

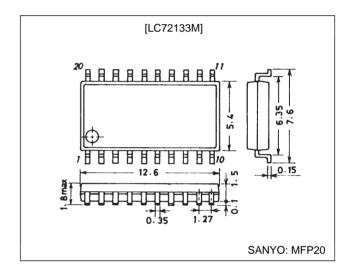
PLL Frequency Synthesizer for Electronic Tuning

Overview

The LC72133M and LC72133V are a phase-locked loop frequency synthesizer LSI circuits for use in radio tuners. It supports low-voltage (2.7 to 3.6 V) operation and can implement high-performance AM/FM tuners easily.

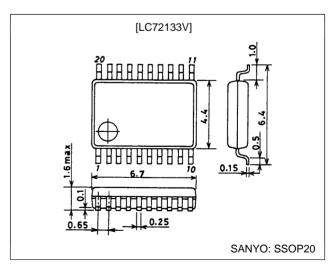
Functions

- High speed programmable dividers
 - FMIN: 10 to 120 MHzpulse swallower (built-in divide-by-two prescaler), $V_{DD} \ge 2.7 \text{ V}$ 10 to 130 MHzpulse swallower (built-in divide-by-two prescaler), $V_{DD} \ge 3.0 \text{ V}$
 - AMIN: 2 to 40 MHzpulse swallower 0.5 to 10 MHzdirect division
- · IF counter
 - IFIN: 0.4 to 12 MHzAM/FM IF counter
- Reference frequencies
 - Twelve selectable frequencies
 (4.5 or 7.2 MHz crystal)
 1,3,5,9,10,3.125,6.25,12.5,15,25,50 and 100 kHz
- Phase comparator
 - Dead zone control
 - Unlock detection circuit
 - Deadlock clear circuit
- Built-in MOS transistor for forming an active low-pass filter
- I/O ports
 - Dedicated output ports: 4
 - Input or output ports: 2
 - Support clock time base output
- Serial data I/O
 - Support CCB format communication with the system controller.
- · Operating ranges
 - Supply voltage......2.7 to 3.6 V
 - Operating temperature......20 to +70°C
- Package MFP20

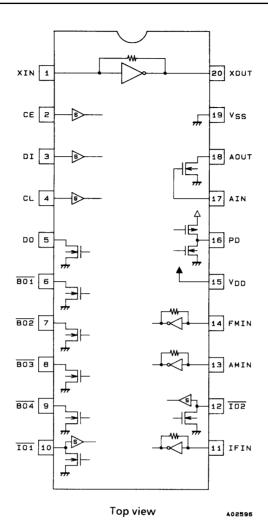

SSOP20

- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

Package Dimensions


unit: mm

3036B-MFP20



unit: mm

3179A-SSOP20

Pin Assignment

Block Diagram

REFERENCE DIVIDER PHASE DETECTOR PD XIN XOUT AIN UNLOCK DETECTOR SWALLOW COUNTER 1/15.1/17 4bits AOUT FMIN 12bits PROGRAMMABLE AMIN CE UNIVERSAL ссв DATA SHIFT REGISTER LATCH DΙ) IFIN CL DO POWER ON RESET ۷۵۵ ٧ss BO1 BO2 BO3 BO4 101 105

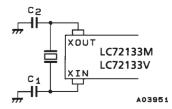
Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Ratings	Unit
Supply voltage	V _{DD} max	V _{DD}	-0.3 to +5.5	V
	V _{IN} 1 max	CE, CL, DI, AIN	-0.3 to +5.5	V
Maximum input voltage	V _{IN} 2 max	XIN, FMIN, AMIN, IFIN	-0.3 to V _{DD} + 0.3	V
	V _{IN} 3 max	101, 102	-0.3 to +15	V
	V _O 1 max	DO	-0.3 to +5.5	V
Maximum output voltage	V _O 2 max	XOUT, PD	-0.3 to V _{DD} + 0.3	V
	V _O 3 max	BO1 to BO4, IO1, IO2, AOUT	-0.3 to +15	V
	I _O 1 max	BO1	0 to 3.0	mA
Maximum output current	I _O 2 max	AOUT, DO	0 to 6.0	mA
	I _O 3 max	BO2 to BO4, IO1, IO2	0 to 6.0	mA
Allowable newer discipation	Dd may	Ta ≤ 70°C: LC72133M	180	mW
Allowable power dissipation	Pd max	Ta ≤ 70°C: LC72133V	160	mW
Operating temperature	Topr		-20 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

