5)		$10 \mathrm{v}^{+}$ P9 OUTB $7^{8}-$-NB च6 Iset B MSOP /W (NOTE 5)
ORDER PART NUMBER	S6 PART MARKING*	ORDER PART NUMBER	DD PART MARKING*	ORDER PART NUMBER	MS PART MARKING
$\begin{aligned} & \text { LT6210CS6 } \\ & \text { LT6210IS6 } \end{aligned}$	LTA3	$\begin{aligned} & \text { LT6211CDD } \\ & \text { LT6211IDD } \end{aligned}$	LBCD	LT6211CMS LT6211IMS	$\begin{aligned} & \text { LTBBN } \\ & \text { LTBBP } \end{aligned}$

*The temperature grades are identified by a label on the shipping container.
Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS (I $=6 \mathrm{~mA}$ per Amplifier) The \bullet denotes speciifiations which apply

 over the specified operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$. For $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$: $\mathrm{R}_{S E T}=20 \mathrm{k}$ to ground, $A_{V}=+2, R_{F}=R_{G}=887 \Omega, R_{L}=150 \Omega$; For $V^{+}=3 V, V^{-}=0 V$: $R_{S E T}=0 \Omega$ to $V^{-}, A_{V}=+2, R_{F}=887 \Omega, R_{G}=887 \Omega$ to $1.5 V, R_{L}=150 \Omega$ to 1.5 V unless otherwise specified.| SYMBOL | PARAMETER | CONDITIONS | | $\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=\underset{\mathrm{mA}}{\mathrm{mAX}} \\ & \text { MIN } \end{aligned}$ | | $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{IS}_{S}=6 \mathrm{~mA}$ | | | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | MIN | TYP | MAX | |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | | \bullet | | | -1 | $\begin{aligned} & \pm 6 \\ & \pm 9 \end{aligned}$ | | -1 | $\begin{aligned} & \pm 6.5 \\ & \pm 10 \end{aligned}$ | mV mV |
| IIN^{+} | Noninverting Input Current | | \bullet | -3.5 | $\begin{aligned} & \pm 7 \\ & \pm 9 \end{aligned}$ | | -3 | $\begin{gathered} \pm 6.5 \\ \pm 8 \end{gathered}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| $\overline{1 N^{-}}$ | Inverting Input Current | | \bullet | -13.5 | $\begin{aligned} & \pm 39 \\ & \pm 55 \end{aligned}$ | | 2.5 | $\begin{aligned} & \pm 25 \\ & \pm 40 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| e_{n} | Input Noise Voltage Density | $\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{F}}=887 \Omega, \\ & \mathrm{R}_{\mathrm{G}}=46.4 \Omega, \mathrm{R}_{\mathrm{S}}=0 \Omega \end{aligned}$ | | 6.5 | | | 6.5 | | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| $+\mathrm{i}_{n}$ | Input Noise Current Density | $\mathrm{f}=1 \mathrm{kHz}$ | | 4.5 | | | 4.5 | | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| - i_{n} | Input Noise Current Density | $\mathrm{f}=1 \mathrm{kHz}$ | | 25 | | | 25 | | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| $\mathrm{R}_{\text {IN }+}$ | Noninverting Input Resistance | $\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$ | \bullet | 0.5 | | 0.3 | 1.7 | | $\mathrm{M} \Omega$ |
| $\mathrm{Cl}^{\text {+ }}$ | Noninverting Input Capacitance | $\mathrm{f}=100 \mathrm{kHz}$ | | 2 | | | 2 | | pF |
| $\mathrm{V}_{\text {INH }}$ | Input Voltage Range, High | (Note 10) | \bullet | 3.8 4.2 | | 1.8 | 2.2 | | V |
| $\mathrm{V}_{\text {INL }}$ | Input Voltage Range, Low | (Note 10) | \bullet | -4.2 | -3.8 | | 0.8 | 1.2 | V |
| V OUTH | Output Voltage Swing, High | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { (Note 11) } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { (Note 11) } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { (Note 11) } \\ & \hline \end{aligned}$ | \bullet | 4.8
 4.4 4.6
 4.2 | | $\begin{gathered} 2.65 \\ 2.6 \end{gathered}$ | $\begin{aligned} & 2.85 \\ & 2.75 \end{aligned}$ | | V V V |
| V OUTL | Output Voltage Swing, Low | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { (Note 11) } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { (Note 11) } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { (Note 11) } \end{aligned}$ | \bullet | $\begin{gathered} -4.95 \\ -4.8 \end{gathered}$ | $\begin{gathered} -4.55 \\ -4.4 \end{gathered}$ | | $\begin{gathered} 0.05 \\ 0.1 \end{gathered}$ | $\begin{gathered} 0.3 \\ 0.35 \end{gathered}$ | V V V |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$ | \bullet | $\begin{array}{ll} \hline 46 & 50 \\ 43 & \end{array}$ | | | 46 | | dB dB |
| ${ }^{-}$CMRR | Inverting Input Current Common Mode Rejection | $\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$ | \bullet | 0.15 | $\begin{gathered} \pm 1.5 \\ \pm 2 \end{gathered}$ | | 0.2 | | $\mu \mathrm{A} / \mathrm{V}$
 $\mu \mathrm{A} / \mathrm{V}$ |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ (Note 6) | \bullet | $60 \quad 85$ | | 60 | 85 | | dB |
| ${ }^{-l p S R R}$ | Inverting Input Current Power Supply Rejection | $\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ (Note 6) | \bullet | 2 | $\begin{aligned} & \pm 7 \\ & \pm 8 \end{aligned}$ | | 2 | $\begin{aligned} & \pm 7 \\ & \pm 8 \end{aligned}$ | $\mu \mathrm{A} / \mathrm{V}$
 $\mu \mathrm{A} / \mathrm{V}$ |
| Is | Supply Current per Amplifier | | - | 6 | $\begin{aligned} & 8.5 \\ & 10 \end{aligned}$ | | 5.8 | $\begin{gathered} 8.3 \\ 9 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |

