

Blackfin Dual Core Embedded Processor

Preliminary Technical Data ADSP-BF606/ADSP-BF607/ADSP-BF608/ADSP-BF609

FEATURES

Dual-core symmetric high-performance Blackfin processor, up to 500 MHz per core

Each core contains two 16-bit MACs, two 40-bit ALUs, and a 40-bit barrel shifter

RISC-like register and instruction model for ease of programming and compiler-friendly support

Advanced debug, trace, and performance monitoring

Pipelined Vision Processor provides hardware to process signal and image algorithms used for pre- and co-processing of video frames in ADAS or other video processing applications

Accepts a range of supply voltages for I/O operation. See Operating Conditions on Page 31

Off-chip voltage regulator interface

349-ball (19 mm × 19 mm) RoHS compliant BGA package

MEMORY

Each core contains 148K bytes of L1 SRAM memory (processor core-accessible) with multi-parity bit protection
Up to 256K bytes of L2 SRAM memory with ECC protection
Dynamic memory controller provides 16-bit interface to a

single bank of DDR2 or LPDDR DRAM devices

Static memory controller with asynchronous memory inter-

face that supports 8-bit and 16-bit memories
Flexible booting options from flash, eMMC and SPI memories
and from SPI, link port and UART hosts

Memory management unit provides memory protection

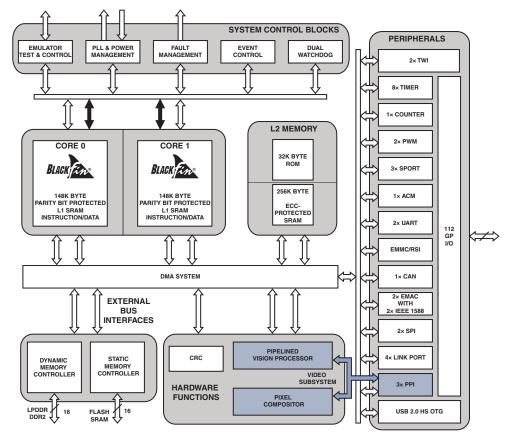


Figure 1. Processor Block Diagram

Blackfin and the Blackfin logo are registered trademarks of Analog Devices, Inc.

Rev. PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	Related Signal Chains	18
Memory 1	Signal Descriptions	19
General Description	Pin Multiplexing	2(
Blackfin Processor Core	Pin Termination and Drive Characteristics-Requirements	24
Instruction Set Description	Specifications	3
Processor Infrastructure	Operating Conditions	3
Memory Architecture	Electrical Characteristics	33
Video Subsystem	Processor — Absolute Maximum Ratings	34
Processor Safety Features	ESD Sensitivity	34
Additional Processor Peripherals	Processor — Package Information	34
Power and Clock Management	Environmental Conditions	3
System Debug	349-Ball CSP_BGA Ball Assignments	36
EZ-KIT Lite® Evaluation Board	Outline Dimensions	42
Designing an Emulator-Compatible	Surface-Mount Design	42
Processor Board (Target)	Automotive Products	43
Related Documents	Pre Release Products	43

REVISION HISTORY

3/12—Revision PrD: Initial public version

GENERAL DESCRIPTION

The ADSP-BF609 processor is a member of the Blackfin family of products, incorporating the Analog Devices/Intel Micro Signal Architecture (MSA). Blackfin processors combine a dual-MAC state-of-the-art signal processing engine, the advantages of a clean, orthogonal RISC-like microprocessor instruction set, and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture.

The processor offers performance up to 500 MHz, as well as low static power consumption. Produced with a low-power and lowvoltage design methodology, they provide world-class power management and performance.

By integrating a rich set of industry-leading system peripherals and memory (shown in Table 1), Blackfin processors are the platform of choice for next-generation applications that require RISC-like programmability, multimedia support, and leadingedge signal processing in one integrated package. These applications span a wide array of markets, from automotive systems to embedded industrial, instrumentation and power/motor control applications.

Table 1. Processor Comparison

Processor Feature	ADSP-BF606	ADSP-BF607	ADSP-BF608	ADSP-BF609
Up/Down/Rotary Counters			1	
Timer/Counters with PWM		;	8	
3-Phase PWM Units (4-pair)			2	
SPORTs			3	
SPIs			2	
USB OTG			1	
Parallel Peripheral Interface	3			
Removable Storage Interface	1			
CAN	1			
TWI	2			
UART			2	
ADC Control Module (ACM)			1	
Link Ports	4			
Ethernet MAC (IEEE 1588)	2			
Pixel Compositor (PIXC)	No 1 1		1	
Pipelined Vision Processor (PVP) ¹	N	lo	VGA	HD
GPIOs	112		•	

Table 1. Processor Comparison (Continued)

Processor Feature	ADSP-BF606	ADSP-BF607	ADSP-BF608	ADSP-BF609
ହୁ L1 Instruction SRAM		64	1K	
인 L1 Instruction SRAM 인 L1 Instruction SRAM/Cache		16	5K	
ပို့ L1 Data SRAM	32K			
ਊ L1 Data SRAM/Cache	32K			
£ L1 Scratchpad	4K			
ြင် L2 Data SRAM	128K 256K			
L1 Data SRAM/Cache L1 Scratchpad L2 Data SRAM L2 Boot ROM		32	2K	
Maximum Speed Grade (MHz) ²	² 400 500			
Maximum SYSCLK (MHz)				
		25	50	
Package Options	349-Ball CSP_BGA			١

¹VGA is 640 x 480 pixels per frame, 30 frames per second. HD is 1280 x 960 pixels per frame, 30 frames per second.

BLACKFIN PROCESSOR CORE

As shown in Figure 1, the processor integrates two Blackfin processor cores. Each core, shown in Figure 2, contains two 16-bit multipliers, two 40-bit accumulators, two 40-bit ALUs, four video ALUs, and a 40-bit shifter. The computation units process 8-, 16-, or 32-bit data from the register file.

The compute register file contains eight 32-bit registers. When performing compute operations on 16-bit operand data, the register file operates as 16 independent 16-bit registers. All operands for compute operations come from the multiported register file and instruction constant fields.

Each MAC can perform a 16-bit by 16-bit multiply in each cycle, accumulating the results into the 40-bit accumulators. Signed and unsigned formats, rounding, and saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations on 16-bit or 32-bit data. In addition, many special instructions are included to accelerate various signal processing tasks. These include bit operations such as field extract and population count, modulo 2³² multiply, divide primitives, saturation and rounding, and sign/exponent detection. The set of video instructions include byte alignment and packing operations, 16-bit and 8-bit adds with clipping, 8-bit average operations, and 8-bit subtract/absolute value/accumulate (SAA) operations. Also provided are the compare/select and vector search instructions.

For certain instructions, two 16-bit ALU operations can be performed simultaneously on register pairs (a 16-bit high half and 16-bit low half of a compute register). If the second ALU is used, quad 16-bit operations are possible.

² Maximum speed grade is not available with every possible SYSCLK selection.

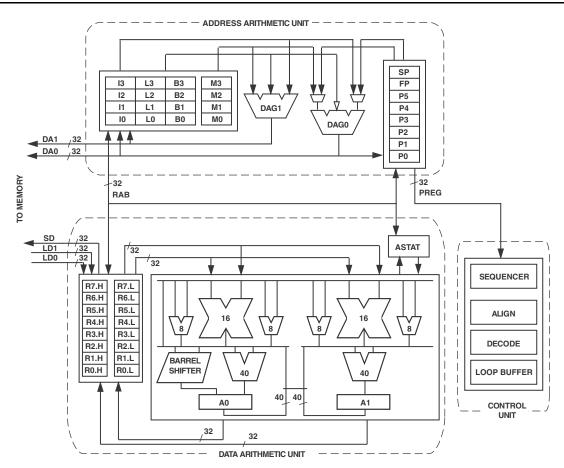


Figure 2. Blackfin Processor Core

The 40-bit shifter can perform shifts and rotates and is used to support normalization, field extract, and field deposit instructions.

The program sequencer controls the flow of instruction execution, including instruction alignment and decoding. For program flow control, the sequencer supports PC relative and indirect conditional jumps (with static branch prediction), and subroutine calls. Hardware supports zero-overhead looping. The architecture is fully interlocked, meaning that the programmer need not manage the pipeline when executing instructions with data dependencies.

The address arithmetic unit provides two addresses for simultaneous dual fetches from memory. It contains a multiported register file consisting of four sets of 32-bit index, modify, length, and base registers (for circular buffering), and eight additional 32-bit pointer registers (for C-style indexed stack manipulation).

Blackfin processors support a modified Harvard architecture in combination with a hierarchical memory structure. Level 1 (L1) memories are those that typically operate at the full processor speed with little or no latency. At the L1 level, the instruction memory holds instructions only. The data memory holds data, and a dedicated scratchpad data memory stores stack and local variable information.

In addition, multiple L1 memory blocks are provided, offering a configurable mix of SRAM and cache. The memory management unit (MMU) provides memory protection for individual tasks that may be operating on the core and can protect system registers from unintended access.

The architecture provides three modes of operation: user mode, supervisor mode, and emulation mode. User mode has restricted access to certain system resources, thus providing a protected software environment, while supervisor mode has unrestricted access to the system and core resources.

INSTRUCTION SET DESCRIPTION

The Blackfin processor instruction set has been optimized so that 16-bit opcodes represent the most frequently used instructions, resulting in excellent compiled code density. Complex DSP instructions are encoded into 32-bit opcodes, representing fully featured multifunction instructions. Blackfin processors support a limited multi-issue capability, where a 32-bit instruction can be issued in parallel with two 16-bit instructions, allowing the programmer to use many of the core resources in a single instruction cycle.

The Blackfin processor family assembly language instruction set employs an algebraic syntax designed for ease of coding and readability. The instructions have been specifically tuned to provide a flexible, densely encoded instruction set that compiles to

a very small final memory size. The instruction set also provides fully featured multifunction instructions that allow the programmer to use many of the processor core resources in a single instruction. Coupled with many features more often seen on microcontrollers, this instruction set is very efficient when compiling C and C++ source code. In addition, the architecture supports both user (algorithm/application code) and supervisor (O/S kernel, device drivers, debuggers, ISRs) modes of operation, allowing multiple levels of access to core processor resources.

The assembly language, which takes advantage of the processor's unique architecture, offers the following advantages:

- Seamlessly integrated DSP/MCU features are optimized for both 8-bit and 16-bit operations.
- A multi-issue load/store modified-Harvard architecture, which supports two 16-bit MAC or four 8-bit ALU + two load/store + two pointer updates per cycle.
- All registers, I/O, and memory are mapped into a unified 4G byte memory space, providing a simplified programming model.
- Control of all asynchronous and synchronous events to the processor is handled by two subsystems: the Core Event Controller (CEC) and the System Event Controller (SEC).
- Microcontroller features, such as arbitrary bit and bit-field manipulation, insertion, and extraction; integer operations on 8-, 16-, and 32-bit data-types; and separate user and supervisor stack pointers.
- Code density enhancements, which include intermixing of 16-bit and 32-bit instructions (no mode switching, no code segregation). Frequently used instructions are encoded in 16 bits.

PROCESSOR INFRASTRUCTURE

The following sections provide information on the primary infrastructure components of the ADSP-BF609 processor.

DMA Controllers

The processor uses Direct Memory Access (DMA) to transfer data within memory spaces or between a memory space and a peripheral. The processor can specify data transfer operations and return to normal processing while the fully integrated DMA controller carries out the data transfers independent of processor activity.

DMA transfers can occur between memory and a peripheral or between one memory and another memory. Two channels are used for Memory-to-Memory DMA where one channel is the source channel, and the second is the destination channel.

All DMAs can transport data to and from all on-chip and off-chip memories. Programs can use two types of DMA transfers, descriptor-based or register-based. Register-based DMA allows the processor to directly program DMA control registers to initiate a DMA transfer. On completion, the control registers may be automatically updated with their original setup values for continuous transfer. Descriptor-based DMA transfers require a set of parameters stored within memory to initiate a DMA

sequence. Descriptor-based DMA transfers allow multiple DMA sequences to be chained together and a DMA channel can be programmed to automatically set up and start another DMA transfer after the current sequence completes.

The DMA controller supports the following DMA operations.

- A single linear buffer that stops on completion.
- A linear buffer with negative, positive or zero stride length.
- A circular, auto-refreshing buffer that interrupts when each buffer becomes full.
- A similar buffer that interrupts on fractional buffers (for example, 1/2, 1/4).
- 1D DMA uses a set of identical ping-pong buffers defined by a linked ring of two-word descriptor sets, each containing a link pointer and an address.
- 1D DMA uses a linked list of 4 word descriptor sets containing a link pointer, an address, a length, and a configuration.
- 2D DMA uses an array of one-word descriptor sets, specifying only the base DMA address.
- 2D DMA uses a linked list of multi-word descriptor sets, specifying everything.

CRC Protection

The two CRC protection modules allow system software to periodically calculate the signature of code and/or data in memory, the content of memory-mapped registers, or communication message objects. Dedicated hardware circuitry compares the signature with pre calculated values and triggers appropriate fault events.