Allowable Operating Ranges at Ta = -20 to $+70^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}		2.7		3.6	V
Input high-level voltage	V _{IH} 1	CE, CL, DI		0.7 V _{DD}		5.5	V
input nign-ievei voltage	V _{IH} 2	ĪO1, ĪO2		0.7 V _{DD}		13	V
Input low-level voltage	V _{IL}	CE, CL, DI, IO1, IO2		0		0.3 V _{DD}	V
	V _O 1	DO		0		5.5	V
Output voltage	V _O 2	BO1 to BO4, IO1, IO2, AOUT		0		13	V
	f _{IN} 1	XIN	V _{IN} 1	1		8	MHz
	f _{IN} 2-1	FMIN	V _{IN} 2-1	10		90	MHz
	f _{IN} 2-2	FMIN	V _{IN} 2-2	10		120	MHz
Input frequency	f _{IN} 2-3	FMIN	$V_{IN}2-1, V_{DD} \ge 3.0 \text{ V}$	10		130	MHz
	f _{IN} 3	AMIN	V _{IN} 3, SNS = 1	2		40	MHz
	f _{IN} 4	AMIN	V _{IN} 4, SNS = 0	0.5		10	MHz
	f _{IN} 5	IFIN	V _{IN} 5	0.4		12	MHz
	V _{IN} 1	XIN	f _{IN} 1	400		900	mVrms
	V _{IN} 2-1	FMIN	f _{IN} 2-1, f _{IN} 2-3	70		900	mVrms
	V _{IN} 2-2	FMIN	f _{IN} 2-2	100		900	mVrms
Input amplitude	V _{IN} 3	AMIN	f _{IN} 3, SNS = 1	70		900	mVrms
	V _{IN} 4	AMIN	f _{IN} 4, SNS = 0	70		900	mVrms
	V _{IN} 5-1	IFIN	f _{IN} 5, IFS = 1	70		900	mVrms
	V _{IN} 5-2	IFIN	f _{IN} 6, IFS = 0	100		900	mVrms
Supported crystals	Xtal	XIN, XOUT	*	4.0		8.0	MHz


Note: * Recommended crystal oscillator CI values: $\mbox{CI} \leq \mbox{120}\Omega \mbox{ (For a 4.5 MHz crystal)} \label{eq:commended}$

CI ≤ 70Ω (For a 7.2 MHz crystal)

<Sample Oscillator Circuit>

Crystal oscillator: HC-49/U (manufactured by Kinseki, Ltd.), CL = 12 pF

The circuit constants for the crystal oscillator circuit depend on the crystal used, the printed circuit board pattern, and other items. Therefore we recommend consulting with the manufacturer of the crystal for evaluation and reliability.

Electrical Characteristics for the Allowable Operating Ranges at $Ta=-20\ to\ +70^{\circ}C,\ V_{SS}=0\ V$

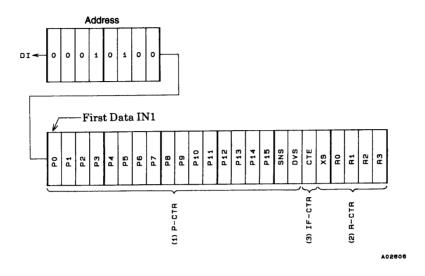
Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
	Rf1	XIN			1.0		ΜΩ
D 1911 (1911) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rf2	FMIN			500		kΩ
Built-in feedback resistance	Rf3	AMIN			500		kΩ
	Rf4	IFIN			250		kΩ
	Rpd1	FMIN			200		kΩ
Built-in pull-down resistor	Rpd2	AMIN			200		kΩ
Hysteresis	V _{HIS}	CE, CL, DI, IO1, IO2			0.1 V _{DD}		V
Output high level voltage	V _{OH} 1	PD	I _O = -1 mA	V _{DD} – 1.0			V
	V _{OL} 1	PD	I _O = 1 mA			1.0	V
	., .	504	I _O = 0.5 mA			0.6	V
	V _{OL} 2	BO1	I _O = 1 mA			1.2	V
0	., .		I _O = 1 mA			0.25	V
Output low level voltage	V _{OL} 3	DO	I _O = 3 mA			0.75	V
	., ,	<u> </u>	I _O = 1 mA			0.25	V
	V _{OL} 4	$\overline{BO2}$ to $\overline{BO4}$, $\overline{IO1}$, $\overline{IO2}$	I _O = 5 mA			1.25	V
	V _{OL} 5	AOUT	I _O = 1 mA, AIN = 1.3 V			0.5	V
	I _{IH} 1	CE, CL, DI	V _I = 5.5 V			5.0	μA
	I _{IH} 2	IO1, IO2	V _I = 13 V			5.0	μA
Innut high lavel gurrant	I _{IH} 3	XIN	$V_I = V_{DD}$	1.3		8	μA
Input high level current	I _{IH} 4	FMIN, AMIN	$V_I = V_{DD}$	2.7		15	μA
	I _{IH} 5	IFIN	$V_I = V_{DD}$	5.4		30	μΑ
	I _{IH} 6	AIN	V _I = 5.5 V			200	nA
	I _{IL} 1	CE, CL, DI	V _I = 0 V			5.0	μA
	I _{IL} 2	ĪO1, ĪO2	V _I = 0 V			5.0	μΑ
Innut lave lavel aurrant	I _{IL} 3	XIN	V _I = 0 V	1.3		8	μA
Input low level current	I _{IL} 4	FMIN, AMIN	V _I = 0 V	2.7		15	μΑ
	I _{IL} 5	IFIN	V _I = 0 V	5.4		30	μA
	I _{IL} 6	AIN	V _I = 0 V			200	nA
Output off leakage current	I _{OFF} 1	BO1 to BO4, AOUT,	V _O = 13 V			5.0	μA
•	I _{OFF} 2	DO	V _O = 5.5 V			5.0	μA
High level three-state off leakage current	I _{OFFH}	PD	$V_{O} = V_{DD}$		0.01	200	nA
Low level three-state off leakage current	I _{OFFL}	PD	V _O = 0 V		0.01	200	nA
Input capacitance	C _{IN}	FMIN			6		pF
	I _{DD} 1	V _{DD}	Xtal = 7.2 MHz, $f_{IN}2 = 130 \text{ MHz},$ $V_{IN}2 = 70 \text{ mVrms}$		2	5	mA
Current drain	I _{DD} 2	V _{DD}	PLL block stopped (PLL INHIBIT), Xtal oscillator operating (Xtal = 7.2 MHz)		0.3		mA
	I _{DD} 3	V _{DD}	PLL block stopped Xtal oscillator stopped			30	μА