ELECTRICAL CHARACTERISTICS (I $=6 \mathrm{~mA}$ per Amplifier) The odenotes specifications which apply over the specified operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$. For $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$: $\mathrm{R}_{\text {SET }}=20 \mathrm{k}$ to ground, $A_{V}=+2, R_{F}=R_{G}=887 \Omega, R_{L}=150 \Omega$; For $V^{+}=3 V, V^{-}=0 V$: $R_{S E T}=0 \Omega$ to $V^{-}, A_{V}=+2, R_{F}=887 \Omega, R_{G}=887 \Omega$ to 1.5 V , $R_{L}=150 \Omega$ to 1.5 V unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{I}_{S}=6 \mathrm{~mA}$			$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=6 \mathrm{~mA}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
IOUT	Maximum Output Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=0 \Omega \\ & \text { (Notes 7, 11) } \\ & \hline \end{aligned}$	\bullet	± 75			± 45			mA
$\mathrm{R}_{0 \mathrm{~L}}$	Transimpedance, $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{IN}_{\mathrm{N}^{-}}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$		65	115		65	115		$\mathrm{k} \Omega$
SR	Slew Rate	(Note 8)		500	700			200		V/us
$\mathrm{t}_{\text {pd }}$	Propagation Delay	$50 \% \mathrm{~V}_{\text {IN }}$ to $50 \% \mathrm{~V}_{\text {OUT }}$, $100 \mathrm{mV} \mathrm{V}_{\text {p-p, }}$ Larger of $\mathrm{t}_{\mathrm{pd}}+, \mathrm{t}_{\mathrm{pd}}{ }^{-}$			1.5			2.4		ns
BW	-3dB Bandwidth	<1dB Peaking, $A_{V}=1$			200			120		MHz
$\mathrm{t}_{\text {s }}$	Settling Time	To 0.1% of $\mathrm{V}_{\text {FINAL }}, \mathrm{V}_{\text {STEP }}=2 \mathrm{~V}$			20			25		ns
$\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{r}}$	Small-Signal Rise and Fall Time	10% to 90%, V OUT $=100 \mathrm{mV} V_{\text {P-P }}$			2			3.5		ns
dG	Differential Gain	(Note 9)			0.20			0.35		\%
dP	Differential Phase	(Note 9)			0.10			0.20		Deg
HD2	2nd Harmonic Distortion	$f=1 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$			-70			-65		dBc
HD3	3rd Harmonic Distortion	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$			-75			-75		dBc