For example, every 100 ms the system software might initiate the signature calculation of the entire memory contents and compare these contents with expected, pre calculated values. If a mismatch occurs, a fault condition can be generated (via the processor core or the trigger routing unit).

The CRC is a hardware module based on a CRC32 engine that computes the CRC value of the 32-bit data words presented to it. Data is provided by the source channel of the memory-to-memory DMA (in memory scan mode) and is optionally forwarded to the destination channel (memory transfer mode). The main features of the CRC peripheral are:

- · Memory scan mode
- Memory transfer mode
- · Data verify mode
- · Data fill mode
- User-programmable CRC32 polynomial
- Bit/byte mirroring option (endianness)
- Fault/error interrupt mechanisms
- 1D and 2D fill block to initialize array with constants.
- 32-bit CRC signature of a block of a memory or MMR block.

Event Handling

The processor provides event handling that supports both nesting and prioritization. Nesting allows multiple event service routines to be active simultaneously. Prioritization ensures that servicing of a higher-priority event takes precedence over servicing of a lower-priority event. The processor provides support for five different types of events:

- Emulation An emulation event causes the processor to enter emulation mode, allowing command and control of the processor via the JTAG interface.
- Reset This event resets the processor.
- Nonmaskable Interrupt (NMI) The NMI event can be generated either by the software watchdog timer, by the NMI input signal to the processor, or by software. The NMI event is frequently used as a power-down indicator to initiate an orderly shutdown of the system.
- Exceptions Events that occur synchronously to program flow (in other words, the exception is taken before the instruction is allowed to complete). Conditions such as data alignment violations and undefined instructions cause exceptions.
- Interrupts Events that occur asynchronously to program flow. They are caused by input signals, timers, and other peripherals, as well as by an explicit software instruction.

Core Event Controller (CEC)

The CEC supports nine general-purpose interrupts (IVG15–7), in addition to the dedicated interrupt and exception events. Of these general-purpose interrupts, the two lowest-priority interrupts (IVG15–14) are recommended to be reserved for software interrupt handlers. For more information, see the *ADSP-BF60x Processor Programmer's Reference*.

System Event Controller (SEC)

The SEC manages the enabling, prioritization, and routing of events from each system interrupt or fault source. Additionally, it provides notification and identification of the highest priority active system interrupt request to each core and routes system fault sources to its integrated fault management unit.

Trigger Routing Unit (TRU)

The TRU provides system-level sequence control without core intervention. The TRU maps trigger masters (generators of triggers) to trigger slaves (receivers of triggers). Slave endpoints can be configured to respond to triggers in various ways. Common applications enabled by the TRU include:

- Automatically triggering the start of a DMA sequence after a sequence from another DMA channel completes
- Software triggering
- Synchronization of concurrent activities

Pin Interrupts

Every port pin on the processor can request interrupts in either an edge-sensitive or a level-sensitive manner with programmable polarity. Interrupt functionality is decoupled from GPIO operation. Six system-level interrupt channels (PINT0–5) are reserved for this purpose. Each of these interrupt channels can manage up to 32 interrupt pins. The assignment from pin to interrupt is not performed on a pin-by-pin basis. Rather, groups of eight pins (half ports) can be flexibly assigned to interrupt channels.

Every pin interrupt channel features a special set of 32-bit memory-mapped registers that enable half-port assignment and interrupt management. This includes masking, identification, and clearing of requests. These registers also enable access to the respective pin states and use of the interrupt latches, regardless of whether the interrupt is masked or not. Most control registers feature multiple MMR address entries to write-one-to-set or write-one-to-clear them individually.

General-Purpose I/O (GPIO)

Each general-purpose port pin can be individually controlled by manipulation of the port control, status, and interrupt registers:

- GPIO direction control register Specifies the direction of each individual GPIO pin as input or output.
- GPIO control and status registers A "write one to modify" mechanism allows any combination of individual GPIO pins to be modified in a single instruction, without affecting the level of any other GPIO pins.
- GPIO interrupt mask registers Allow each individual GPIO pin to function as an interrupt to the processor.
 GPIO pins defined as inputs can be configured to generate hardware interrupts, while output pins can be triggered by software interrupts.
- GPIO interrupt sensitivity registers Specify whether individual pins are level- or edge-sensitive and specify—if edge-sensitive—whether just the rising edge or both the rising and falling edges of the signal are significant.

Pin Multiplexing

The processor supports a flexible multiplexing scheme that multiplexes the GPIO pins with various peripherals. A maximum of 4 peripherals plus GPIO functionality is shared by each GPIO pin. All GPIO pins have a bypass path feature – that is, when the output enable and the input enable of a GPIO pin are both active, the data signal before the pad driver is looped back to the receive path for the same GPIO pin. For more information, see Pin Multiplexing on Page 20.

MEMORY ARCHITECTURE

The ADSP-BF609 processor views memory as a single unified 4G byte address space, using 32-bit addresses. All resources, including internal memory, external memory, and I/O control registers, occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low-latency core-accessible memory as cache or SRAM, and larger, lower-cost and performance interface-accessible memory systems. See Figure 3 and Figure 4.

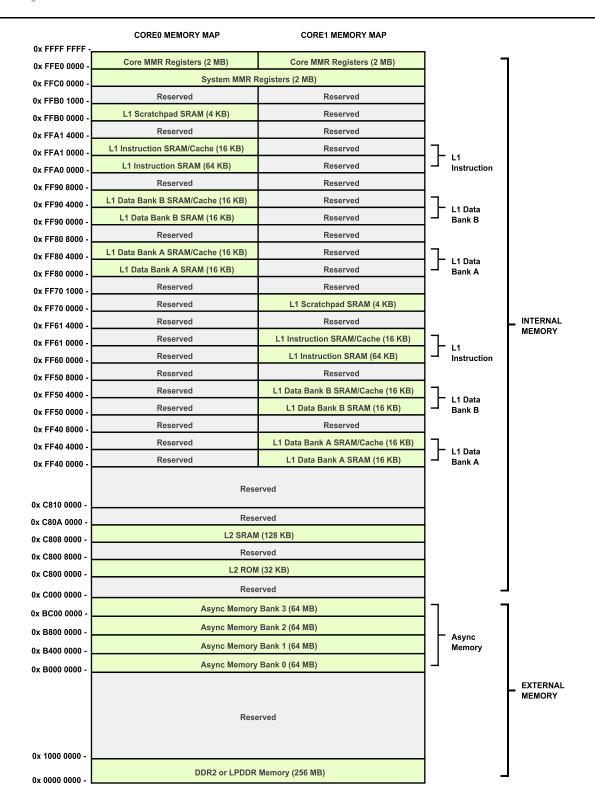


Figure 3. ADSP-BF606 Internal/External Memory Map

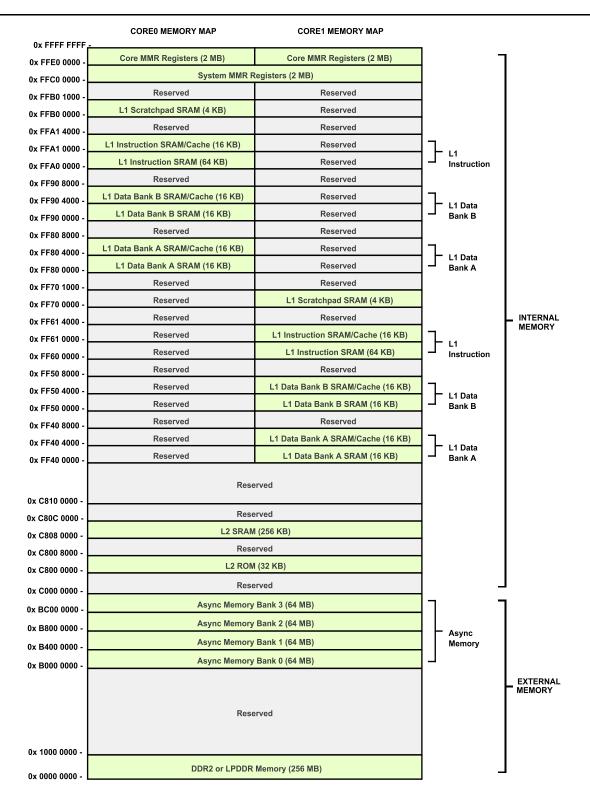


Figure 4. ADSP-BF607/ADSP-BF608/ADSP-BF609 Internal/External Memory Map

Internal (Core-Accessible) Memory

The L1 memory system is the highest-performance memory available to the Blackfin processor cores.

Each core has its own private L1 memory. The modified Harvard architecture supports two concurrent 32-bit data accesses along with an instruction fetch at full processor speed which provides high bandwidth processor performance. Two separate 64K-byte of data memory blocks partner with an 80K-byte memory block for instruction storage. Each block is multibanked for efficient data exchange through DMA and can be configured as SRAM. Alternatively, 16K bytes of each block can be configured in L1 cache mode. The four-way set-associative instruction cache and the 2 two-way set-associative data caches greatly accelerate memory access performance, especially when accessing external memories.

The L1 memory domain also features a 4K-byte scratchpad SRAM block which is ideal for storing local variables and the software stack. All L1 memory is protected by a multi-parity bit concept, regardless of whether the memory is operating in SRAM or cache mode.

Outside of the L1 domain, L2 and L3 memories are arranged using a Von Neumann topology. The L2 memory domain is a unified instruction and data memory and can hold any mixture of code and data required by the system design. The L2 memory domain is accessible by both Blackfin cores through a dedicated 64-bit interface. It operates at half the frequency of the cores. The processor features up to 256K bytes of L2 SRAM which is ECC-protected and organized in eight banks. Individual banks can be made private to any of the cores or the DMA subsystem. There is also a 32K-byte single-bank ROM in the L2 domain. It contains boot code and safety functions.

Static Memory Controller (SMC)

The SMC can be programmed to control up to four banks of external memories or memory-mapped devices, with very flexible timing parameters. Each bank occupies a 64M byte segment regardless of the size of the device used, so that these banks are only contiguous if each is fully populated with 64M bytes of memory.

Dynamic Memory Controller (DMC)

The DMC includes a controller that supports JESD79-2E compatible double data rate (DDR2) SDRAM and JESD209A low power DDR (LPDDR) SDRAM devices.

I/O Memory Space

The processor does not define a separate I/O space. All resources are mapped through the flat 32-bit address space. Onchip I/O devices have their control registers mapped into memory-mapped registers (MMRs) at addresses near the top of the 4G byte address space. These are separated into two smaller blocks, one which contains the control MMRs for all core functions, and the other which contains the registers needed for setup and control of the on-chip peripherals outside of the core. The MMRs are accessible only in supervisor mode and appear as reserved space to on-chip peripherals.

Booting

The processor has several mechanisms for automatically loading internal and external memory after a reset. The boot mode is defined by the SYS_BMODE input pins dedicated for this purpose. There are two categories of boot modes. In master boot modes, the processor actively loads data from parallel or serial memories. In slave boot modes, the processor receives data from external host devices.

The boot modes are shown in Table 2. These modes are implemented by the SYS_BMODE bits of the reset configuration register and are sampled during power-on resets and software-initiated resets.

Table 2. Boot Modes

SYS_BMODE Setting Boot Mode	
000	No boot/Idle
001	Memory
010	RSIO Master
011	SPI0 Master
100	SPI0 Slave
101	Reserved
110	LP0 Slave
111	UARTO Slave

VIDEO SUBSYSTEM

The following sections describe the components of the processor's video subsystem. These blocks are shown with blue shading in Figure 1 on Page 1.

Video Interconnect (VID)

The Video Interconnect provides a connectivity matrix that interconnects the Video Subsystem: three PPIs, the PIXC, and the PVP. The interconnect uses a protocol to manage data transfer among these video peripherals.

Pipelined Vision Processor (PVP)

The PVP engine provides hardware implementation of signal and image processing algorithms that are required for co-processing and pre-processing of monochrome video frames in ADAS applications, robotic systems, and other machine applications.

The PVP works in conjunction with the Blackfin cores. It is optimized for convolution and wavelet based object detection and classification, and tracking and verification algorithms. The PVP has the following processing blocks.

- Four 5x5 16-bit convolution blocks optionally followed by down scaling
- A 16-bit cartesian-to-polar coordinate conversion block
- A pixel edge classifier that supports 1st and 2nd derivative modes
- An arithmetic unit with 32-bit addition, multiply and divide

- A 32-bit threshold block with 16 thresholds, a histogram, and run-length encoding
- Two 32-bit integral blocks that support regular and diagonal integrals
- An up- and down-scaling unit with independent scaling ratios for horizontal and vertical components
- Input and output formatters for compatibility with many data formats, including Bayer input format

The PVP can form a pipe of all the constituent algorithmic modules and is dynamically reconfigurable to form different pipeline structures.

The PVP supports the simultaneous processing of up to four data streams. The memory pipe stream operates on data received by DMA from any L1, L2, or L3 memory. The three camera pipe streams operate on a common input received directly from any of the three PPI inputs. Optionally, the PIXC can convert color data received by the PPI and forward luma values to the PVP's monochrome engine. Each stream has a dedicated DMA output. This preprocessing concept ensures careful use of available power and bandwidth budgets and frees up the processor cores for other tasks.