Pin Functions

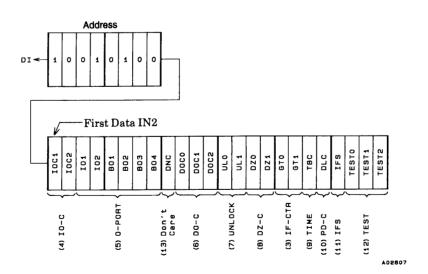
Symbol	Pin No.	Туре	Functions	Circuit configuration
XIN XOUT	1 20	Xtal OSC	Crystal resonator connection (4.5/7.2 MHz)	A02598
FMIN	14	Local oscillator signal input	FMIN is selected when the serial data input DVS bit is set to 1. The input frequency range is from 10 to 130 MHz. The input signal passes through the internal divide-bytwo prescaler and is input to the swallow counter. The divisor can be in the range 272 to 65535. However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value. Operating FMIN input frequency To to 90 MHz 10 to 120 MHz 10 to 130 MHz Operating powersupply voltage 2.7 to 3.6 V 2.7 to 3.6 V 3.0 to 3.6 V Operating input 70 to 900 100 to 900 70 to 900 Inverse MVrms MVrm	A02599
AMIN	13	Local oscillator signal input	AMIN is selected when the serial data input DVS bit is set to 0. When the serial data input SNS bit is set to 1: — The input frequency range is 2 to 40 MHz. — The signal is directly input to the swallow counter. — The divisor can be in the range 272 to 65535, and the divisor used will be the value set. When the serial data input SNS bit is set to 0: — The input frequency range is 0.5 to 10 MHz. — The signal is directly input to a 12-bit programmable divider. — The divisor can be in the range 4 to 4095, and the divisor used will be the value set.	A02599
CE	2	Chip enable	Set this pin high when inputting (DI) or outputting (DO) serial data.	□ S A02600
CL	4	Clock	Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	□ S A02500
DI	3	Data input	Inputs serial data transferred from the controller to the LC72133.	□ S A02600
DO	5	Data output	Outputs serial data transferred from the LC72133 to the controller. The content of the output data is determined by the serial data DOC0 to DOC2.	A02601
V _{DD}	15	Power supply	The LC72133 power supply pin (V _{DD} = 2.7 to 3.6 V) The power on reset circuit operates when power is first applied.	

Continued on next page.

Continued from preceding page.


Symbol	Pin No.	Туре	Functions	Circuit configuration
V _{SS}	19	Ground	The LC72133 ground	-
BO1 BO2 BO3 BO4	6 7 8 9	Output port	Dedicated output pins The output states are determined by BO1 to BO4 bits in the serial data. Data: 0 = open, 1 = low At time base signal (8 Hz) can be output from the BO1 pin. (When the serial data TBC bit is set to 1.) Care is required when using the BO1 pin, since it has a higher on impedance than the other output ports (pins BO2 to BO4). The data = 0 (open) state is selected after the power-on reset.	A02501
101 102	10 12	I/O port	I/O dual-use pins Interview of the serial data. Interview of the serial data value of the serial data. Interview of the s	A02602
PD	16	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level is output from the PD pin. Similarly, when that frequency is lower, a low level is output. The PD pin goes to the high impedance state when the frequencies match.	A02503
AIN AOUT	17 18	LPF amplifier transistor	The n-channel MOS transistor used for the PLL active low-pass filter.	A02504
IFIN	11	IF counter	Accepts an input in the frequency range 0.4 to 12 MHz. The input signal is directly transmitted to the IF counter. The result is output starting the MSB of the IF counter using the DO pin. Four measurement periods are supported: 4, 8, 32, and 64 ms.	A02599

Serial Data I/O Methods


The LC72133 inputs and outputs data using the Sanyo CCB (computer control bus) audio LSI serial bus format. This LSI adopts an 8-bit address format CCB.