($I_{S}=3 \mathrm{~mA}$ per Amplifier) The \bullet denotes specifications which apply over the specified operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$. For $V^{+}=5 V, V^{-}=-5 V$: $R_{S E T}=56 \mathrm{k}$ to ground, $A_{V}=+2, R_{F}=R_{G}=1.1 \mathrm{k}, R_{L}=150 \Omega$; For $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$: $\mathrm{R}_{\mathrm{SET}}=10 \mathrm{k}$ to $\mathrm{V}^{-}, A_{V}=+2, \mathrm{R}_{\mathrm{F}}=1.27 \mathrm{k}, \mathrm{R}_{\mathrm{G}}=1.27 \mathrm{k}$ to $1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to 1.5 V unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{I}_{S}=3 \mathrm{~mA}$			$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{I}$ S $=3 \mathrm{~mA}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		\bullet		-1	$\begin{aligned} & \pm 5.5 \\ & \pm 8.5 \end{aligned}$		-1.5	$\begin{aligned} & \pm 5.5 \\ & \pm 8.5 \end{aligned}$	mV
lin^{+}	Noninverting Input Current		-		-1.5	$\begin{aligned} & \pm 5 \\ & \pm 7 \end{aligned}$		-1.5	$\begin{aligned} & \pm 5 \\ & \pm 7 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IN^{-}	Inverting Input Current		\bullet		-12	$\begin{aligned} & \pm 36 \\ & \pm 52 \end{aligned}$		-3	$\begin{aligned} & \pm 15 \\ & \pm 20 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{F}}=1.1 \mathrm{k}, \\ & \mathrm{R}_{\mathrm{G}}=57.6 \Omega, \mathrm{R}_{S}=0 \Omega \end{aligned}$			7			7		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$+\mathrm{i}_{n}$	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			1.5			1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$-i_{n}$	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			15			15		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN+ }}$	Noninverting Input Resistance	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$	\bullet	0.5	3		1	2.5		$\mathrm{M} \Omega$
$\mathrm{Cl}_{\underline{N^{+}}}$	Noninverting Input Capacitance	$\mathrm{f}=100 \mathrm{kHz}$			2			2		pF
$\mathrm{V}_{\text {INH }}$	Input Voltage Range, High	(Note 10)	\bullet	3.8	4.1		1.8	2.1		V
$\mathrm{V}_{\text {INL }}$	Input Voltage Range, Low	(Note 10)	\bullet		-4.1	-3.8		0.9	1.2	V
$\mathrm{V}_{\text {OUTH }}$	Output Voltage Swing, High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { (Note 11) } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { (Note 11) } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { (Note 11) } \end{aligned}$	\bullet	$\begin{aligned} & 4.3 \\ & 41 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.6 \end{aligned}$		$\begin{gathered} 2.6 \\ 2.55 \end{gathered}$	$\begin{aligned} & 2.9 \\ & 2.8 \end{aligned}$		V V V
VOUTL	Output Voltage Swing, Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { (Note 11) } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { (Note 11) } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { (Note 11) } \end{aligned}$	\bullet		$\begin{gathered} -4.95 \\ -4.8 \end{gathered}$	$\begin{gathered} -4.55 \\ -4.4 \end{gathered}$		$\begin{gathered} 0.05 \\ 0.1 \end{gathered}$	$\begin{gathered} 0.3 \\ 0.35 \end{gathered}$	V V V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$	\bullet	$\begin{aligned} & 46 \\ & 43 \end{aligned}$	50			46		dB dB
${ }^{-}$ICMRR	Inverting Input Current Common Mode Rejection	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$	\bullet		0.3	$\begin{gathered} \pm 1.5 \\ \pm 2 \end{gathered}$		0.4		$\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$

LT6210/LT621 1
ELECTRICAL CHARACTERISTICS (I $=3 \mathrm{~mA}$ per Amplifier) The denotes specifications which apply over the specified operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$. For $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$: $\mathrm{R}_{\text {SET }}=56 \mathrm{k}$ to ground, $A_{V}=+2, R_{F}=R_{G}=1.1 \mathrm{k}, R_{L}=150 \Omega ;$ For $V^{+}=3 V, V^{-}=0 \mathrm{~V}$: $R_{S E T}=10 \mathrm{k}$ to $\mathrm{V}^{-}, A_{V}=+2, R_{F}=1.27 \mathrm{k}, R_{G}=1.27 \mathrm{k}$ to $1.5 \mathrm{~V}, R_{L}=150 \Omega$ to 1.5 V unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{I}_{S}=3 \mathrm{~mA}$			$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{I}_{S}=3 \mathrm{~mA}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ (Note 6)	\bullet	60	85		60	85		dB
$-_{\text {IPSRR }}$	Inverting Input Current Power Supply Rejection	$V_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ (Note 6)	\bullet		1.5	$\begin{aligned} & \pm 7 \\ & \pm 8 \end{aligned}$		1.5	$\begin{aligned} & \pm 7 \\ & \pm 8 \end{aligned}$	$\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$
I_{S}	Supply Current per Amplifier		\bullet		3	$\begin{gathered} 4.1 \\ 4.55 \end{gathered}$		3	$\begin{aligned} & 4.1 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {OUT }}$	Maximum Output Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=0 \Omega \\ & \text { (Notes 7, 11) } \end{aligned}$	\bullet	± 70			± 45			mA
$\underline{\mathrm{R}_{0 \mathrm{~L}}}$	Transimpedance, $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{I}_{\mathrm{IN}^{-}}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$		65	120		65	120		k Ω
SR	Slew Rate	(Note 8)		450	600			150		V/ $\mu \mathrm{s}$
t_{pd}	Propagation Delay	$50 \% \mathrm{~V}_{\text {IN }}$ to $50 \% \mathrm{~V}_{\text {OUT }}$, $100 \mathrm{mV} \mathrm{P}_{\text {p-p, }}$ Larger of $\mathrm{t}_{\mathrm{pd}}+, \mathrm{t}_{\mathrm{pd}}{ }^{-}$			3.1			4.7		ns
BW	-3dB Bandwidth	<1dB Peaking, $A_{V}=1$			100			70		MHz
$\mathrm{t}_{\text {s }}$	Settling Time	To 0.1% of $\mathrm{V}_{\text {FINAL }}, \mathrm{V}_{\text {STEP }}=2 \mathrm{~V}$			20			25		ns
$\mathrm{t}_{\mathrm{t},} \mathrm{t}_{\mathrm{r}}$	Small-Signal Rise and Fall Time	10% to $90 \%, V_{\text {OUT }}=100 \mathrm{mV} \mathrm{V}_{\text {P-P }}$			3			5.6		ns
dG	Differential Gain	(Note 9)			0.35			0.42		\%
dP	Differential Phase	(Note 9)			0.30			0.44		Deg
HD2	2nd Harmonic Distortion	$f=1 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$			-65			-60		dBc
HD3	3rd Harmonic Distortion	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$			-65			-65		dBC