The PVP provides for direct core MMR access to all control/status registers. Two hardware interrupts interface to the system event controller. For optimal performance, the PVP allows register programming through its control DMA interface, as well as outputting selected status registers through the status DMA interface. This mechanism enables the PVP to automatically process job lists completely independent of the Blackfin cores.

Pixel Compositor (PIXC)

The pixel compositor (PIXC) provides image overlays with transparent-color support, alpha blending, and color space conversion capabilities for output to TFT LCDs and NTSC/PAL video encoders. It provides all of the control to allow two data streams from two separate data buffers to be combined, blended, and converted into appropriate forms for both LCD panels and digital video outputs. The main image buffer provides the basic background image, which is presented in the data stream. The overlay image buffer allows the user to add multiple foreground text, graphics, or video objects on top of the main image or video data stream.

Parallel Peripheral Interface (PPI)

The processor provides up to three parallel peripheral interfaces (PPIs), supporting data widths up to 24 bits. The PPI supports direct connection to TFT LCD panels, parallel analog-to-digital and digital-to-analog converters, video encoders and decoders, image sensor modules and other general-purpose peripherals.

The following features are supported in the PPI module:

- Programmable data length: 8 bits, 10 bits, 12 bits, 14 bits, 16 bits, 18 bits, and 24 bits per clock.
- Various framed, non-framed, and general-purpose operating modes. Frame syncs can be generated internally or can be supplied by an external device.

- ITU-656 status word error detection and correction for ITU-656 receive modes and ITU-656 preamble and status word decode.
- Optional packing and unpacking of data to/from 32 bits from/to 8 bits, 16 bits and 24 bits. If packing/unpacking is enabled, endianness can be configured to change the order of packing/unpacking of bytes/words.
- RGB888 can be converted to RGB666 or RGB565 for transmit modes.
- Various de-interleaving/interleaving modes for receiving/transmitting 4:2:2 YCrCb data.
- Configurable LCD data enable (DEN) output available on Frame Sync 3.

PROCESSOR SAFETY FEATURES

The ADSP-BF609 processor has been designed for functional safety applications. While the level of safety is mainly dominated by the system concept, the following primitives are provided by the devices to build a robust safety concept.

Dual Core Supervision

The processor has been implemented as dual-core devices to separate critical tasks to large independency. Software models support mutual supervision of the cores in symmetrical fashion.

Multi-Parity-Bit-Protected L1 Memories

In the processor's L1 memory space, whether SRAM or cache, each word is protected by multiple parity bits to detect the single event upsets that occur in all RAMs. This applies both to L1 instruction and data memory spaces.

ECC-Protected L2 Memories

Error correcting codes (ECC) are used to correct single event upsets. The L2 memory is protected with a Single Error Correct-Double Error Detect (SEC-DED) code. By default ECC is enabled, but it can be disabled on a per-bank basis. Single-bit errors are transparently corrected. Dual-bit errors can issue a system event or fault if enabled. ECC protection is fully transparent to the user, even if L2 memory is read or written by 8-bit or 16-bit entities.

CRC-Protected Memories

While parity bit and ECC protection mainly protect against random soft errors in L1 and L2 memory cells, the CRC engines can be used to protect against systematic errors (pointer errors) and static content (instruction code) of L1, L2 and even L3 memories (DDR2, LPDDR). The processors feature two CRC engines which are embedded in the memory-to-memory DMA controllers. CRC check sums can be calculated or compared on the fly during memory transfers, or one or multiple memory regions can be continuously scrubbed by single DMA work unit as per DMA descriptor chain instructions. The CRC engine also protects data loaded during the boot process.

Memory Protection

The Blackfin cores feature a memory protection concept, which grants data and/or instruction accesses from enabled memory regions only. A supervisor mode vs. user mode programming model supports dynamically varying access rights. Increased flexibility in memory page size options supports a simple method of static memory partitioning.

System Protection

All system resources and L2 memory banks can be controlled by either the processor cores, memory-to-memory DMA, or the system debug unit (SDU). A system protection unit (SPU) enables write accesses to specific resources that are locked to any of four masters: Core 0, Core 1, Memory DMA, and the System Debug Unit. System protection is enabled in greater granularity for some modules (L2, SEC and GPIO controllers) through a *global lock* concept.

Watchpoint Protection

The primary purpose of watchpoints and hardware breakpoints is to serve emulator needs. When enabled, they signal an emulator event whenever user-defined system resources are accessed or a core executes from user-defined addresses. Watchdog events can be configured such that they signal the events to the other Blackfin core or to the fault management unit.

Dual Watchdog

The two on-chip watchdog timers each may supervise one Blackfin core.

Bandwidth Monitor

All DMA channels that operate in memory-to-memory mode (Memory DMA, PVP Memory Pipe DMA, PIXC DMA) are equipped with a bandwidth monitor mechanism. They can signal a system event or fault when transactions tend to starve because system buses are fully loaded with higher-priority traffic.

Signal Watchdogs

The eight general-purpose timers feature two new modes to monitor off-chip signals. The Watchdog Period mode monitors whether external signals toggle with a period within an expected range. The Watchdog Width mode monitors whether the pulse widths of external signals are in an expected range. Both modes help to detect incorrect undesired toggling (or lack thereof) of system-level signals.

Up/Down Count Mismatch Detection

The up/down counter can monitor external signal pairs, such as request/grant strobes. If the edge count mismatch exceeds the expected range, the up/down counter can flag this to the processor or to the fault management unit.

Fault Management

The fault management unit is part of the system event controller (SEC). Any system event, whether a dual-bit uncorrectable ECC error, or any peripheral status interrupt, can be defined as being

a "fault". Additionally, the system events can be defined as an interrupt to the cores. If defined as such, the SEC forwards the event to the fault management unit which may automatically reset the entire device for reboot, or simply toggle the SYS_FAULT output pins to signal off-chip hardware. Optionally, the fault management unit can delay the action taken via a keyed sequence, to provide a final chance for the Blackfin cores to resolve the crisis and to prevent the fault action from being taken.

ADDITIONAL PROCESSOR PERIPHERALS

The processor contains a rich set of peripherals connected to the core via several high-bandwidth buses, providing flexibility in system configuration as well as excellent overall system performance (see the block diagram on Page 1). The processors contain high-speed serial and parallel ports, an interrupt controller for flexible management of interrupts from the on-chip peripherals or external sources, and power management control functions to tailor the performance and power characteristics of the processor and system to many application scenarios.

The following sections describe additional peripherals that were not described in the previous sections.

Timers

The processor includes several timers which are described in the following sections.

General-Purpose Timers

There is one GP timer unit and it provides eight general-purpose programmable timers. Each timer has an external pin that can be configured either as a pulse width modulator (PWM) or timer output, as an input to clock the timer, or as a mechanism for measuring pulse widths and periods of external events. These timers can be synchronized to an external clock input on the TMRx pins, an external clock TMRCLK input pin, or to the internal SCLKO.

The timer units can be used in conjunction with the UARTs and the CAN controller to measure the width of the pulses in the data stream to provide a software auto-baud detect function for the respective serial channels.

The timers can generate interrupts to the processor core, providing periodic events for synchronization to either the system clock or to external signals. Timer events can also trigger other peripherals via the TRU (for instance, to signal a fault).

Core Timers

Each processor core also has its own dedicated timer. This extra timer is clocked by the internal processor clock and is typically used as a system tick clock for generating periodic operating system interrupts.

Watchdog Timers

Each core includes a 32-bit timer, which may be used to implement a software watchdog function. A software watchdog can improve system availability by forcing the processor to a known state, via generation of a hardware reset, nonmaskable interrupt (NMI), or general-purpose interrupt, if the timer expires before

being reset by software. The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts to zero from the programmed value. This protects the system from remaining in an unknown state where software, which would normally reset the timer, has stopped running due to an external noise condition or software error.

After a reset, software can determine if the watchdog was the source of the hardware reset by interrogating a status bit in the timer control register, which is set only upon a watchdog generated reset.

3-Phase PWM Units

The two 3-phase PWM generation units each feature:

- 16-bit center-based PWM generation unit
- · Programmable PWM pulse width
- Single/double update modes
- Programmable dead time and switching frequency
- Twos-complement implementation which permits smooth transition to full ON and full OFF states
- · Dedicated asynchronous PWM shutdown signal

Each PWM block integrates a flexible and programmable 3-phase PWM waveform generator that can be programmed to generate the required switching patterns to drive a 3-phase voltage source inverter for ac induction motor (ACIM) or permanent magnet synchronous motor (PMSM) control. In addition, the PWM block contains special functions that considerably simplify the generation of the required PWM switching patterns for control of the electronically commutated motor (ECM) or brushless dc motor (BDCM). Software can enable a special mode for switched reluctance motors (SRM).

The eight PWM output signals (per PWM unit) consist of four high-side drive signals and four low-side drive signals. The polarity of a generated PWM signal can be set with software, so that either active HI or active LO PWM patterns can be produced.

Pulses synchronous to the switching frequency can be generated internally and output on the PWM_SYNC pin. The PWM unit can also accept externally generated synchronization pulses through PWM SYNC.

Each PWM unit features a dedicated asynchronous shutdown pin which (when brought low) instantaneously places all six PWM outputs in the OFF state.

Link Ports

Four DMA-enabled, 8-bit-wide link ports can connect to the link ports of other DSPs or processors. Link ports are bidirectional ports having eight data lines, an acknowledge line and a clock line.

Serial Ports (SPORTs)

Three synchronous serial ports that provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices such as Analog Devices' AD183x family of audio codecs, ADCs, and DACs. The serial ports are made up of two data lines, a clock, and frame sync. The data lines can be programmed to either transmit or receive and each data line has a dedicated DMA channel.

Serial port data can be automatically transferred to and from on-chip memory/external memory via dedicated DMA channels. Each of the serial ports can work in conjunction with another serial port to provide TDM support. In this configuration, one SPORT provides two transmit signals while the other SPORT provides the two receive signals. The frame sync and clock are shared.

Serial ports operate in five modes:

- · Standard DSP serial mode
- Multichannel (TDM) mode
- I²S mode
- Packed I²S mode
- · Left-justified mode

ACM Interface

The ADC control module (ACM) provides an interface that synchronizes the controls between the processor and an analog-to-digital converter (ADC). The analog-to-digital conversions are initiated by the processor, based on external or internal events.

The ACM allows for flexible scheduling of sampling instants and provides precise sampling signals to the ADC.

Figure 5 shows how to connect an external ADC to the ACM and one of the SPORTs.

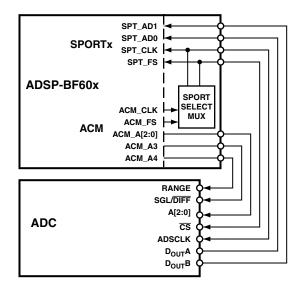


Figure 5. ADC, ACM, and SPORT Connections

The ACM synchronizes the ADC conversion process, generating the ADC controls, the ADC conversion start signal, and other signals. The actual data acquisition from the ADC is done by a peripheral such as a SPORT or a SPI.

The processor interfaces directly to many ADCs without any glue logic required.

General-Purpose Counters

A 32-bit counter is provided that can operate in general-purpose up/down count modes and can sense 2-bit quadrature or binary codes as typically emitted by industrial drives or manual thumbwheels. Count direction is either controlled by a level-sensitive input pin or by two edge detectors.

A third counter input can provide flexible zero marker support and can alternatively be used to input the push-button signal of thumb wheels. All three pins have a programmable debouncing circuit.

Internal signals forwarded to each general-purpose timer enable these timers to measure the intervals between count events. Boundary registers enable auto-zero operation or simple system warning by interrupts when programmable count values are exceeded.

Serial Peripheral Interface (SPI) Ports

The processors have two SPI-compatible ports that allow the processor to communicate with multiple SPI-compatible devices.

In its simplest mode, the SPI interface uses three pins for transferring data: two data pins (Master Output-Slave Input, MOSI, and Master Input-Slave Output, MISO) and a clock pin (serial clock, SCK). An SPI chip select input pin (\$\overline{SPISS}\$) lets other SPI devices select the processor, and seven SPI chip select output pins (\$\overline{SPISEL7-1}\$) let the processor select other SPI devices. The SPI select pins are reconfigured general-purpose I/O pins. Using these pins, the SPI port provides a full-duplex, synchronous serial interface, which supports both master/slave modes and multimaster environments.

The SPI port's baud rate and clock phase/polarities are programmable, and it has integrated DMA channels for both transmit and receive data streams.

UART Ports

The processors provide two full-duplex universal asynchronous receiver/transmitter (UART) ports, which are fully compatible with PC-standard UARTs. Each UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. A UART port includes support for five to eight data bits, and none, even, or odd parity. Optionally, an additional address bit can be transferred to interrupt only addressed nodes in multi-drop bus (MDB) systems. A frame is terminates by one, one and a half, two or two and a half stop bits.

The UART ports support automatic hardware flow control through the Clear To Send (CTS) input and Request To Send (RTS) output with programmable assertion FIFO levels.

To help support the Local Interconnect Network (LIN) protocols, a special command causes the transmitter to queue a break command of programmable bit length into the transmit buffer. Similarly, the number of stop bits can be extended by a programmable inter-frame space.