	I/O mode					Iress				Function
	"O mode	B0	B1	B2	В3	A0	A1	A2	А3	1 dilodoii
1	IN1 (82)	0	0	0	1	0	1	0	0	Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.
2	IN2 (92)	1	0	0	1	0	1	0	0	Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.
3	OUT (A2)	0	1	0	1	0	1	0	0	Data output mode (serial data output) The number of bits output is equal to the number of clocycles. See the "DO Output Data (Serial Data Output) Structur item for details on the meaning of the output data.
	CL (®) DI BO DO (®)	B1 E	32	ВЗ Д	AO		X A	2	A3	First Data DUT

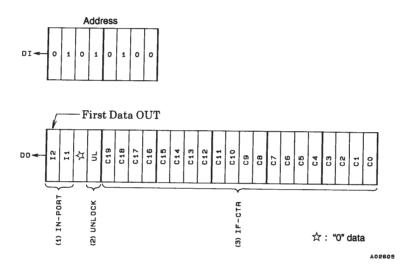
- 1. DI Control Data (Serial Data Input) Structure
 - IN1 Mode

• IN2 Mode

2. DI Control Data Functions

No.	Control block/data					F	unctions				Related data
	Programmable divider data	•	Data that								
	P0 to P15	ı	,								
			DVS and	SNS. (*: 0	Be in which P15 is the MSB. The LSB changes depending on IS. (*: don't care)						
			DVS	SNS	LSB	Table divider. Is the MSB. The LSB changes depending on e) Divisor setting (N) Actual divisor 272 to 65535 Twice the value of the setting 4 to 4095 The value of the setting when P4 is the LSB. AMIN or FMIN) for the programmable divider, switches changed divider, switches changed divider and the setting of the setting of the care. It pin Input frequency range of the final of the care of the ca					
			1	*	P0	272	to 65535	Twice the value of the setting			
			0			272	to 65535	The value of the setting			
(4)				Name		The value of the setting					
(1)	DVC CNC			sets the programmable divider. alue in which P15 is the MSB. The LSB of SNS. (*: don't care) SNS LSB Divisor setting (N * P0 272 to 65535 1 P0 272 to 65535 0 P4 4 to 4095 0 P3 are ignored when P4 is the LSB. esignal input pin (AMIN or FMIN) for the equency range. (*: don't care) SNS Input pin * FMIN 1 AMIN 0 AMIN the "Programmable Divider" item for more frequency (fref) selection data. R2 R1 R0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1							
	DVS, SNS	ı		U			, ,	grammable divider, switches			
			DVS	SNS	Input	pin	i li	nput frequency range			
			1	*		-					
			0	1	AMI	N		2 to 40 MHz			
			0	0	AMI	N		0.5 to 10 MHz			
		i	Note: See	e the "Proo	grammable	e Divider"	item for more ir	nformation.			
	Reference divider data	•	Reference	frequenc	y (fref) sel	ection dat	a.				
	R0 to R3		R3	R2	R1	R0	Re	ference frequency (kHz)			
		Data that sets the programmable divider.									
		DVS and SNS. (*: don't care) DVS SNS LSB Divisor setting (N) Actual divisor									
			_	DVS							
			_		SNS						
			_								
			_								
			1	0	0	0					
(2)											
			1	1	0	0		3			
			1	1	0						
							PLL I				
					1	1		PLL INHIBIT			
					able divide	r block an	d the IF counter	block are stopped, the FMIN.			
			AMIN	N, and IFIN	l pins are	set to the		11 /			
	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-	ice state.					
	XS	ı	,		lection						
		ı									
			The 7.2 M	Hz freque	ncy is sele	ected after	the power-on	reset.			
	IF counter control data CTE	ı				data					
	CIE	ı									
	GT0, GT1	•	Determine	s the IF c	ounter me	asuremer	t period.			IFS	
		CTE = 0: Counter reset • Determines the IF counter measurement period.		Wait time (ms)	ı						
(3)		GT1 GT0 Measurement time (ms)		, ,							
				0 4 8							
				0 4 1 8 0 32							
			1 0 32 7 to 8 1 1 64 7 to 8								
			Note: See the "IF Counter" item for more information.								
(4)	I/O port specification data	, ,									
. ,	Output port data										
(5)	Output port data BO1 to BO4, IO1, IO2		Data that Data: 0 =		IOC						
(5)				•		elected af	er the power-o	n reset.		IOC	2

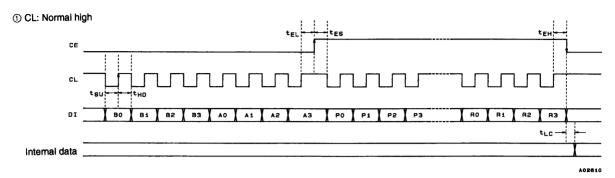
Continued from preceding page.