($I_{S}=300 \mu \mathrm{~A}$ per Amplifier) The \bullet denotes specifications which apply over the specified operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} C$. For $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$: $\mathrm{R}_{\text {SET }}=1 \mathrm{M}$ to ground, $\mathrm{A}_{V}=+2, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{G}=11 \mathrm{~K}, R_{L}=1 \mathrm{k}$; For $\mathrm{V}^{+}=3 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}: \mathrm{R}_{\mathrm{SET}}=270 \mathrm{k}$ to $\mathrm{V}^{-}, A_{V}=+2, \mathrm{R}_{\mathrm{F}}=9.31 \mathrm{k}, \mathrm{R}_{\mathrm{G}}=9.31 \mathrm{k}$ to $1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to 1.5 V unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{I}_{S}=300 \mu \mathrm{~A}$			$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{I}_{S}=300 \mu \mathrm{~A}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		\bullet		-1	$\begin{gathered} \pm 4.5 \\ \pm 8 \end{gathered}$		-1.5	$\begin{gathered} \pm 4.5 \\ \pm 8 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{I}_{1 \times}+$	Noninverting Input Current		\bullet		0.2	$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$		0.2	$\begin{gathered} \pm 1 \\ \pm 1.5 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{1 \times}$	Inverting Input Current		\bullet			$\begin{gathered} \pm 8.5 \\ \pm 11 \end{gathered}$		-0.5	$\begin{gathered} \pm 3 \\ \pm 4.5 \end{gathered}$	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{R}_{F}=13 \mathrm{k}, \mathrm{R}_{\mathrm{G}}=681 \Omega, \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega \end{aligned}$			13.5			13.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\underline{+}$	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			0.75			0.75		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
- i_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			5			5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}+$	Noninverting Input Resistance	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.2 \mathrm{~V} \text { to } \mathrm{V}^{-}+1.2 \mathrm{~V} \\ & \text { (Note 8) } \end{aligned}$	\bullet	1	25		1	15		$\mathrm{M} \Omega$
ClN^{+}	Noninverting Input Capacitance	$\mathrm{f}=100 \mathrm{kHz}$			2			2		pF
$\mathrm{V}_{\text {INH }}$	Input Voltage Range, High	(Note 10)	\bullet	3.8	4.1		1.8	2.1		V
$\mathrm{V}_{\text {INL }}$	Input Voltage Range, Low	(Note 10)	\bullet		-4.1	-3.8		0.9	1.2	V
$\mathrm{V}_{\text {OUTH }}$	Output Voltage Swing, High	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ (Note 11)	\bullet	$\begin{gathered} 4.75 \\ 4.7 \end{gathered}$	4.85		$\begin{array}{\|c\|} \hline 2.75 \\ 2.7 \end{array}$	2.85		V
VOUTL	Output Voltage Swing, Low	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ (Note 11)	\bullet		-4.95	$\begin{gathered} \hline-4.85 \\ -4.8 \end{gathered}$		0.05	$\begin{gathered} 0.15 \\ 0.2 \end{gathered}$	V
621014										

ELECTRICAL CHARACTERISTICS ($\mathrm{I}_{\mathrm{S}}=300 \mu \mathrm{~A}$ per Amplifier) The \bullet denotes speciications which apply over the specified operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. For $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$: $\mathrm{R}_{\text {SET }}=1 \mathrm{M}$ to ground, $A_{V}=+2, R_{F}=R_{G}=11 \mathrm{k}, R_{L}=1 \mathrm{k}$; For $V^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$: $\mathrm{R}_{\mathrm{SET}}=270 \mathrm{k}$ to $\mathrm{V}^{-}, A_{V}=+2, R_{F}=9.31 \mathrm{k}, R_{G}=9.31 \mathrm{k}$ to $1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to 1.5V unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{I}_{S}=300 \mu \mathrm{~A}$			$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{IS}=300 \mu \mathrm{~A}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$	-	$\begin{aligned} & 46 \\ & 43 \end{aligned}$	50			46		dB dB
${ }^{-I_{\text {CMRR }}}$	Inverting Input Current Common Mode Rejection	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$	-			$\begin{gathered} \pm 1.5 \\ \pm 2 \end{gathered}$		0.2		$\mu \mathrm{A} / \mathrm{N}$ $\mu \mathrm{A} / \mathrm{V}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ (Note 6)	\bullet	60	85		60	85		dB
${ }_{-l}$ PSRR	Inverting Input Current Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ (Note 6)	\bullet		0.4	$\begin{gathered} \pm 2.2 \\ \pm 4 \end{gathered}$		0.4	$\begin{gathered} \pm 2.2 \\ \pm 4 \end{gathered}$	$\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$
I_{S}	Supply Current per Amplifier		\bullet		0.3	$\begin{gathered} 0.525 \\ 0.6 \end{gathered}$		0.3	$\begin{aligned} & 0.38 \\ & 0.43 \end{aligned}$	mA
IOUT	Maximum Output Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=0 \Omega \\ & (\text { Notes 7, 11) } \\ & \hline \end{aligned}$	\bullet	± 30			± 10			mA
$\mathrm{R}_{0 \mathrm{~L}}$	Transimpedance, $\Delta \mathrm{V}_{\text {OUT }} /\left.\Delta\right\|_{\mathrm{IN}^{-}}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-1.2 \mathrm{~V}$ to $\mathrm{V}^{-}+1.2 \mathrm{~V}$		300	660		65	120		k Ω
SR	Slew Rate	(Note 8)		120	170			20		$\mathrm{V} / \mathrm{\mu s}$
t_{pd}	Propagation Delay	$\begin{aligned} & 50 \% \mathrm{~V}_{\text {IN }} \text { to } 50 \% \mathrm{~V}_{\text {OUT }}, \\ & 100 \mathrm{~m}_{\text {P-p }}, \text { Larger of } \mathrm{t}_{\text {pd }}+, \mathrm{t}_{\text {pd }}{ }^{-} \end{aligned}$			30			50		ns
BW	-3dB Bandwidth	<1dB Peaking, $A_{V}=1$			10			7.5		MHz
$\mathrm{t}_{\text {s }}$	Settling Time	To 0.1% of $\mathrm{V}_{\text {FINAL }}, \mathrm{V}_{\text {STEP }}=2 \mathrm{~V}$			200			300		ns
$\mathrm{t}_{\mathrm{f}, \mathrm{t}_{\mathrm{r}}}$	Small-Signal Rise and Fall Time	10% to 90%, $V_{\text {OUT }}=100 \mathrm{mV} V_{\text {P-P }}$			40			50		ns
HD2	2nd Harmonic Distortion	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$			-40			-45		dBC
HD3	3rd Harmonic Distortion	$f=1 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$			-45			-45		dBc