The capabilities of the UARTs are further extended with support for the Infrared Data Association (IrDA*) serial infrared physical layer link specification (SIR) protocol.

TWI Controller Interface

The processors include a 2-wire interface (TWI) module for providing a simple exchange method of control data between multiple devices. The TWI module is compatible with the widely used I²C bus standard. The TWI module offers the capabilities of simultaneous master and slave operation and support for both 7-bit addressing and multimedia data arbitration. The TWI interface utilizes two pins for transferring clock (TWI_SCL) and data (TWI_SDA) and supports the protocol at speeds up to 400k bits/sec. The TWI interface pins are compatible with 5 V logic levels.

Additionally, the TWI module is fully compatible with serial camera control bus (SCCB) functionality for easier control of various CMOS camera sensor devices.

Removable Storage Interface (RSI)

The removable storage interface (RSI) controller acts as the host interface for multimedia cards (MMC), secure digital memory cards (SD), secure digital input/output cards (SDIO), and CE-ATA hard disk drives. The following list describes the main features of the RSI controller.

- Support for a single MMC, SD memory, SDIO card or CE-ATA hard disk drive
- Support for 1-bit and 4-bit SD modes
- Support for 1-bit, 4-bit, and 8-bit MMC modes
- Support for 4-bit and 8-bit CE-ATA hard disk drives
- Support for eMMC 4.3 embedded NAND flash devices
- A ten-signal external interface with clock, command, and up to eight data lines
- Card interface clock generation from SCLK0
- SDIO interrupt and read wait features
- CE-ATA command completion signal recognition and disable

Controller Area Network (CAN)

A CAN controller implements the CAN 2.0B (active) protocol. This protocol is an asynchronous communications protocol used in both industrial and automotive control systems. The CAN protocol is well suited for control applications due to its capability to communicate reliably over a network. This is because the protocol incorporates CRC checking, message error tracking, and fault node confinement.

The CAN controller offers the following features:

- 32 mailboxes (8 receive only, 8 transmit only, 16 configurable for receive or transmit).
- Dedicated acceptance masks for each mailbox.
- Additional data filtering on first two bytes.
- Support for both the standard (11-bit) and extended (29-bit) identifier (ID) message formats.
- Support for remote frames.
- Active or passive network support.
- CAN wakeup from hibernation mode (lowest static power consumption mode).
- Interrupts, including: TX complete, RX complete, error and global.

An additional crystal is not required to supply the CAN clock, as the CAN clock is derived from a system clock through a programmable divider.

10/100 Ethernet MAC

The processor can directly connect to a network by way of an embedded fast Ethernet media access controller (MAC) that supports both 10-BaseT (10M bits/sec) and 100-BaseT (100M bits/sec) operation. The 10/100 Ethernet MAC peripheral on the processor is fully compliant to the IEEE 802.3-2002 standard and it provides programmable features designed to minimize supervision, bus use, or message processing by the rest of the processor system.

Some standard features are:

- Support and RMII protocols for external PHYs
- · Full duplex and half duplex modes
- Media access management (in half-duplex operation)
- · Flow control
- Station management: generation of MDC/MDIO frames for read-write access to PHY registers

Some advanced features are:

- Automatic checksum computation of IP header and IP payload fields of Rx frames
- Independent 32-bit descriptor-driven receive and transmit DMA channels
- Frame status delivery to memory through DMA, including frame completion semaphores for efficient buffer queue management in software
- Tx DMA support for separate descriptors for MAC header and payload to eliminate buffer copy operations
- Convenient frame alignment modes
- 47 MAC management statistics counters with selectable clear-on-read behavior and programmable interrupts on half maximum value
- Advanced power management
- Magic packet detection and wakeup frame filtering

- · Support for 802.3Q tagged VLAN frames
- Programmable MDC clock rate and preamble suppression

IEEE 1588 Support

The IEEE 1588 standard is a precision clock synchronization protocol for networked measurement and control systems. The processor includes hardware support for IEEE 1588 with an integrated precision time protocol synchronization engine (PTP_TSYNC). This engine provides hardware assisted time stamping to improve the accuracy of clock synchronization between PTP nodes. The main features of the engine are:

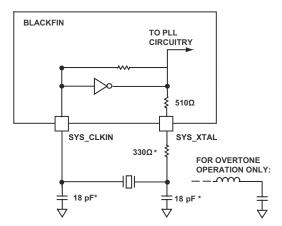
- Support for both IEEE 1588-2002 and IEEE 1588-2008 protocal standards
- Hardware assisted time stamping capable of up to 12.5 ns resolution
- Lock adjustment
- Automatic detection of IPv4 and IPv6 packets, as well as PTP messages
- Multiple input clock sources (SCLK0, RMII clock, external clock)
- Programmable pulse per second (PPS) output
- Auxiliary snapshot to time stamp external events

USB 2.0 On-the-Go Dual-Role Device Controller

The USB 2.0 OTG dual-role device controller provides a low-cost connectivity solution for the growing adoption of this bus standard in industrial applications, as well as consumer mobile devices such as cell phones, digital still cameras, and MP3 players. The USB 2.0 controller allows these devices to transfer data using a point-to-point USB connection without the need for a PC host. The module can operate in a traditional USB peripheral-only mode as well as the host mode presented in the Onthe-Go (OTG) supplement to the USB 2.0 specification.

The USB clock (USB_CLKIN) is provided through a dedicated external crystal or crystal oscillator.

The USB On-the-Go dual-role device controller includes a Phase Locked Loop with programmable multipliers to generate the necessary internal clocking frequency for USB.


POWER AND CLOCK MANAGEMENT

The processor provides four operating modes, each with a different performance/power profile. When configured for a 0 volt internal supply voltage ($V_{\rm DD_INT}$), the processor enters the hibernate state. Control of clocking to each of the processor peripherals also reduces power consumption. See Table 5 for a summary of the power settings for each mode.

Crystal Oscillator (SYS_XTAL)

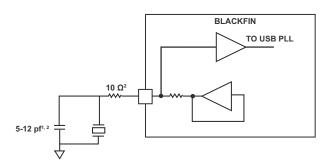
The processor can be clocked by an external crystal, (Figure 6) a sine wave input, or a buffered, shaped clock derived from an external clock oscillator. If an external clock is used, it should be a TTL compatible signal and must not be halted, changed, or operated below the specified frequency during normal operation. This signal is connected to the processor's SYS_CLKIN

pin. When an external clock is used, the SYS_XTAL pin must be left unconnected. Alternatively, because the processor includes an on-chip oscillator circuit, an external crystal may be used.

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING ON THE CRYSTAL AND LAYOUT. PLEASE ANALYZE CAREFULLY. FOR FREQUENCIES ABOVE 33 MHz, THE SUGGESTED CAPACITOR VALUE OF 18pF SHOULD BE TREATED AS A MAXIMUM, AND THE SUGGESTED RESISTOR VALUE SHOULD BE REDUCED TO 0 Ω .

Figure 6. External Crystal Connection

For fundamental frequency operation, use the circuit shown in Figure 6. A parallel-resonant, fundamental frequency, microprocessor grade crystal is connected across the CLKIN and XTAL pins. The on-chip resistance between CLKIN and the XTAL pin is in the 500 k Ω range. Further parallel resistors are typically not recommended.


The two capacitors and the series resistor shown in Figure 6 fine tune phase and amplitude of the sine frequency. The capacitor and resistor values shown in Figure 6 are typical values only. The capacitor values are dependent upon the crystal manufacturers' load capacitance recommendations and the PCB physical layout. The resistor value depends on the drive level specified by the crystal manufacturer. The user should verify the customized values based on careful investigations on multiple devices over temperature range.

A third-overtone crystal can be used for frequencies above 25 MHz. The circuit is then modified to ensure crystal operation only at the third overtone by adding a tuned inductor circuit as shown in Figure 6. A design procedure for third-overtone operation is discussed in detail in application note (EE-168) Using Third Overtone Crystals with the ADSP-218x DSP on the Analog Devices website (www.analog.com)—use site search on "EE-168."

USB Crystal Oscillator

The USB can be clocked by an external crystal, a sine wave input, or a buffered, shaped clock derived from an external clock oscillator. If an external clock is used, it should be a TTL compatible signal and must not be halted, changed, or operated below the specified frequency during normal operation. This signal is connected to the processor's USB_XTAL pin. Alternatively, because the processor includes an on-chip oscillator circuit, an external crystal may be used.

For fundamental frequency operation, use the circuit shown in Figure 7. A parallel-resonant, fundamental frequency, microprocessor grade crystal is connected between the USB_XTAL pin and ground. A load capacitor is placed in parallel with the crystal. The combined capacitive value of the board trace parasitic, the case capacitance of the crystal (from crystal manufacturer) and the parallel capacitor in the diagram should be in the range of 8 pF to 15 pF.

NOTES:

- 1. CAPACITANCE VALUE SHOWN INCLUDES BOARD PARASITICS
- 2. VALUES ARE A PRELIMINARY ESTIMATE.

Figure 7. External USB Crystal Connection

The crystal should be chosen so that its rated load capacitance matches the nominal total capacitance on this node. A series resistor may be added between the USB_XTAL pin and the parallel crystal and capacitor combination, in order to further reduce the drive level of the crystal.

The parallel capacitor and the series resistor shown in Figure 7 fine tune phase and amplitude of the sine frequency. The capacitor and resistor values shown in Figure 7 are typical values only. The capacitor values are dependent upon the crystal manufacturers' load capacitance recommendations and the PCB physical layout. The resistor value depends on the drive level specified by the crystal manufacturer. The user should verify the customized values based on careful investigations on multiple devices over temperature range.

Clock Generation

The clock generation unit (CGU) generates all on-chip clocks and synchronization signals. Multiplication factors are programmed to the PLL to define the PLLCLK frequency. Programmable values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks (SYSCLK, SCLK0 and SCLK1), the LPDDR or DDR2 clock (DCLK) and the output clock (OCLK). This is illustrated in Figure 8 on Page 32.

Writing to the CGU control registers does not affect the behavior of the PLL immediately. Registers are first programmed with a new value, and the PLL logic executes the changes so that it transitions smoothly from the current conditions to the new ones.

SYS_CLKIN oscillations start when power is applied to the V_{DD_EXT} pins. The rising edge of $\overline{SYS_HWRST}$ can be applied after all voltage supplies are within specifications (see Operating Conditions on Page 31), and SYS_CLKIN oscillations are stable.

Clock Out/External Clock

The SYS_CLKOUT output pin has programmable options to output divided-down versions of the on-chip clocks, including USB clocks. Note that the USBCLK is provided for debug purposes only and is not supported or guaranteed for clocking customer applications. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_CLKIN input. Clock generation faults (for example PLL unlock) may trigger a reset by hardware. The clocks shown in Table 3 can be outputs from SYS_CLKOUT.

Table 3. Clock Dividers

Clock Source	Divider
CCLK (core clock)	By 4
SYSCLK (System clock)	By 2
SCLK0 (system clock for PVP, all peripherals not covered by SCLK1)	None
SCLK1 (system clock for SPORTS, SPI, ACM)	None
DCLK (LPDDR/DDR2 clock)	By 2
OCLK (output clock)	Programmable
USBCLK	None
CLKBUF	None, direct from SYS_CLKIN
USBCLKBUF	None, direct from USB_CLKIN

Power Management

As shown in Table 4, the processor supports five different power domains, which maximizes flexibility while maintaining compliance with industry standards and conventions. There are no sequencing requirements for the various power domains, but all domains must be powered according to the appropriate Specifications table for processor operating conditions; even if the feature/peripheral is not used.

Table 4. Power Domains

Power Domain	VDD Range
All internal logic	V_{DD_INT}
DDR2/LPDDR	V_{DD_INT} V_{DD_DMC} V_{DD_USB} V_{DD_TD}
USB	V_{DD_USB}
Thermal diode	V_{DD_TD}
All other I/O (includes SYS, JTAG, and Ports pins)	V_{DD_EXT}

The dynamic power management feature of the processor allows the processor's core clock frequency (f_{CCLK}) to be dynamically controlled.

The power dissipated by a processor is largely a function of its clock frequency and the square of the operating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic power dissipation.

Full-On Operating Mode—Maximum Performance

In the full-on mode, the PLL is enabled and is not bypassed, providing capability for maximum operational frequency. This is the power-up default execution state in which maximum performance can be achieved. The processor cores and all enabled peripherals run at full speed.

Active Operating Mode—Moderate Dynamic Power Savings

In the active mode, the PLL is enabled but bypassed. Because the PLL is bypassed, the processor's core clocks and system clocks run at the input clock (SYS_CLKIN) frequency. DMA access is available to appropriately configured L1 memories.

For more information about PLL controls, see the "Dynamic Power Management" chapter in the *ADSP-BF60x Blackfin Processor Hardware Reference*.

See Table 5 for a summary of the power settings for each mode.