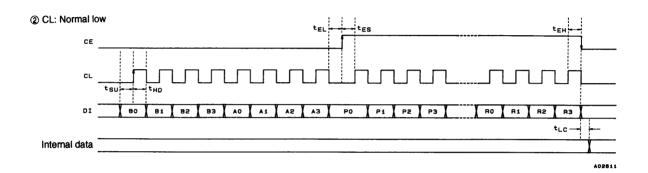

No.	Control block/data				Functions		Related data
	DO pin control data	Data that	determine	s the DO	pin output		
	DOC0, DOC1, DOC2	DOC2	DOC1	DOC0	Г	O pin state	
		0	0	0	Open	- pin diate	
		0	0	1	Low when the unlock s	tate is detected	
		0	1	0	end-UC*1		
		0	1	1	Open		
		1	0	0	Open		
		1 1	0	1 0	The IO1 pin state*2 The IO2 pin state*2		
		1	1	1	Open		
		The open	state is se	elected aft	ter the power-on reset.		
		Note: 1.	end-UC: (Check for	IF counter measurement	completion	ULO, UL1,
(6)		DO t	oin		\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CTE, IOC1, IOC2
			①	Counter s	start @	Counter ③ CE: high	
			from z ② When the me ③ Dependent	ero to one he IF coul easuremel ding on se	e), the DO pin automatica nter measurement comple nt completion state. erial data I/O (CE: high) the	started (i.e., when CTE is changed illy goes to the open state. etes, the DO pin goes low to indicate the DO pin goes to the open state.	
					ate if the I/O pin is specif	, ,	
		hi Al wi	gh) will be so, the D0 ill output tl	open, reg D pin durir ne conten	gardless of the state of thing a data output period (ats of the internal DO serial	id (an IN1 or IN2 mode period with CE e DO control data (DOC0 to DOC2). In OUT mode period with CE high) al data in synchronization with the D control data (DOC0 to DOC2).	
	Unlock detection data			. ,	detection width for checking	0	
	UL0, UL1	A phase e	error in exc	cess of the	e specified detection widt	h is seen as an unlocked state.	
		UL1	UL0	Ø	E detection width	Detector output	
		0	0	Stopped		Open	DOC0,
(7)		0	1	0		øE is output directly	DOC1,
		1	0	±0.55 µs	3	øE is extended by 1 to 2 ms	DOC2
		1	1	±1.11		øE is extended by 1 to 2 ms	
					ne DO pin goes low and t	he UL bit in the serial data	
	Dhaga gampat		comes zer		or dood zone		
	Phase comparator control data			comparate	or dead zone.		
	DZ0, DZ1	DZ1	DZ0		Dead zo	ne mode	
		0	0	DZA			
(8)		0	1	DZB			
		1	0	DZC			
		1	1	DZD			
		Dead zon	e widths: I	DZA < DZ	B < DZC < DZD		
(9)	Clock time base TBC				n 8 Hz, 40% duty clock tir is invalid in this mode.)	ne base signal to be output	BO1
	Charge pump control data DLC	• Forcibly c	ontrols the	charge p	oump output.		
	DLO	DI	LC		Charge pu	ımp output	
(40)							
(10)			1	Forced I			
		osc	illator stop	ping, dea		e (Vtune) going to zero and the VCO forcing the charge pump output to ock clearing circuit.)	

Continued from preceding page.

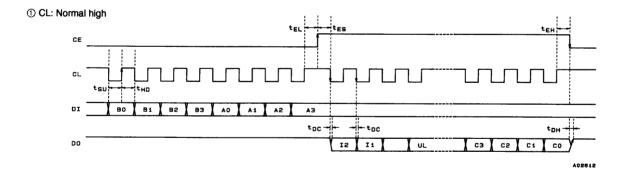
No.	Control block/data	Functions	Related data
(11)	IF counter control data IFS	Note that if this value is set to zero the system enters input sensitivity degradation mode, and the sensitivity is reduced to 10 to 30 mV rms. * See the "IF Counter Operation" item for details.	
(12)	LSI test data TEST 0 to TEST 2	LSI test data TEST0 TEST1 Test data TEST2 These values must all be set to 0. TEST2 These test data are set to 0 automatically after the power-on reset.	
		These test data are set to a automatically after the power-on reset.	
(13)	DNC	Don't care. This data must be set to 0.	

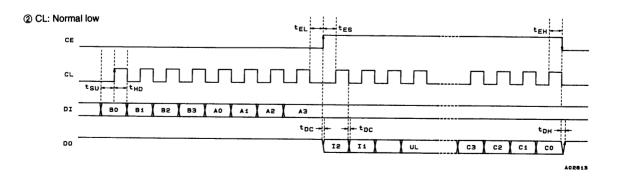
3. DO Output Data (Serial Data Output)