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: As long as output current and junction temperature are kept below the absolute maximum ratings, no damage to the part will occur.
Depending on the supply voltage, a heat sink may be required.
Note 3: The LT6210C/LT6211C is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 4: The LT6210C/LT6211C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT6210C/LT6211C is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LT6210I/ LT6211I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: The LT6210 with no metal connected to the V^{-}pin has a θ_{JA} of $230^{\circ} \mathrm{C} / \mathrm{W}$, however, thermal resistances vary depending upon the amount of PC board metal attached to Pin 2 of the device. With the LT6210 mounted on a $2500 \mathrm{~mm}^{2} 3 / 32$ " FR-4 board covered with $20 z$ copper on both sides and with just $20 \mathrm{~mm}^{2}$ of copper attached to Pin $2, \theta_{\mathrm{JA}}$ drops to $160^{\circ} \mathrm{C} / \mathrm{W}$. Thermal performance can be improved even further by using a 4-layer board or by attaching more metal area to Pin 2.
Thermal resistance of the LT6211 in MSOP-10 is specified for a $2500 \mathrm{~mm}^{2}$ $3 / 32$ " FR-4 board covered with $20 z$ copper on both sides and with $100 \mathrm{~mm}^{2}$ of copper attached to Pin 5. Its performance can also be increased with additional copper much like the LT6210.
To achieve the specified θ_{JA} of $43^{\circ} \mathrm{C} / \mathrm{W}$ for the LT6211 DFN-10, the exposed pad must be soldered to the PCB. In this package, θ_{JA} will benefit from increased copper area attached to the exposed pad.
T_{J} is calculated from the ambient temperature T_{A} and the power dissipation P_{D} according to the following formula:

$$
T_{J}=T_{A}+\left(P_{D} \bullet \theta_{J A}\right)
$$

The maximum power dissipation can be calculated by:
$P_{D(\text { MAX })}=\left(V_{S} \bullet I_{S(M A X)}\right)+\left(V_{S} / 2\right)^{2} / R_{\text {LOAD }}$
Note 6: For PSRR and ${ }^{-I_{\text {PSRR }}}$ testing, the current into the $I_{\text {SET }}$ pin is constant, maintaining a consistent LT6210/LT6211 quiescent bias point. A graph of PSRR vs Frequency is included in the Typical Performance Characteristics showing +PSRR and -PSRR with RSET connecting ISET to ground.
Note 7: While the LT6210 and LT6211 circuitry is capable of significant output current even beyond the levels specified, sustained short-circuit current exceeding the Absolute Maximum Rating of $\pm 80 \mathrm{~mA}$ may permanently damage the device.
Note 8: This parameter is guaranteed to meet specified performance through design and characterization. It is not production tested.
Note 9: Differential gain and phase are measured using a Tektronix TSG120YC/NTSC signal generator and a Tektronix 1780R Video Measurement Set. The resolution of this equipment is 0.1% and 0.1°. Five identical amplifier stages were cascaded giving an effective resolution of 0.02% and 0.02°.
Note 10: Input voltage range on $\pm 5 \mathrm{~V}$ dual supplies is guaranteed by CMRR. On 3 V single supply it is guaranteed by design and by correlation to the $\pm 5 \mathrm{~V}$ input voltage range limits.
Note 11: This parameter is tested by forcing a 50 mV differential voltage between the inverting and noninverting inputs.