Table 5. Power Settings

Mode/State	PLL	PLL Bypassed	f _{CCLK}	f _{SYSCLK} , f _{DCLK} , f _{SCLK0} , f _{SCLK1}	Core Power
Full On	Enabled	No	Enabled	Enabled	On
Active	Enabled/ Disabled	Yes	Enabled	Enabled	On
Deep Sleep	Disabled	_	Disabled	Disabled	On
Hibernate	Disabled	_	Disabled	Disabled	Off

Deep Sleep Operating Mode—Maximum Dynamic Power Savings

The deep sleep mode maximizes dynamic power savings by disabling the clocks to the processor core and to all synchronous peripherals. Asynchronous peripherals may still be running but cannot access internal resources or external memory.

Hibernate State—Maximum Static Power Savings

The hibernate state maximizes static power savings by disabling the voltage and clocks to the processor cores and to all of the peripherals. This setting signals the external voltage regulator supplying the $V_{\rm DD_INT}$ pins to shut off using the SYS_EXTWAKE signal, which provides the lowest static power dissipation. Any critical information stored internally (for example, memory contents, register contents, and other information) must be written to a non-volatile storage device prior to removing power if the processor state is to be preserved.

Since the $V_{\text{DD_EXT}}$ pins can still be supplied in this mode, all of the external pins three-state, unless otherwise specified. This allows other devices that may be connected to the processor to still have power applied without drawing unwanted current.

Reset Control Unit

Reset is the initial state of the whole processor or one of the cores and is the result of a hardware or software triggered event. In this state, all control registers are set to their default values

and functional units are idle. Exiting a full system reset starts with Core-0 only being ready to boot. Exiting a Core-n only reset starts with this Core-n being ready to boot.

The Reset Control Unit (RCU) controls how all the functional units enter and exit reset. Differences in functional requirements and clocking constraints define how reset signals are generated. Programs must guarantee that none of the reset functions puts the system into an undefined state or causes resources to stall. This is particularly important when only one of the cores is reset (programs must ensure that there is no pending system activity involving the core that is being reset).

From a system perspective reset is defined by both the reset target and the reset source as described below.

Target defined:

- Hardware Reset All functional units are set to their default states without exception. History is lost.
- System Reset All functional units except the RCU are set to their default states.
- Core-n only Reset Affects Core-n only. The system software should guarantee that the core in reset state is not accessed by any bus master.

Source defined:

- Hardware Reset The <u>SYS_HWRST</u> input signal is asserted active (pulled down).
- System Reset May be triggered by software (writing to the RCU_CTL register) or by another functional unit such as the dynamic power management (DPM) unit (Hibernate) or any of the system event controller (SEC), trigger routing unit (TRU), or emulator inputs.
- Core-n-only reset Triggered by software.
- Trigger request (peripheral).

Voltage Regulation

The processor requires an external voltage regulator to power the $V_{\rm DD_INT}$ pins. To reduce standby power consumption, the external voltage regulator can be signaled through SYS_EXTWAKE to remove power from the processor core. This signal is high-true for power-up and may be connected directly to the low-true shut-down input of many common regulators.

While in the hibernate state, all external supply pins (V_{DD_EXT} , V_{DD_USB} , V_{DD_DMC}) can still be powered, eliminating the need for external buffers. The external voltage regulator can be activated from this power down state by asserting the $\overline{SYS_HWRST}$ pin, which then initiates a boot sequence. $SYS_EXTWAKE$ indicates a wakeup to the external voltage regulator.

SYSTEM DEBUG

The processor includes various features that allow for easy system debug. These are described in the following sections.

System Watchpoint Unit

The System Watchpoint Unit (SWU) is a single module which connects to a single system bus and provides for transaction monitoring. One SWU is attached to the bus going to each system slave. The SWU provides ports for all system bus address channel signals. Each SWU contains four match groups of registers with associated hardware. These four SWU match groups operate independently, but share common event (interrupt, trigger and others) outputs.

System Debug Unit

The System Debug Unit (SDU) provides IEEE-1149.1 support through its JTAG interface. In addition to traditional JTAG features, present in legacy Blackfin products, the SDU adds more features for debugging the chip without halting the core processors.

EZ-KIT LITE® EVALUATION BOARD

For evaluation of ADSP-BF606/ADSP-BF607/ADSP-BF608/ADSP-BF609 processors, use the EZ-KIT Lite[®] boards available from Analog Devices. Order using part numbers ADZS-BF609-EZLITE. The boards come with on-chip emulation capabilities and are equipped to enable software development. Multiple daughter cards are available.

DESIGNING AN EMULATOR-COMPATIBLE PROCESSOR BOARD (TARGET)

The Analog Devices family of emulators are tools that every system developer needs in order to test and debug hardware and software systems. Analog Devices has supplied an IEEE 1149.1 JTAG Test Access Port (TAP) on each processor. The emulator uses the TAP to access the internal features of the processor, allowing the developer to load code, set breakpoints, observe variables, observe memory, and examine registers. The processor must be halted to send data and commands, but once an operation has been completed by the emulator, the processor system is set running at full speed with no impact on system timing.

To use these emulators, the target board must include a header that connects the processor's JTAG port to the emulator.

For details on target board design issues including mechanical layout, single processor connections, multiprocessor scan chains, signal buffering, signal termination, and emulator pod logic, see (EE-68) Analog Devices JTAG Emulation Technical Reference on the Analog Devices website (www.analog.com)—use site search on "EE-68." This document is updated regularly to keep pace with improvements to emulator support.

RELATED DOCUMENTS

The following publications that describe the ADSP-BF606/ADSP-BF607/ADSP-BF608/ADSP-BF609 processors (and related processors) can be ordered from any Analog Devices sales office or accessed electronically on our website:

- Getting Started With Blackfin Processors
- ADSP-BF606/ADSP-BF607/ADSP-BF608/ADSP-BF609 Blackfin Processor Hardware Reference
- Blackfin Processor Programming Reference

RELATED SIGNAL CHAINS

A *signal chain* is a series of signal-conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena. For more information about this term and related topics, see the "signal chain" entry in the Glossary of EE Terms on the Analog Devices website.

Analog Devices eases signal processing system development by providing signal processing components that are designed to work together well. A tool for viewing relationships between specific applications and related components is available on the www.analog.com website.

The Application Signal Chains page in the Circuits from the Lab™ site (http:\\www.analog.com\circuits) provides:

- Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications
- Drill down links for components in each chain to selection guides and application information
- Reference designs applying best practice design techniques

SIGNAL DESCRIPTIONS

The processors' signal definitions are shown in Table 6.

Table 6. Processor Signal Descriptions

Signal Name	Function	Driver Type	Power Domain
Ports Pins			
PA00 – PA15	Port A 00 – Port A 15	Α	V_{DD_EXT}
PB00 – PB15	Port B 00 – Port B 15	Α	V_{DD_EXT}
PC00 – PC15	Port C 00 – Port C 15	Α	V_{DD_EXT}
PD00 – PD15	Port D 00 – Port D 15	Α	V_{DD_EXT}
PE00 – PE15	Port E 00 – Port E 15	Α	V_{DD_EXT}
PF00 – PF15	Port F 00 – Port F 15	Α	V_{DD_EXT}
PG00 – PG15	Port G 00 – Port G 15	Α	V _{DD_EXT}
Dynamic Memory Controller			
DMC0_A00 - DMC0_A13	DMC0 Address 0 – DMC0 Address 13	В	V _{DD DMC}
DMC0_BA0	DMC0 Bank Address Input 0	В	V_{DD_DMC}
DMC0_BA1	DMC0 Bank Address Input 1	В	V _{DD DMC}
DMC0_BA2	DMC0 Bank Address Input 2	В	V _{DD DMC}
DMC0_CAS	DMC0 Column Address Strobe	В	V _{DD DMC}
DMC0_CK	DMC0 Clock	С	V _{DD DMC}
DMC0_CK	DMC0 Clock (complement)	С	V _{DD DMC}
DMC0_CKE	DMC0 Clock enable	В	V _{DD DMC}
DMC0_CS0	DMC0 Chip Select 0	В	V _{DD DMC}
 DMC0_DQ00 – DMC0_DQ15	DMC0 Data 0 – DMC0 Data 15	В	V _{DD_DMC}
DMC0_LDM	DMC0 Data Mask for Lower Byte	В	V _{DD_DMC}
DMC0_LDQS	DMC0 Data Strobe for Lower Byte	С	V _{DD_DMC}
DMC0_LDQS	DMC0 Data Strobe for Lower Byte (complement)	С	V _{DD DMC}
DMC0_ODT	DMC0 On-die termination	В	V _{DD_DMC}
DMC0_RAS	DMC0 Row Address Strobe	В	V _{DD_DMC}
DMC0_UDM	DMC0 Data Mask for Upper Byte	В	V _{DD_DMC}
DMC0_UDQS	DMC0 Data Strobe for Upper Byte	С	V _{DD_DMC}
DMC0_UDQS	DMC0 Data Strobe for Upper Byte (complement)	С	V _{DD DMC}
DMC0_WE	DMC0 Write Enable	В	V _{DD_DMC}
JTAG Test Access Port			ob_ome
JTG_EMU	JTG Emulation Output	Α	V_{DD_EXT}
JTG_TCK	JTG Clock		V _{DD_EXT}
JTG_TDI	JTG Serial Data In		V _{DD_EXT}
JTG_TDO	JTG Serial Data Out	Α	V _{DD_EXT}
JTG_TMS	JTG Mode Select		V _{DD_EXT}
JTG_TRST	JTG Reset		V _{DD_EXT}
Static Memory Controller			
SMC0_A01	SMC0 Address 1	Α	V_{DD_EXT}
SMC0_A02	SMC0 Address 2	Α	V _{DD_EXT}
SMC0_AMS0	SMC0 Memory Select 0	Α	V _{DD_EXT}
SMC0_AOE/SMC0_NORDV	SMC0 Output Enable/SMC0 NOR Data Valid	Α	V _{DD EXT}
SMC0_ARDY/SMC0_NORWT	SMC0 Asynchronous Ready/SMC0 NOR Wait		V _{DD_EXT}
SMC0_ARE	SMC0 Read Enable	Α	V _{DD_EXT}
SMC0_AWE	SMC0 Write Enable	A	V _{DD_EXT}
SMC0_BR	SMC0 Bus Request		V _{DD_EXT}
SMC0_D00 - SMC0_D15	SMC0 Data 0 – SMC0 Data 15	Α	V _{DD_EXT}
555_500 560_515	JCo Data o Sinico Data 15		I - DD_EXI

Table 6. Processor Signal Descriptions (Continued)

Signal Name	Function	Driver Type	Power Domain
System Booting, Clocking and Control			
SYS_BMODE0	SYS Boot Mode Control 0		V_{DD_EXT}
SYS_BMODE1	SYS Boot Mode Control 1		V_{DD_EXT}
SYS_BMODE2	SYS Boot Mode Control 2		V_{DD_EXT}
SYS_CLKIN	SYS Clock/Crystal Input		V_{DD_EXT}
SYS_CLKOUT	SYS Processor Clock Output	Α	V_{DD_EXT}
SYS_EXTWAKE	SYS External Wake Control	Α	V_{DD_EXT}
SYS_FAULT	SYS Fault Output	Α	V_{DD_EXT}
SYS_FAULT	SYS Complementary Fault Output	Α	V_{DD_EXT}
SYS_NMI/SYS_RESOUT	SYS Non-maskable Interrupt/SYS Reset Output	Α	V_{DD_EXT}
SYS_PWRGD	SYS Power Good Indicator		V_{DD_EXT}
SYS_HWRST	SYS Processor Reset Control		V_{DD_EXT}
SYS_TDA	SYS Thermal Diode Anode		V_{DD_THD}
SYS_TDK	SYS Thermal Diode Cathode		V_{DD_THD}
SYS_XTAL	SYS Crystal Output		V_{DD_EXT}
2-Wire Interface			
TWI0_SCL	TWI0 Serial Clock	D	V_{DD_EXT}
TWI0_SDA	TWI0 Serial Data	D	V_{DD_EXT}
TWI1_SCL	TWI1 Serial Clock	D	V_{DD_EXT}
TWI1_SDA	TWI1 Serial Data	D	V_{DD_EXT}
Universal Serial Bus			
USB0_CLKIN	USB0 Clock/Crystal Input		V_{DD_USB}
USB0_DM	USB0 Data –		V_{DD_USB}
USB0_DP	USB0 Data +		V_{DD_USB}
USB0_ID	USB0 OTG ID		V_{DD_USB}
USB0_VBC	USB0 VBUS Control		V_{DD_USB}
USB0_VBUS	USB0 Bus Voltage		V_{DD_USB}

PIN MULTIPLEXING

In Table 7, the default state is shown in plain text, while the alternate functions are shown in italics.