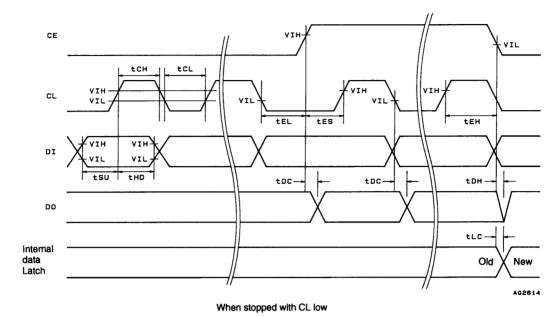

• OUT Mode

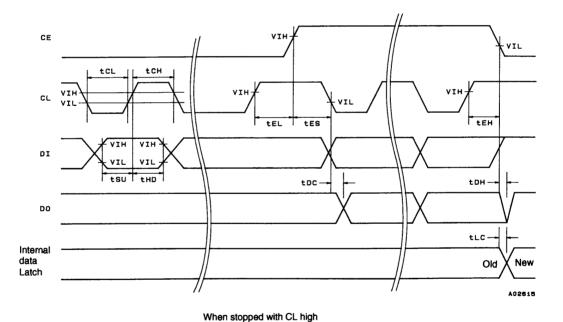


4. DO Output Data

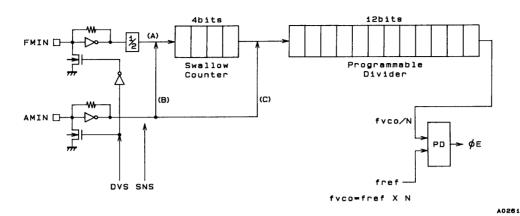

No.	Control block/data	Functions	Related data
(1)	I/O port data I2, I1	Latched from the pin states of the IO1 and IO2 I/O ports. These values follow the pin states regardless of the input or output setting. Data is latched at the point where the circuit enters data output mode (OUT mode). I1 ← IO1 pin state	IOC1, IOC2
(2)	PLL unlock data UL	Latched from the state of the unlock detection circuit. UL ← 0: Unlocked UL ← 1: Locked or detection stopped mode	ULO, UL1
(3)	IF counter binary data C19 to C0	Latched from the value of the IF counter (20-bit binary counter). C19 ← MSB of the binary counter C0 ← LSB of the binary counter	CTE, GT0, GT1


5. Serial Data Input (IN1/IN2) t_{SU} , t_{HD} , t_{EL} , t_{ES} , $t_{EH} \ge 0.75~\mu s$, $t_{LC} < 0.75~\mu s$


6. Serial Data Output (OUT) t_{SU} , t_{HD} , t_{EL} , t_{ES} , $t_{EH} \ge 0.75~\mu s$, t_{DC} , $t_{DH} < 0.35~\mu s$



Note: Since the DO pin is an n-channel open-drain circuit, the time for the data to change (t_{DC} and t_{DH}) will differ depending on the value of the pull-up resistor and printed circuit, board capacitance.


7. Serial Data Timing

Parameter Symbol Pins Conditions Unit min typ max DI, CL Data setup time 0.75 t_{SU} Data hold time DI, CL 0.75 μs $t_{\text{HD}} \\$ Clock low-level time CL 0.75 μs t_{CL} Clock high-level time CL 0.75 t_{CH} μs CE wait time CE, CL 0.75 t_{EL} μs CE setup time CE, CL 0.75 μs t_{ES} CE hold time CE, CL 0.75 t_{EH} μs Data latch change time 0.75 t_{LC} μs Differs depending on the DO, CL t_{DC} value of the pull-up resistor Data output time 0.35 μs and the printed circuit board DO, CE tDH capacitances.

Programmable Divider Structure

	DVS	SNS	Input pin	Set divisor	Actual divisor: N	Input frequency range (MHz)
Α	1	*	FMIN	272 to 65535	Twice the set value	10 to 130
В	0	1	AMIN	272 to 65535	The set value	2 to 40
С	0	0	AMIN	4 to 4095	The set value	0.5 to 10

Note: * Don't care.

- 1. Programmable Divider Calculation Examples
 - FM, 50 kHz steps (DVS = 1, SNS = *, FMIN selected)

FM RF = 80.0 MHz (IF = -10.7 MHz)

FM VCO = 69.3 MHz

PLL fref = 25 kHz (R0 to R1 = 1, R2 to R3 = 0)

69.3 MHz (FM VCO) \div 25 kHz (fref) \div 2 (FMIN: divide-by-two prescaler) = 1386 \rightarrow 056A (HEX)

_			_		'			_		<u> </u>													
٥	1	0	1	0	1	1	0	1	0	1	0	0	0	0	0	*	1			1	1	0	0
Р0	P 1	P 2	ЬЗ	P.4	P5	ЬB	Ь7	P8	Бd	P10	P11	P12	P13	P14	P15	SNS	SAG	CTE	s×	ВО	R1	R2	ВЗ

A05793

• SW, 5 kHz steps (DVS = 0, SNS = 1, AMIN high speed side selected)

SW RF = 21.75 MHz (IF = +450 kHz)

SW VCO = 22.20 MHz

PLL fref = 5 kHz (R0 = R2 = 0, R1 = R3 = 1)

22.2 MHz (SW VCO) \div 5 kHz (fref) = 4440 \rightarrow 1158 (HEX)

_		_					_	_		<u>. </u>													
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
8	P1	P2	РЗ	P4	P5	9d	р7	8 d	Pg	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	8x	ВО	H.	R2	нз

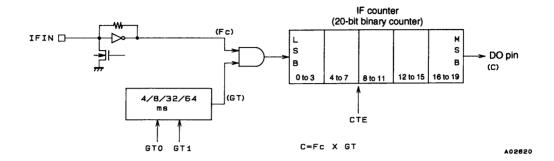
A02516

• MW, 10 kHz steps (DVS = 0, SNS = 0, AMIN low-speed side selected)

MW RF = 1000 kHz (IF = +450 kHz)

MW VCO = 1450 kHz

PLL fref = 10 kHz (R0 to R2 = 0, R3 = 1)

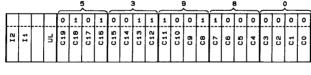

1450 kHz (MW VCO) \div 10 kHz (fref) = 145 \rightarrow 091 (HEX)

				_	ئــــ	<u> </u>		_			_	_											
*	*	*	*	1	0	0	0	1	0	0	1	٥	0	0	0	0	0			0	0	0	1
ЬО	P.1	P2	ь	7 d	9d	94	Ь7	84	9 d	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	sx	ВО	H.	B2	R3

A02519

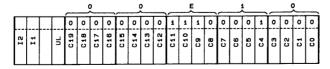
IF Counter Structure

The LC72133 IF counter is a 20-bit binary counter. The result, i.e., the counter's MSB, can be read serially from the DO pin.