TYPICAL AC PERFORMARCE

$\mathrm{V}_{\mathrm{S}}(\mathrm{V})$	Is (mA) per Amplifier	$\mathrm{R}_{\text {SET }}(\Omega)$	A_{V}	$\mathrm{R}_{\mathrm{L}}(\Omega)$	$\mathrm{R}_{\mathrm{F}}(\Omega)$	$\mathrm{R}_{\mathrm{G}}(\Omega)$	SMALL-SIGNAL -3dB BW, <1dB PEAKING (MHz)	$\begin{aligned} & \text { SMALLL-SIGNAL } \\ & \pm 0.1 \mathrm{~dB} \text { BW (MHz) } \end{aligned}$
± 5	6	20k	1	150	1200	-	200	30
± 5	6	20k	2	150	887	887	160	30
± 5	6	20k	-1	150	698	698	140	20
± 5	3	56k	1	150	1690	-	100	15
± 5	3	56k	2	150	1100	1100	100	15
± 5	3	56k	-1	150	1200	1200	80	15
± 5	0.3	1MEG	1	1k	13.7k	-	10	2
± 5	0.3	1MEG	2	1k	11k	11k	10	2
± 5	0.3	1MEG	-1	1k	10k	10k	10	1.8
3, 0	6	0	1	150	1100	-	120	20
3, 0	6	0	2	150	887	887	100	20
3, 0	6	0	-1	150	806	806	100	20
3, 0	3	10k	1	150	1540	-	70	15
3, 0	3	10k	2	150	1270	1270	60	15
3, 0	3	10k	-1	150	1200	1200	60	15
3, 0	0.3	270k	1	1k	13k	-	7.5	2
3, 0	0.3	270k	2	1k	9.31k	9.31k	7	1.5
3, 0	0.3	270k	-1	1k	10k	10k	7	1.5

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS (Supply Current Is Measured Per Amplifier)

Input Offset Voltage vs Input Common Mode Voltage

62101 G07

Input Common Mode Range vs Temperature

Output Voltage Swing vs

Input Noise Spectral Density
($I_{S}=300 \mu \mathrm{~A}$ per Amplifier)

Input Common Mode Range vs Temperature

Output Voltage Swing vs
Temperature

TYPICAL PGRFORmAnCE CHARACTERISTICS (supply Current is Measured Per Amplifier)

6210 G13

6210G19

Output Voltage Swing vs ILoad

6210 G14
CMRR and PSRR vs Frequency
($I_{S}=3 \mathrm{~mA}$ per Amplifier)

Frequency Response vs Closed

6210 G20

Output Voltage Swing vs I Load

6210 G15
CMRR and PSRR vs Frequency
($I_{S}=300 \mu A$ per Amplifier)

Frequency Response vs Closed Loop Gain ($\mathrm{I}_{\mathrm{S}}=300 \mu \mathrm{~A}$ per Amplifier)

TYPICAL PERFORMARCE CHARACTERISTICS (Supply Current Is Measured Per Amplifier)

2nd and 3rd Harmonic Distortion vs Frequency ($I_{S}=6 \mathrm{~mA}$ per Amplifier)

Maximum Undistorted Output Sinusoid vs Frequency

6210 G25

2nd and 3rd Harmonic Distortion vs Frequency ($\mathrm{I}_{\mathrm{s}}=3 \mathrm{~mA}$ per Amplifier)

Output Impedance vs Frequency

Maximum Capacitive Load vs
Output Series Resistor Output Series Resistor

2nd and 3rd Harmonic Distortion vs Frequency ($I_{S}=300 \mu \mathrm{~A}$ per Amplifier)

LT6211 Channel Separation vs Frequency

Maximum Capacitive Load vs
Feedback Resistor

TYPICAL PERFORMARCE CHARACTERISTICS (supply Current s Measured Per Amplifier)

Small-Signal Transient Response ($\mathrm{I}_{\mathrm{S}}=6 \mathrm{~mA}$ per Amplifier)

Large-Signal Transient Response ($\mathrm{I}_{\mathrm{S}}=6 \mathrm{~mA}$ per Amplifier)

Slew Rate vs Supply Current

62101 G32

Small-Signal Transient Response
($I_{S}=3 \mathrm{~mA}$ per Amplifier)

$V_{S}= \pm 5 \mathrm{~V}$
TIME (10ns/DIV)
$V_{\text {IN }}= \pm 25 \mathrm{mV}$
$\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=1.1 \mathrm{k}$
$\mathrm{R}_{\text {SET }}=56 \mathrm{k}$ TO GND
$R_{L}=150 \Omega$
62101 G35

Large-Signal Transient Response
($\mathrm{I}_{\mathrm{S}}=3 \mathrm{~mA}$ per Amplifier)

1MHz 2nd and 3rd Harmonic
Distortion vs Supply Current

62101631

Small-Signal Transient Response ($I_{S}=300 \mu A$ per Amplifier)

$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \quad$ TIME ($100 \mathrm{~ns} / \mathrm{DIV}$)
$\mathrm{V}_{\mathrm{IN}}= \pm 25 \mathrm{mV}$
$R_{F}=R_{G}=11 \mathrm{k}$
$R_{S E T}=1 \mathrm{M}$ TO GND
$R_{L}=1 k$
62101 G36

Large-Signal Transient Response
($\mathrm{I}_{\mathrm{s}}=300 \mu \mathrm{~A}$ per Amplifier)