Table 7. Processor Multiplexing Scheme

Signal Name	Function
Port A	
PA_00/SMC0_A03/EPPI2_D00/LP0_D0	PA Position 0/SMC0 Address 3/EPPI2 Data 0/LP0 Data 0
PA_01/SMC0_A04/EPPI2_D01/LP0_D1	PA Position 1/SMC0 Address 4/EPPI2 Data 1/LP0 Data 1
PA_02/SMC0_A05/EPPI2_D02/LP0_D2	PA Position 2/SMC0 Address 5/EPPI2 Data 2/LP0 Data 2
PA_03/SMC0_A06/EPPI2_D03/LP0_D3	PA Position 3/SMC0 Address 6/EPPI2 Data 3/LP0 Data 3
PA_04/SMC0_A07/EPPI2_D04/LP0_D4	PA Position 4/SMC0 Address 7/EPPI2 Data 4/LP0 Data 4
PA_05/SMC0_A08/EPPI2_D05/LP0_D5	PA Position 5/SMC0 Address 8/EPPI2 Data 5/LP0 Data 5
PA_06/SMC0_A09/EPPI2_D06/LP0_D6	PA Position 6/SMC0 Address 9/EPPI2 Data 6/LP0 Data 6
PA_07/SMC0_A10/EPPI2_D07/LP0_D7	PA Position 7/SMC0 Address 10/EPPI2 Data 7/LP0 Data 7
PA_08/SMC0_A11/EPPI2_D08/LP1_D0	PA Position 8/SMC0 Address 11/EPPI2 Data 8/LP1 Data 0
PA_09/SMC0_A12/EPPI2_D09/LP1_D1	PA Position 9/SMC0 Address 12/EPPI2 Data 9/LP1 Data 1
PA_10/SMC0_A14/EPPI2_D10/LP1_D2	PA Position 10/SMC0 Address 14/EPPI2 Data 10/LP1 Data 2
PA_11/SMC0_A15/EPPI2_D11/LP1_D3	PA Position 11/SMC0 Address 15/EPPI2 Data 11/LP1 Data 3
PA_12/SMC0_A17/EPPI2_D12/LP1_D4	PA Position 12/SMC0 Address 17/EPPI2 Data 12/LP1 Data 4
PA_13/SMC0_A18/EPPI2_D13/LP1_D5	PA Position 13/SMC0 Address 18/EPPI2 Data 13/LP1 Data 5

Table 7. Processor Multiplexing Scheme (Continued)

Signal Name	Function	
PA_14/SMC0_A19/EPPI2_D14/LP1_D6	PA Position 14/SMC0 Address 19/EPPI2 Data 14/LP1 Data 6	
PA_15/SMC0_A20/EPPI2_D15/LP1_D7	PA Position 15/SMC0 Address 20/EPPI2 Data 15/LP1 Data 7	
Port B		
PB_00/SMC0_NORCLK/EPPI2_CLK/LP0_CLK	PB Position 0/SMC0 NOR Clock/EPPI2 Clock/LP0 Clock	
PB_01/SMC0_AMS1/EPPI2_FS1/LP0_ACK	PB Position 1/SMC0 Memory Select 1/EPPI2 Frame Sync 1 (HSYNC)/LP0 Acknowledge	
PB_02/SMC0_A13/EPPI2_FS2/LP1_ACK	PB Position 2/SMC0 Address 13/EPPI2 Frame Sync 2 (VSYNC)/LP1 Acknowledge	
PB_03/SMC0_A16/EPPI2_FS3/LP1_CLK	PB Position 3/SMC0 Address 16/EPPI2 Frame Sync 3 (FIELD)/LP1 Clock	
PB_04/SMC0_AMS2/SMC0_ABE0/SPT0_AFS	PB Position 4/SMC0 Memory Select 2/SMC0 Byte Enable 0/SPORT0 Channel A Frame Sync	
PB_05/ SMC0_AMS3 /SMC0_ABE1/SPT0_ACLK	PB Position 5/SMC0 Memory Select 3/SMC0 Byte Enable 1/SPORT0 Channel A Clock	
PB_06/SMC0_A21/SPT0_ATDV/TM0_ACLK4	PB Position 6/SMC0 Address 21/SPORT0 Channel A Transmit Data Valid/ TIMER0 Alternate Clock 4	
PB_07/SMC0_A22/EPPI2_D16/SPT0_BFS	PB Position 7/SMC0 Address 22/EPPI2 Data 16/SPORT0 Channel B Frame Sync	
PB_08/SMC0_A23/EPPI2_D17/SPT0_BCLK	PB Position 8/SMC0 Address 23/EPPI2 Data 17/SPORT0 Channel B Clock	
PB_09/SMC0_BGH/SPT0_AD0/TM0_ACLK2	PB Position 9/SMC0 Bus Grant Hang/SPORT0 Channel A Data 0/TIMER0 Alternate Clock 2	
PB_10/SMC0_A24/SPT0_BD1/TM0_ACLK0	PB Position 10/SMC0 Address 24/SPORT0 Channel B Data 1/TIMER0 Alternate Clock 0	
PB_11/SMC0_A25/SPT0_BD0/TM0_ACLK3	PB Position 11/SMC0 Address 25/SPORT0 Channel B Data 0/TIMER0 Alternate Clock 3	
PB_12/SMC0_BG/SPT0_BTDV/SPT0_AD1/ TM0_ACLK1	PB Position 12/SMC0 Bus Grant/SPORT0 Channel B Transmit Data Valid/SPORT0 Channel A Data 1/TIMER0 Alternate Clock 1	
PB_13/ETH0_TXEN/EPPI1_FS1/TM0_ACI6	PB Position 13/ETH0 Transmit Enable/EPPI1 Frame Sync 1 (HSYNC)/ TIMER0 Alternate Capture Input 6	
PB_14/ETH0_REFCLK/EPPI1_CLK	PB Position 14/ETH0 Reference Clock/EPPI1 Clock	
PB_15/ETH0_PTPPPS/EPPI1_FS3	PB Position 15/ETH0 PTP Pulse-Per-Second Output/EPPI1 Frame Sync 3 (FIELD)	
Port C	· · · · · · · · · · · · · · · · · · ·	
PC_00/ETH0_RXD0/EPPI1_D00	PC Position 0/ETH0 Receive Data 0/EPPI1 Data 0	
PC_01/ETH0_RXD1/EPPI1_D01	PC Position 1/ETH0 Receive Data 1/EPPI1 Data 1	
PC_02/ETH0_TXD0/EPPI1_D02	PC Position 2/ETH0 Transmit Data 0/EPPI1 Data 2	
PC_03/ETH0_TXD1/EPPI1_D03	PC Position 3/ETH0 Transmit Data 1/EPPI1 Data 3	
PC_04/ETH0_RXERR/EPPI1_D04	PC Position 4/ETH0 Receive Error/EPPI1 Data 4	
PC_05/ETH0_CRS/EPPI1_D05	PC Position 5/ETH0 Carrier Sense/RMII Receive Data Valid/EPPI1 Data 5	
PC_06/ETH0_MDC/EPPI1_D06	PC Position 6/ETH0 Management Channel Clock/EPPI1 Data 6	
PC_07/ETH0_MDIO/EPPI1_D07	PC Position 7/ETH0 Management Channel Serial Data/EPPI1 Data 7	
PC_08/EPPI1_D08	PC Position 8/EPPI1 Data 8	
PC_09/ETH1_PTPPPS/EPPI1_D09	PC Position 9/ETH1 PTP Pulse-Per-Second Output/EPPI1 Data 9	
PC_10/ <i>EPPI1</i> _ <i>D10</i>	PC Position 10/EPPI1 Data 10	
PC_11/EPPI1_D11/ETH_PTPAUXIN	PC Position 11/EPPI1 Data 11/ETH PTP Auxiliary Trigger Input	
PC_12/SPI0_SEL7/EPPI1_D12	PC Position 12/SPIO Slave Select Output 7/EPPI1 Data 12	
PC_13/SPI0_SEL6/EPPI1_D13/ETH_PTPCLKIN	PC Position 13/SPIO Slave Select Output 6/EPPI1 Data 13/ETH PTP Clock Input	
PC_14/SPI1_SEL7/EPPI1_D14	PC Position 14/SPI1 Slave Select Output 7/EPPI1 Data 14	
PC_15/SPI0_SEL4/EPPI1_D15	PC Position 15/SPIO Slave Select Output 4/EPPI1 Data 15	
Port D		
PD_00/SPI0_D2/EPPI1_D16/SPI0_SEL3	PD Position 0/SPI0 Data 2/EPPI1 Data 16/SPI0 Slave Select Output 3	
PD_01/SPI0_D3/EPPI1_D17/SPI0_SEL2	PD Position 1/SPI0 Data 3/EPPI1 Data 17/SPI0 Slave Select Output 2	
PD_02/SPI0_MISO	PD Position 2/SPI0 Master In, Slave Out	
PD_03/SPI0_MOSI	PD Position 3/SPI0 Master Out, Slave In	
PD_04/SPI0_CLK	PD Position 4/SPI0 Clock	
PD_05/SPI1_CLK/TM0_ACLK7	PD Position 5/SPI1 Clock/TIMERO Alternate Clock 7	
PD_06/ETH0_PHYINT/EPPI1_FS2/TM0_ACI5	PD Position 6/ETH0 RMII Management Data Interrupt/EPPI1 Frame Sync 2 (VSYNC)/ TIMER0 Alternate Capture Input 5	
PD_07/ UART0_TX /TM0_ACI3	PD Position 7/UARTO Transmit/TIMERO Alternate Capture Input 3	

Table 7. Processor Multiplexing Scheme (Continued)

Signal Name	Function
PD_08/ UART0_RX /TM0_ACI0	PD Position 8/UART0 Receive/TIMER0 Alternate Capture Input 0
PD_09/ <i>SPI0_SEL5/UART0_RTS/SPI1_SEL4</i>	PD Position 9/SPI0 Slave Select Output 5/UART0 Request to Send/SPI1 Slave Select Output 4
PD_10/SPI0_RDY/ UART0_CTS/SPI1_SEL3	PD Position 10/SPI0 Ready/UARTO Clear to Send/SPI1 Slave Select Output 3
PD_11/ <i>SPI0_SEL1/SPI0_SS</i>	PD Position 11/SPI0 Slave Select Output 1/SPI0 Slave Select Input
PD_12/SPI1_SEL1/EPPI0_D20/SPT1_AD1/ SPI1_SS	PD Position 12/SPI1 Slave Select Output 1/EPPI0 Data 20/SPORT1 Channel A Data 1/ SPI1 Slave Select Input
PD_13/SPI1_MOSI/TM0_ACLK5	PD Position 13/SPI1 Master Out, Slave In/TIMERO Alternate Clock 5
PD_14/SPI1_MISO/TM0_ACLK6	PD Position 14/SPI1 Master In, Slave Out/TIMERO Alternate Clock 6
PD_15/SPI1_SEL2/EPPI0_D21/SPT1_AD0	PD Position 15/SPI1 Slave Select Output 2/EPPI0 Data 21/SPORT1 Channel A Data 0
Port E	
PE_00/SPI1_D3/EPPI0_D18/SPT1_BD1	PE Position 0/SPI1 Data 3/EPPI0 Data 18/SPORT1 Channel B Data 1
PE_01/SPI1_D2/EPPI0_D19/SPT1_BD0	PE Position 1/SPI1 Data 2/EPPI0 Data 19/SPORT1 Channel B Data 0
PE_02/SPI1_RDY/EPPI0_D22/SPT1_ACLK	PE Position 2/SPI1 Ready/EPPI0 Data 22/SPORT1 Channel A Clock
PE_03/ <i>EPPI0_D16/ACM0_FS/SPT1_BFS</i>	PE Position 3/EPPI0 Data 16/ACM0 Frame Sync/SPORT1 Channel B Frame Sync
PE_04/ <i>EPPI0_D17/ACM0_CLK/SPT1_BCLK</i>	PE Position 4/EPPI0 Data 17/ACM0 Clock/SPORT1 Channel B Clock
PE_05/ <i>EPPI0_D23/SPT1_AFS</i>	PE Position 5/EPPI0 Data 23/SPORT1 Channel A Frame Sync
PE_06/SPT1_ATDV/EPPI0_FS3/LP3_CLK	PE Position 6/SPORT1 Channel A Transmit Data Valid/EPPI0 Frame Sync 3 (FIELD)/LP3 Clock
PE_07/SPT1_BTDV/EPPI0_FS2/LP3_ACK	PE Position 7/SPORT1 Channel B Transmit Data Valid/ EPPI0 Frame Sync 2 (VSYNC)/LP3 Acknowledge
PE_08/PWM0_SYNC/EPPI0_FS1/LP2_ACK/ ACM0_T0	PE Position 8/PWM0 Sync/EPPI0 Frame Sync 1 (HSYNC)/LP2 Acknowledge/ ACM0 External Trigger 0
PE_09/EPPI0_CLK/LP2_CLK/PWM0_TRIP0	PE Position 9/EPPI0 Clock/LP2 Clock/PWM0 Shutdown Input 0
PE_10/ETH1_MDC/PWM1_DL/RSI0_D6	PE Position 10/ETH1 Management Channel Clock/PWM1 Channel D Low Side/RSI0 Data 6
PE_11/ETH1_MDIO/PWM1_DH/RSI0_D7	PE Position 11/ETH1 Management Channel Serial Data/PWM1 Channel D High Side/RSI0 Data
PE_12/ETH1_PHYINT/PWM1_CL/RSI0_D5	PE Position 12/ETH1 RMII Management Data Interrupt/PWM1 Channel C Low Side/RSI0 Data
PE_13/ETH1_CRS/PWM1_CH/RSI0_D4	PE Position 13/ETH1 Carrier Sense/RMII Receive Data Valid/PWM1 Channel C High Side/ RSIO Data 4
PE_14/ETH1_RXERR/SPT2_ATDV/TM0_TMR0	PE Position 14/ETH1 Receive Error/SPORT2 Channel A Transmit Data Valid/TIMER0 Timer 0
PE_15/ETH1_RXD1/PWM1_BL/RSI0_D3	PE Position 15/ETH1 Receive Data 1/PWM1 Channel B Low Side/RSI0 Data 3
Port F	
PF_00/PWM0_AL/EPPI0_D00/LP2_D0	PF Position 0/PWM0 Channel A Low Side/EPPI0 Data 0/LP2 Data 0
PF_01/PWM0_AH/EPPI0_D01/LP2_D1	PF Position 1/PWM0 Channel A High Side/EPPI0 Data 1/LP2 Data 1
PF_02/PWM0_BL/EPPI0_D02/LP2_D2	PF Position 2/PWM0 Channel B Low Side/EPPI0 Data 2/LP2 Data 2
PF_03/PWM0_BH/EPPI0_D03/LP2_D3	PF Position 3/PWM0 Channel B High Side/EPPI0 Data 3/LP2 Data 3
PF_04/PWM0_CL/EPPI0_D04/LP2_D4	PF Position 4/PWM0 Channel C Low Side/EPPI0 Data 4/LP2 Data 4
PF_05/PWM0_CH/EPPI0_D05/LP2_D5	PF Position 5/PWM0 Channel C High Side/EPPI0 Data 5/LP2 Data 5
PF_06/PWM0_DL/EPPI0_D06/LP2_D6	PF Position 6/PWM0 Channel D Low Side/EPPI0 Data 6/LP2 Data 6
PF_07/ <i>PWM0_DH/EPPI0_D07/LP2_D7</i>	PF Position 7/PWM0 Channel D High Side/EPPI0 Data 7/LP2 Data 7
 PF_08/ <i>SPI1_SEL5/EPPI0_D08/LP3_D0</i>	PF Position 8/SPI1 Slave Select Output 5/EPPI0 Data 8/LP3 Data 0
 PF_09/ <i>SPI1_SEL6/EPPI0_D09/LP3_D1</i>	PF Position 9/SPI1 Slave Select Output 6/EPPI0 Data 9/LP3 Data 1
PF_10/ACM0_A4/EPPI0_D10/LP3_D2	PF Position 10/ACM0 Address 4/EPPI0 Data 10/LP3 Data 2
PF_11/ <i>EPPI0_D11/LP3_D3/PWM0_TRIP1</i>	PF Position 11/EPPI0 Data 11/LP3 Data 3/PWM0 Shutdown Input 1
PF_12/ACM0_A2/EPPI0_D12/LP3_D4	PF Position 12/ACM0 Address 2/EPPI0 Data 12/LP3 Data 4
PF_13/ACM0_A3/EPPI0_D13/LP3_D5	PF Position 13/ACM0 Address 3/EPPI0 Data 13/LP3 Data 5
PF_14/ACM0_A0/EPPI0_D14/LP3_D6	PF Position 14/ACM0 Address 0/EPPI0 Data 14/LP3 Data 6
PF_15/ACM0_A1/EPPI0_D15/LP3_D7	PF Position 15/ACM0 Address 1/EPPI0 Data 15/LP3 Data 7
Port G	
PG_00/ETH1_RXD0/PWM1_BH/RSI0_D2	PG Position 0/ETH1 Receive Data 0/PWM1 Channel B High Side/RSI0 Data 2
PG_01/SPT2_AFS/TM0_TMR2/CAN0_TX	PG Position 1/SPORT2 Channel A Frame Sync/TIMER0 Timer 2/CAN0 Transmit