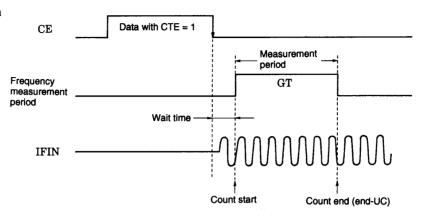


GT1	GT0	Measurement time								
GII	Gio	Measurement period (GT) (ms)	Wait time (twu) (ms)							
0	0	4	3 to 4							
0	1	8	3 to 4							
1	0	32	7 to 8							
1	1	64	7 to 8							

The IF frequency (Fc) is measured by determining how many pulses were input to an IF counter in a specified measurement period, GT.


$$Fc = \frac{C}{GT}$$
 (C = Fc × GT) C: Count value (number of pulses)

- 1. IF Counter Frequency Calculation Examples
 - When the measurement period (GT) is 32 ms, the count (C) is 53980 hexadecimal (342400 decimal): IF frequency (Fc) = $342400 \div 32$ ms = 10.7 MHz


A0262

• When the measurement period (GT) is 8 ms, the count (C) is E10 hexadecimal (3600 decimal): IF frequency (Fc) = $3600 \div 8 \text{ ms} = 450 \text{ kHz}$

A08628

2. IF Counter Operation

A02623

Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0.

The IF count is started by changing the CTE bit in the serial data from 0 to 1. The serial data is latched by the LC72133 when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF counter at the end of the measurement period must be read out during the period that CTE is 1. This is because the IF counter is reset when CTE is set to 0.

Note: When operating the IF counter, the control microprocessor must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.

IFIN minimum input sensitivity standard

f (MHz)

IFS	0.4 ≤ f < 0.5	0.5 ≤ f < 8	8 ≤ f ≤ 12			
1: Normal mode	70 mVrms (0.5 to 5 mVrms)	70 mVrms	70 mVrms (2 to 10 mVrms)			
0: Degradation mode	100 mVrms (10 to 15 mVrms)	100 mVrms	100 mVrms (30 to 50 mVrms)			

Note: Values in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

1. Unlock Detection Determination Timing

Unlocked state detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

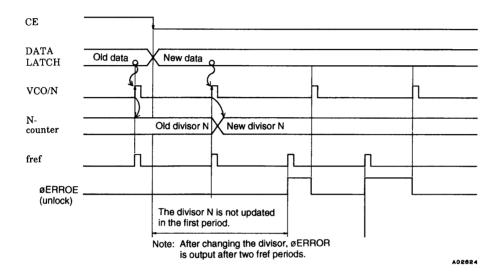
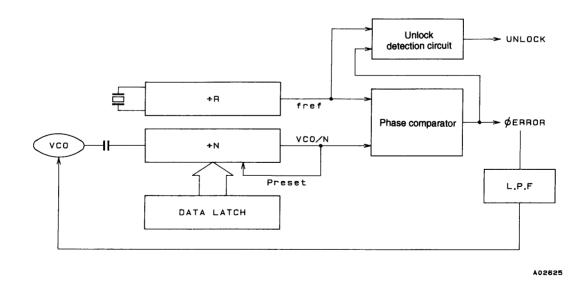
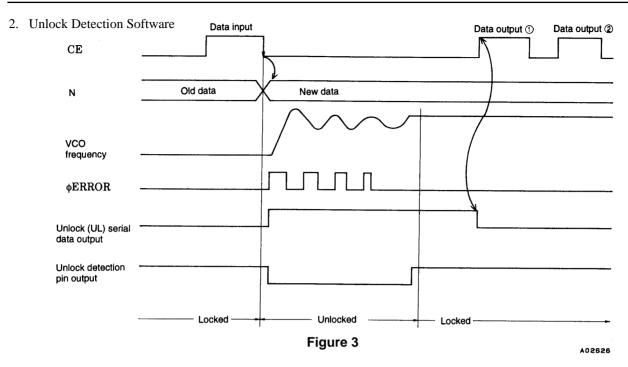
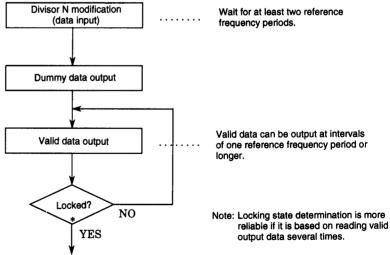


Figure 1 Unlocked State Detection Timing

For example, if fref is 1 kHz, i.e., the period is 1 ms, after changing the divisor N, the system must wait at least 2 ms before checking for the unlocked state.