APPLICATIONS INFORMATION

Setting the Quiescent Operating Current (ISET Pin)

The quiescent bias point of the LT6210/LT6211 is set with either an external resistor from the I ${ }_{\text {SET }}$ pin to a lower potential or by drawing a current out of the $I_{\text {SET }}$ pin. However, the I SET pin is not designed to function as a shutdown. The LT6211 uses two entirely independent bias networks, so while each channel can be programmed for a different supply current, neither I ${ }_{\text {SET }}$ pin should be left unconnected. A simplified schematic of the internal biasing structure can be seen in Figure 1. Figure 2 illustrates the results of varying $\mathrm{R}_{\text {SET }}$ on 3 V and $\pm 5 \mathrm{~V}$ supplies. Note that shorting the $\mathrm{I}_{\text {SET }}$ pin under 3 V operation results in a quiescent bias of approximately 6 mA . Attempting to bias the LT6210/LT6211 at a current level higher than 6 mA by using a smaller resistor may result in instability and decreased performance. However, internal circuitry clamps the supply current of the part at a safe level of approximately 15 mA in case of accidental connection of the I $\mathrm{I}_{\text {ST }}$ pin directly to a negative potential.

Figure 1. Internal Bias Setting Circuitry

Figure 2. Setting R $\mathrm{R}_{\text {SET }}$ to Control IS

Input Considerations

The inputs of the LT6210/LT6211 are protected by back-to-back diodes. If the differential input voltage exceeds 1.4 V , the input current should be limited to less than the absolute maximum ratings of $\pm 10 \mathrm{~mA}$. In normal operation, the differential voltage between the inputs is small, so the $\pm 1.4 \mathrm{~V}$ limit is generally not an issue. ESD diodes protect both inputs, so although the part is not guaranteed to function outside the common mode range, input voltages that exceed a diode beyond either supply will also require current limiting to keep the input current below the absolute maximum of $\pm 10 \mathrm{~mA}$.

Feedback Resistor Selection

The small-signal bandwidth of the LT6210/LT6211 is set by the external feedback resistors and the internal junction capacitances. As a result, the bandwidth is a function of the quiescent supply current, the supply voltage, the value of the feedback resistor, the closed-Ioop gain and the load resistor. Refer to the Typical AC Performance table for more information.

Layout and Passive Components

As with all high speed amplifiers, the LT6210/LT6211 require some attention to board layout. Low ESL/ESR bypass capacitors should be placed directly at the positive and negative supply ($0.1 \mu \mathrm{~F}$ ceramics are recommended). For best transient performance, additional 4.7μ Ftantalums should be added. A ground plane is recommended and trace lengths should be minimized, especially on the inverting input lead.

Capacitance on the Inverting Input

Current feedback amplifiers require resistive feedback from the output to the inverting input for stable operation. Capacitance on the inverting input will cause peaking in the frequency response and overshoot in the transient response. Take care to minimize the stray capacitance at the inverting input to ground and between the output and the inverting input. If significant capacitance is unavoidable in a given application, an inverting gain configuration should be considered. When configured inverting, the amplifier inputs do not slew and the effect of parasitics is greatly reduced.

APPLICATIONS INFORMATION

Capacitive Loads

The LT6210/LT6211 are stable with any capacitive load. Although peaking and overshoot may result in the AC transient response, the amplifier's compensation decreases bandwidth with increasing output capacitive load to ensure stability. To maintain a response with minimal peaking, the feedback resistor can be increased at the cost of bandwidth as shown in the Typical Performance Characteristics. Alternatively, a small resistor (5Ω to 35Ω) can be put in series with the output to isolate the capacitive load from the amplifier output. This has the advantage that the amplifier bandwidth is only reduced when the capacitive load is present. The disadvantage of this technique is that the gain is a function of the load resistance.

Power Supplies

The LT6210/LT6211 will operate on single supplies from 3 V to 12 V and on split supplies from $\pm 1.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$. If split supplies of unequal absolute value are used, input offset voltage and inverting input current will shift from the values specified in the Electrical Characteristics table. Input offset voltage will shift 2 mV and inverting input current will shift $0.5 \mu \mathrm{~A}$ for each volt of supply mismatch.

Slew Rate

Unlike a traditional voltage feedback op amp, the slew rate of a current feedback amplifier is not independent of the amplifier gain configuration. In a current feedback amplifier, both the input stage and the output stage have slew rate limitations. In the inverting mode, and for gains of 2 or more in the noninverting mode, the signal amplitude between the input pins is small and the overall slew rate is
that of the output stage. For gains less than 2 in the noninverting mode, the overall slew rate is limited by the input stage. The input slew rate of the LT6210/LT6211 on $\pm 5 \mathrm{~V}$ supplies with an $\mathrm{R}_{\text {SET }}$ resistor of $20 \mathrm{k}\left(\mathrm{I}_{\mathrm{S}}=6 \mathrm{~mA}\right)$ is approximately $600 \mathrm{~V} / \mu \mathrm{s}$ and is set by internal currents and capacitances. The output slew rate is additionally constrained by the value of the feedback resistor and internal capacitance. At a gain of 2 with 887Ω feedback and gain resistors, $\pm 5 \mathrm{~V}$ supplies and the same biasing as above, the output slew rate is typically $700 \mathrm{~V} / \mu \mathrm{s}$. Larger feedback resistors, lower supply voltages and lower supply current levels will all reduce slew rate. Input slew rates significantly exceeding the output slew capability can actually decrease slew performance in a positive gain configuration; the cleanest transient response will be obtained from input signals with slew rates slower than $1000 \mathrm{~V} / \mu \mathrm{s}$.