Table 7. Processor Multiplexing Scheme (Continued)

Signal Name	Function
PG_02/ETH1_TXD1/PWM1_AL/RSI0_D1	PG Position 2/ETH1 Transmit Data 1/PWM1 Channel A Low Side/RSI0 Data 1
PG_03/ETH1_TXD0/PWM1_AH/RSI0_D0	PG Position 3/ETH1 Transmit Data 0/PWM1 Channel A High Side/RSI0 Data 0
PG_04/SPT2_ACLK/TM0_TMR1/CAN0_RX/ TM0_ACI2	PG Position 4/SPORT2 Channel A Clock/TIMER0 Timer 1/CAN0 Receive/ TIMER0 Alternate Capture Input 2
PG_05/ETH1_TXEN/RSIO_CMD/PWM1_SYNC/ ACM0_T1	PG Position 5/ETH1 Transmit Enable/RSI0 Command/PWM1 Sync/ ACM0 External Trigger 1
PG_06/ETH1_REFCLK/RSI0_CLK/SPT2_BTDV/ PWM1_TRIP0	PG Position 6/ETH1 Reference Clock/RSI0 Clock/SPORT2 Channel B Transmit Data Valid/ PWM1 Shutdown Input 0
PG_07/SPT2_BFS/TM0_TMR5/CNT0_ZM	PG Position 7/SPORT2 Channel B Frame Sync/TIMER0 Timer 5/CNT0 Count Zero Marker
PG_08/SPT2_AD1/TM0_TMR3/PWM1_TRIP1	PG Position 8/SPORT2 Channel A Data 1/TIMER0 Timer 3/PWM1 Shutdown Input
PG_09/SPT2_AD0/TM0_TMR4	PG Position 9/SPORT2 Channel A Data 0/TIMER0 Timer 4
PG_10/ <i>UART1_RTS/SPT2_BCLK</i>	PG Position 10/UART1 Request to Send/SPORT2 Channel B Clock
PG_11/SPT2_BD1/TM0_TMR6/CNT0_UD	PG Position 11/SPORT2 Channel B Data 1/TIMER0 Timer 6/CNT0 Count Up and Direction
PG_12/SPT2_BD0/TM0_TMR7/CNT0_DG	PG Position 12/SPORT2 Channel B Data 0/TIMER0 Timer 7/CNT0 Count Down and Gate
PG_13/ <i>UART1_CTS/TM0_CLK</i>	PG Position 13/UART1 Clear to Send/TIMERO Clock
PG_14/ UART1_RX / SYS_IDLE1 /TM0_ACI1	PG Position 14/UART1 Receive/SYS Core 1 Idle Indicator/TIMER0 Alternate Capture Input 1
PG_15/UART1_TX/SYS_IDLEO/SYS_SLEEP/ TM0_ACI4	PG Position 15/UART1 Transmit/SYS Core 0 Idle Indicator/SYS Processor Sleep Indicator/ TIMER0 Alternate Capture Input 4

PIN TERMINATION AND DRIVE CHARACTERISTICS-REQUIREMENTS

Table 8 identifies how each signal on the chip is internally terminated and driven. In addition, external termination requirements are provided. In this table the following columns are used.

- Internal Termination Specifies the termination present when the processor is not in the reset or hibernate state.
- Reset Termination Specifies the termination present when the processor is in the reset state.
- Reset Drive Specifies the active drive on the signal when the processor is in the reset state.
- Hibernate Termination Specifies the termination present when the processor is in the hibernate state.
- Hibernate Drive Specifies the active drive on the signal when the processor is in the hibernate state.
- Notes Specifies any special requirements or characteristics for the signal. If no special requirements are listed the signal may be left unconnected if it is not used.

Table 8. ADSP-BF60x Pad Table

Signal Name	Internal	Reset	Reset Drive	Hibernate	Hibernate	Notes
	Termination	Termination		Termination	Drive	
DMC0_A00	None	None	None	None	None	No notes
DMC0_A01	None	None	None	None	None	No notes
DMC0_A02	None	None	None	None	None	No notes
DMC0_A03	None	None	None	None	None	No notes
DMC0_A04	None	None	None	None	None	No notes
DMC0_A05	None	None	None	None	None	No notes
DMC0_A06	None	None	None	None	None	No notes
DMC0_A07	None	None	None	None	None	No notes
DMC0_A08	None	None	None	None	None	No notes
DMC0_A09	None	None	None	None	None	No notes
DMC0_A10	None	None	None	None	None	No notes
DMC0_A11	None	None	None	None	None	No notes
DMC0_A12	None	None	None	None	None	No notes
DMC0_A13	None	None	None	None	None	No notes
DMC0_BA0	None	None	None	None	None	No notes
DMC0_BA1	None	None	None	None	None	No notes
DMC0_BA2	None	None	None	None	None	For LPDDR leave unconnected.
DMC0_CAS	None	None	None	None	None	No notes
DMC0_CK	None	None	Low	None	Low	No notes
DMC0_CK	None	None	Low	None	Low	No notes
DMC0_CKE	None	None	Low	None	Low	No notes
DMC0_CS0	None	None	None	None	None	No notes
DMC0_DQ00	None	None	None	None	None	No notes
DMC0_DQ01	None	None	None	None	None	No notes
DMC0_DQ02	None	None	None	None	None	No notes
DMC0_DQ03	None	None	None	None	None	No notes
DMC0_DQ04	None	None	None	None	None	No notes
DMC0_DQ05	None	None	None	None	None	No notes
DMC0_DQ06	None	None	None	None	None	No notes
DMC0_DQ07	None	None	None	None	None	No notes
DMC0_DQ08	None	None	None	None	None	No notes
DMC0_DQ09	None	None	None	None	None	No notes
DMC0_DQ10	None	None	None	None	None	No notes
DMC0_DQ11	None	None	None	None	None	No notes

Table 8. ADSP-BF60x Pad Table (Continued)

Signal Name	Internal Termination	Reset Termination	Reset Drive	Hibernate Termination	Hibernate Drive	Notes
DMC0_DQ12	None	None	None	None	None	No notes
DMC0_DQ13	None	None	None	None	None	No notes
DMC0_DQ14	None	None	None	None	None	No notes
DMC0_DQ15	None	None	None	None	None	No notes
DMC0_LDM	None	None	None	None	None	No notes
DMC0_LDQS	None	None	None	None	None	For LPDDR a 100k pull-down is required.
DMC0_LDQS	None	None	None	None	None	For single ended DDR2 connect to VREF_DMC. For LPDDR leave unconnected.
DMC0_ODT	None	None	None	None	None	For LPDDR leave unconnected.
DMC0_RAS	None	None	None	None	None	No notes
DMC0_UDM	None	None	None	None	None	No notes
DMC0_UDQS	None	None	None	None	None	For LPDDR a 100k pull-down is required.
DMC0_UDQS	None	None	None	None	None	For single ended DDR2 connect to VREF_DMC. For LPDDR leave unconnected.
DMC0_WE	None	None	None	None	None	No notes
GND	None	None	None	None	None	No notes
JTG_EMU	None	None	None	None	None	No notes
JTG_TCK	Pull-down	None	None	None	None	Functional during reset.
JTG_TDI	Pull-up	None	None	None	None	Functional during reset.
JTG_TDO	None	None	None	None	None	Functional during reset, three-state when JTG_TRST is asserted.
JTG_TMS	Pull-up	None	None	None	None	Functional during reset.
JTG_TRST	Pull-down	None	None	None	None	Functional during reset.
PA00	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA01	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA02	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA03	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA04	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA05	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA06	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA07	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA08	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA09	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA10	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA11	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA12	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA13	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA14	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PA15	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB00	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB01	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB02	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB03	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB04	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB05	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB06	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes

Table 8. ADSP-BF60x Pad Table (Continued)

Signal Name	Internal Termination	Reset Termination	Reset Drive	Hibernate Termination	Hibernate Drive	Notes
PB07	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB08	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB09	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB10	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB11	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB12	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB13	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB14	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PB15	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC00	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC01	Weak Keeper	Weak Keeper	None	Weak Keeper		No notes
PC02	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC03	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC04	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC05	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC06	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC07	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC08	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC09	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC10	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC11	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC12	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC13	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC14	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PC15	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD00	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD01	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD02	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD03	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD04	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD05	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD06	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD07	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD08	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD09	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD10	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD11	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD12	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD13	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD14	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PD15	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE00	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE01	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE02	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE03	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes

Table 8. ADSP-BF60x Pad Table (Continued)

Signal Name	Internal Termination	Reset Termination	Reset Drive	Hibernate Termination	Hibernate Drive	Notes
PE04	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE05	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE06	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE07	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE08	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE09	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE10	Weak Keeper	Weak Keeper	None	Weak Keeper	None	Has an optional internal pull-up for use with RSI. See the RSI chapter in the HRM for more details.
PE11	Weak Keeper	Weak Keeper	None	Weak Keeper	None	Has an optional internal pull-up for use with RSI. See the RSI chapter in the HRM for more details.
PE12	Weak Keeper	Weak Keeper	None	Weak Keeper	None	Has an optional internal pull-up for use with RSI. See the RSI chapter in the HRM for more details.
PE13	Weak Keeper	Weak Keeper	None	Weak Keeper	None	Has an optional internal pull-up for use with RSI. See the RSI chapter in the HRM for more details.
PE14	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PE15	Weak Keeper	Weak Keeper	None	Weak Keeper	None	Has an optional internal pull-up for use with RSI. See the RSI chapter in the HRM for more details.
PF00	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF01	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF02	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF03	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF04	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF05	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF06	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF07	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF08	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF09	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF10	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF11	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF12	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF13	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF14	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PF15	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG00	Weak Keeper	Weak Keeper	None	Weak Keeper	None	Has an optional internal pull-up for use with RSI. See the RSI chapter in the HRM for more details.
PG01	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG02	Weak Keeper	Weak Keeper	None	Weak Keeper	None	Has an optional internal pull-up for use with RSI. See the RSI chapter in the HRM for more details.
PG03	Weak Keeper	Weak Keeper	None	Weak Keeper	None	Has an optional internal pull-up for use with RSI. See the RSI chapter in the HRM for more details.