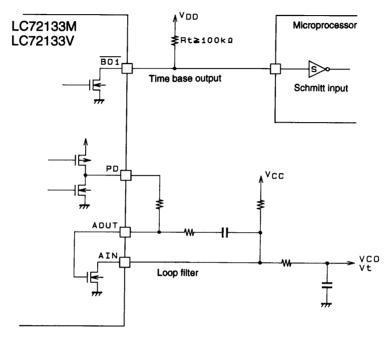

Figure 2 Circuit Structure

3. Unlocked State Data Output Using Serial Data Output

In the LC72133, once an unlocked state occurs, the unlocked state serial data (UL) will not be reset until a data input (or output) operation is performed. At the data output ① point in Figure 3, although the VCO frequency has stabilized (locked), since no data output has been performed since the divisor N was changed the unlocked state data remains in the unlocked state. As a result, even though the frequency has stabilized (locked), the system remains (from the standpoint of the data) in the unlocked state.

Therefore, the unlocked state data acquired at data output ①, which occurs immediately after the divisor N was changed, should be treated as a dummy data output and ignored. The second data output (data output ②) and following outputs are valid data.

Locked State Determination Flowchart


4. Directly Outputting Unlocked State Data from the DO Pin (Set by the DO pin control data)

Since the locking state (high = locked, low = unlocked) is output directly from the DO pin, the dummy data processing described in section 3 above is not required. After changing the divisor N, the locking state can be checked after waiting at least two reference frequency periods.

Clock Time Base Usage Notes

The pull-up resistor used on the clock time base output pin $(\overline{BO1})$ should be at least 100 k Ω . Also, to prevent chattering we recommend using a Schmitt input at the controller (microprocessor) that receives this signal.

This is to prevent degrading the VCO C/N characteristics when a loop filter is formed using the built-in low-pass filter transistor. Since the clock time base output pin and the low-pass filter have a common ground internal to the IC, it is necessary to minimize the time base output pin current fluctuations and to suppress their influence on the low-pass filter.

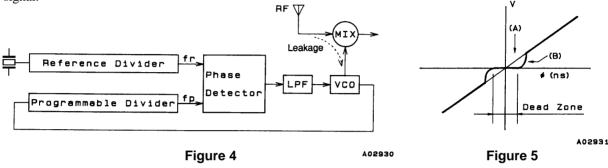
Other Items

1. Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	0 s
0	1	DZB	ON/ON	−0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD	OFF/OFF	+ +0 s

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.

The following problems may occur in the ON/ON state.


- Side band generation due to reference frequency leakage
- Side band generation due to both the correction pulse envelope and low frequency leakage

Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C/N ratio can be difficult. On the other hand, although it is easy to acquire a high C/N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/N ratio in excess of 90 to 100 dB, or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

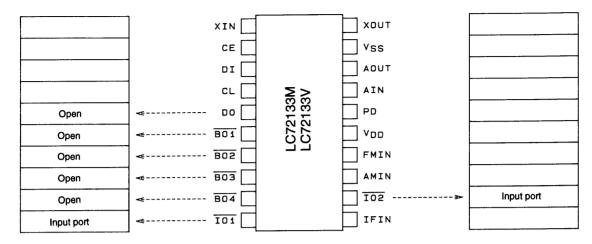
The phase comparator compares fp to a reference frequency (fr) as shown in Figure 4. Although the characteristics of this circuit (see Figure 5) are such that the output voltage is proportional to the phase difference \emptyset (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S/N ratio.

However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularly-priced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

2. Notes on the FMIN, AMIN, and IFIN Pins

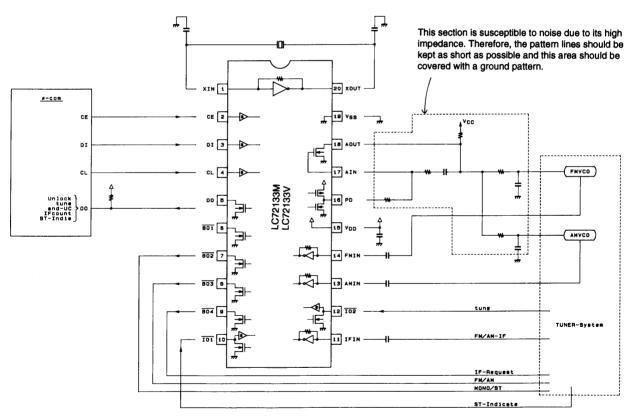
Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100 pF is desirable. In particular, if a capacitance of 1000 pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.

3. Notes on IF Counting → SD must be used in conjunction with the IF counting time When using IF counting, always implement IF counting by having the microprocessor determine the presence of the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in which auto-searches are performed with only IF counting are not recommended, since they can stop at points where there is no signal due to leakage output from the IF counter buffer.


4. DO Pin Usage Techniques

In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.

5. Power Supply Pins


A capacitor of at least 2000 pF must be inserted between the power supply V_{DD} and V_{SS} pins for noise exclusion. This capacitor must be placed as close as possible to the V_{DD} and V_{SS} pins.

Pin States After the Power ON Reset

A02628

Application System Example

A02629

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1997. Specifications and information herein are subject to change without notice.