Output Swing and Drive

The output stage of the LT6210/LT6211 consists of a pair of class-AB biased common emitters that enable the output to swing rail-to-rail. Since the amplifiers can potentially deliver output currents well beyond the specified minimum short-circuit current, care should be taken not to short the output of the device indefinitely. Attention must be paid to keep the junction temperature of the IC below the absolute maximum rating of $150^{\circ} \mathrm{C}$ if the output is used to drive low impedance loads. See Note 5 for details. Additionally, the output of the amplifier has re-verse-biased ESD diodes connected to each supply. If the output is forced beyond either supply, large currents will flow through these diodes. If the current is limited to 80 mA or less, no damage to the part will occur.

TYPICAL APPLICATION

3V Cable Driver with Active Termination

Driving back-terminated cables on single supplies usually results in very limited signal amplitude at the receiving end of the cable. However, positive feedback can be used to reduce the size of the series back termination resistor, thereby decreasing the attenuation between the series and shunt termination resistors while still maintaining controlled output impedance from the line-driving amplifier.

Figure 3 shows the LT6210 using this "active termination" scheme on a single 3V supply. The amplifier is AC-coupled and in an inverting gain configuration to maximize the input signal range. The gain from $\mathrm{V}_{\text {IN }}$ to the receiving end of the cable, $\mathrm{V}_{\text {OUT }}$, is set to -1 . The effective impedance looking into the amplifier circuit from the cable is 50Ω throughout the usable bandwidth.

TYPICAL APPLICATION

The response of the cable driver with a 1 MHz sinusoid is shown in Figure 4. The circuit is capable of transmitting a $1.5 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ undistorted sinusoid to the 50Ω termination

Figure 3. 3V Cable Driver with Active Termination
resistor and has a full signal $1 \mathrm{~V}_{\text {P-p }}$ bandwidth of 50 MHz . Small signal -3 dB bandwidth extends from 1 kHz to 56 MHz with the selected coupling capacitors.

Figure 4. Response of Circuit at 1 MHz

SImPLIFIED SCHEmATIC

PACKAGE DESCRIPTION

DD Package
10-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2) 4. EXPOSED PAD SHALL BE SOLDER PLATED

CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT \quad. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE 2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUD

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE

MS Package

10-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1661)

RECOMMENDED SOLDER PAD LAYOUT
NOTE:

1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX

S6 Package

6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

LT6210/LT621 1

TYPICAL APPLICATIONS

Line Driver with Power Saving Mode

In applications where low distortion or high slew rate are desirable but not necessary at all times, it may be possible to decrease the LT6210 or LT6211's quiescent current when the higher power performance is not required. Figure 5 illustrates a method of setting quiescent current with a FET switch. In the 5V dual supply case pictured, shorting the $I_{\text {SET }}$ pin through an effective 20 k to ground sets the supply current to 6 mA , while the 240 k resistor at the $I_{\text {SET }}$ pin with the FET turned off sets the supply current to approximately 1 mA . The feedback resistor of 4.02 k is selected to minimize peaking in low power mode. The

Figure 5. Line Driver with Low Power Mode
bandwidth of the LT6210 in this circuit increases from about 40 MHz in low power mode to over 200 MHz in full speed mode, as illustrated in Figure 6. Other AC specs also improve significantly at the higher current setting. The following table shows harmonic distortion at 1 MHz with a $2 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ sinusoid at the two selected current levels.

Harmonic Distortion

LOW POWER		FULL SPEED	
HD2	-53 dBc	HD2	-68 dBc
HD3	-46 dBc	HD3	-77 dBc

Figure 6. Frequency Response for Full Speed and Low Power Mode

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1252/LT1253/LT1254	100MHz Low Cost Video Amplifiers	Single, Dual and Quad Current Feedback Amplifiers
LT1395/LT1396/LT1397	400MHz, 800V/us Amplifiers	Single, Dual and Quad Current Feedback Amplifiers
LT1398/LT1399	300MHz Amplifiers with Shutdown	Dual and Triple Current Feedback Amplifiers
LT1795	$50 \mathrm{MHz}, 500 \mathrm{~mA}$ Programmable IS Amplifier	Dual Current Feedback Amplifier
LT1806/LT1807	$325 \mathrm{MHz}, 140 \mathrm{~V} /$ / Rail-to-Rail I/0 Amplifiers	Single and Dual Voltage Feedback Amplifiers
LT1815/LT1816/LT1817	$220 \mathrm{MHz}, 1500 \mathrm{~V} / \mathrm{\mu s}$ Programmable I ${ }_{\text {S }}$ Operational Amplifier	Single, Dual and Quad Voltage Feedback Amplifiers