Table 8. ADSP-BF60x Pad Table (Continued)

Signal Name	Internal Termination	Reset Termination	Reset Drive	Hibernate Termination	Hibernate Drive	Notes
PG04	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG05	Weak Keeper	Weak Keeper	None	Weak Keeper	None	Has an optional internal pull-up for use with RSI. See the RSI chapter in the HRM for more details.
PG06	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG07	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG08	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG09	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG10	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG11	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG12	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG13	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG14	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
PG15	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_A01	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_A02	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_AMS0	Pull-up	Pull-up	None	Pull-up	None	No notes
SMC0_AOE_NORDV	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_ARDY_NORWT	None	None	None	None	None	Requires an external pull-up.
SMC0_ARE	Pull-up	Pull-up	None	Pull-up	None	No notes
SMC0_AWE	Pull-up	Pull-up	None	Pull-up	None	No notes
SMC0_BR	None	None	None	None	None	Requires an external pull-up.
SMC0_D00	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D01	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D02	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D03	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D04	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D05	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D06	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D07	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D08	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D09	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D10	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D11	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D12	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D13	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D14	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SMC0_D15	Weak Keeper	Weak Keeper	None	Weak Keeper	None	No notes
SYS_BMODE0	None	None	None	None	None	No notes
SYS_BMODE1	None	None	None	None	None	No notes
SYS_BMODE2	None	None	None	None	None	No notes
SYS_CLKIN	None	None	None	None	None	Active during reset.
SYS_CLKOUT	None	None	Low	None	None	No notes
SYS_EXTWAKE	None	None	High	None	Low	Drives low during hibernate and high all other times.

Table 8. ADSP-BF60x Pad Table (Continued)

Signal Name	Internal Termination	Reset Termination	Reset Drive	Hibernate Termination	Hibernate Drive	Notes
SYS_FAULT	None	None	None	None	None	Open source, requires an external pull-down.
SYS_FAULT	None	None	None	None	None	Open drain, requires an external pull-up.
SYS_HWRST	None	None	None	None	None	Active during reset.
SYS_NMI_RESOUT	None	None	Low	None	None	Requires an external pull-up.
SYS_PWRGD	None	None	None	None	None	If hibernate isn't used or the internal Power Good Counter is used connect to VDD_EXT.
SYS_TDA	None	None	None	None	None	Active during reset and hibernate. If the thermal diode is not used connect to ground.
SYS_TDK	None	None	None	None	None	Active during reset and hibernate. If the thermal diode is not used connect to ground.
SYS_XTAL	None	None	None	None	None	Leave unconnected if an oscillator is used to provide SYS_CLKIN. Active during reset. State during hibernate is controlled by DPM_HIB_DIS.
TWI0_SCL	None	None	None	None	None	Open drain, requires external pull up. Consult version 2.1 of the I2C specification for the proper resistor value. If TWI is not used connect to ground.
TWI0_SDA	None	None	None	None	None	Open drain, requires external pull up. Consult version 2.1 of the I2C specification for the proper resistor value. If TWI is not used connect to ground.
TWI1_SCL	None	None	None	None	None	Open drain, requires external pull up. Consult version 2.1 of the I2C specification for the proper resistor value. If TWI is not used connect to ground.
TWI1_SDA	None	None	None	None	None	Open drain, requires external pull up. Consult version 2.1 of the I2C specification for the proper resistor value. If TWI is not used connect to ground.
USB0_CLKIN	None	None	None	None	None	If USB is not used connect to ground. Active during reset.
USB0_DM	None	None	None	None	None	Pull low if not using USB. For complete documentation of hibernate behavior when USB is used see the USB chapter in the HRM
USB0_DP	None	None	None	None	None	Pull low if not using USB. For complete documentation of hibernate behavior when USB is used see the USB chapter in the HRM
USB0_ID	None	None	None	Pull-up	None	If USB is not used connect to ground. When USB is being used the internal pull-up that is present during hibernate is programmable. See the USB chapter in the HRM. Active during reset.
USB0_VBC	None	None	None	None	None	If USB is not used pull low.
USB0_VBUS	None	None	None	None	None	If USB is not used connect to ground.
VDD_DMC	None	None	None	None	None	If the DMC is not used connect to VDD_INT.
VDD_EXT	None	None	None	None	None	Must be powered.
VDD_INT	None	None	None	None	None	Must be powered.

Table 8. ADSP-BF60x Pad Table (Continued)

Signal Name	Internal Termination	Reset Termination	Reset Drive	Hibernate Termination	Hibernate Drive	Notes
VDD_TD	None	None	None	None	None	If the thermal diode is not used connect to ground.
VDD_USB	None	None	None	None	None	If USB is not used connect to VDD_EXT.
VREF_DMC	None	None	None	None	None	If the DMC is not used connect to VDD_INT.

SPECIFICATIONS

For information about product specifications please contact your ADI representative.

OPERATING CONDITIONS

Parameter		Conditions	Min	Nominal	Max	Unit
V _{DD_INT} ¹	Internal Supply Voltage	TBD MHz	TBD	TBD	TBD	V
$V_{DD_EXT}^2$	External Supply Voltage		TBD	1.8, 3.3	TBD	V
V_{DD_DMC}	DDR2/LPDDR Supply Voltage		TBD	1.8	TBD	V
$V_{DD_USB}^{3}$	USB Supply Voltage		TBD	3.3	TBD	V
V_{DD_TD}	Thermal Diode Supply Voltage		TBD	3.3	TBD	V
V_{IH}^{4}	High Level Input Voltage	$V_{DD_EXT} = Maximum$	TBD	TBD	TBD	V
V_{IH}^{4}	High Level Input Voltage	$V_{DD_EXT} = Maximum$	TBD	TBD	TBD	V
V_{IHTWI}^{5}	High Level Input Voltage	$V_{DD_EXT} = Maximum$	TBD	TBD	TBD	V
V_{1L}^{4}	Low Level Input Voltage	$V_{DD_EXT} = Maximum$	TBD	TBD	TBD	V
V_{lL}^{4}	Low Level Input Voltage	$V_{DD_EXT} = Maximum$	TBD	TBD	TBD	V
$V_{\rm ILTWI}^{5}$	Low Level Input Voltage	$V_{DD_EXT} = Maximum$	TBD	TBD	TBD	V
T_J	Junction Temperature	$T_{AMBIENT} = TBD^{\circ}C \text{ to } + TBD^{\circ}C$	-40	TBD	105	°C
T _J	Junction Temperature	$T_{AMBIENT} = TBD^{\circ}C \text{ to } + TBD^{\circ}C$	-40	TBD	125	°C

 $^{^{1}} The\ expected\ nominal\ value\ is\ 1.25\ V\ \pm 5\%, and\ initial\ customer\ designs\ should\ design\ with\ a\ programmable\ regulator\ that\ can\ be\ adjusted\ from\ 1.1\ V\ to\ 1.35\ V\ in\ 50\ mV\ steps.$

² Must remain powered (even if the associated function is not used).

³ If not used, connect to 1.8 V or 3.3 V.

⁴ Parameter value applies to all input and bidirectional pins, except TWI_SDA and TWI_SCL.

⁵ Parameter applies to TWI_SDA and TWI_SCL.

Clock Related Operating Conditions

Table 9 describes the core clock timing requirements. The data presented in the tables applies to all speed grades (found in Automotive Products on Page 43) except where expressly noted. Figure 8 provides a graphical representation of the various clocks and their available divider values.

Table 9. Clock Operating Conditions

Parameter		Maximum	Unit
f _{CCLK}	Core Clock Frequency (CCLK ≥ SYSCLK, CSEL ≤ SYSSEL)	TBD	MHz
f_{SYSCLK}	SYSCLK Frequency (SYSSEL ≤ DSEL)	TBD	MHz
f _{SCLK0} 1, 2	SCLK0 Frequency	TBD	MHz
f _{SCLK1} 1,2	SCLK1 Frequency	TBD	MHz
f_{DCLK}	DDR2/LPDDR Clock Frequency	TBD	MHz
f_{OCLK}	Output Clock Frequency	TBD	MHz

 $^{^{1}}$ t_{SCLK0/1} is equal to $1/f_{SCLK0/1}$.

Table 10. Phase-Locked Loop Operating Conditions

Parameter		Minimum	Maximum	Unit
f _{PLLCLK}	PLL Clock Frequency	TBD	Speed Grade	MHz

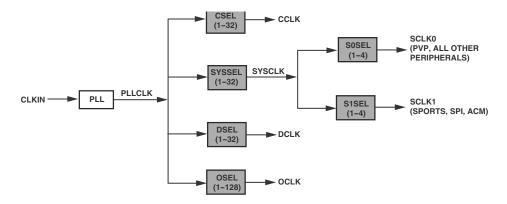


Figure 8. Clock Relationships and Divider Values

² Rounded number. Actual test specification is a period of [TBD] ns.

ELECTRICAL CHARACTERISTICS

Parameter		Test Conditions	Min	Typical	Max	Unit
V _{OH}	High Level Output Voltage	$V_{DD_EXT} = 1.7 \text{ V}, I_{OH} = -0.5 \text{ mA}$	TBD			٧
V _{OH}	High Level Output Voltage	$V_{DD_EXT} = 3.13 \text{ V, } I_{OH} = -0.5 \text{ mA}$	TBD			٧
V _{OL}	Low Level Output Voltage	V _{DD_EXT} = 1.7 V/3.13 V, I _{OL} = 2.0 mA			TBD	V
V _{OLTWI} ¹	Low Level Output Voltage	$V_{DD_EXT} = 1.7 \text{ V/3.13 V, I}_{OL} = 2.0 \text{ mA}$			TBD	٧
I _{IH} ²	High Level Input Current	$V_{DD_EXT} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$			TBD	μΑ
I _{IL} ²	Low Level Input Current	$V_{DD_EXT} = 3.47 \text{ V, } V_{IN} = 0 \text{ V}$			TBD	μΑ
I _{IHP} ³	High Level Input Current JTAG	$V_{DD_EXT} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$			TBD	μΑ
I _{OZH} ⁴	Three-State Leakage Current	$V_{DD_EXT} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$			TBD	μΑ
I _{OZHTWI} ¹	Three-State Leakage Current	$V_{DD_EXT} = 3.13 \text{ V}, V_{IN} = 5.5 \text{ V}$			TBD	μΑ
l _{OZL} ⁴	Three-State Leakage Current	$V_{DD_EXT} = 3.47 \text{ V, } V_{IN} = 0 \text{ V}$			TBD	μΑ
C _{IN} ^{5, 6}	Input Capacitance	$f_{IN} = 1 \text{ MHz}, T_{AMBIENT} = 25^{\circ}\text{C},$ $V_{IN} = 2.5 \text{ V}$		TBD	TBD	pF
I _{DD_DEEPSLEEP} ⁷	V _{DD_INT} Current in Deep Sleep Mode	TBD		TBD		mA
I _{DD_IDLE}	V _{DD_INT} Current in Idle	TBD		TBD		mA
I _{DD_TYP}	V _{DD_INT} Current	TBD		TBD		mA
I _{DD_HIBERNATE} ^{7, 8}	Hibernate State Current	TBD		TBD		μΑ
I _{DD_DEEPSLEEP}	V _{DD_INT} Current in Deep Sleep Mode	TBD			TBD	mA
I _{DD_INT}	V _{DD_INT} Current	TBD			TBD	mA

 $^{^{\}rm 1}$ Applies to bidirectional pins TWI_SCL and TWI_SDA.

² Applies to input pins.

³ Applies to JTAG input pins (JTG_TCK, JTG_TDI, JTG_TMS, <u>JTG_TRST</u>).

⁴ Applies to three-statable pins.

⁵Guaranteed, but not tested.

 $^{^6\,\}mathrm{Applies}$ to all signal pins.

⁷ See the *ADSP-BF60x Blackfin Processor Hardware Reference Manual* for definition of deep sleep and hibernate operating modes.

 $^{^{\}rm 8}$ Applies to TBD supply pins only. Clock inputs are tied high or low.

Total Power Dissipation

Total power dissipation has two components:

- 1. Static, including leakage current
- 2. Dynamic, due to transistor switching characteristics

Many operating conditions can also affect power dissipation, including temperature, voltage, operating frequency, and processor activity. Electrical Characteristics on Page 33 shows the current dissipation for internal circuitry (V_{DD_INT}). $I_{DD_DEEPSLEEP}$ specifies static power dissipation as a function of voltage (V_{DD_INT}) and temperature, and I_{DD_INT} specifies the total power specification for the listed test conditions, including the dynamic component as a function of voltage (V_{DD_INT}) and frequency.

There are two parts to the dynamic component. The first part is due to transistor switching in the core clock (CCLK) domain. This part is subject to an Activity Scaling Factor (ASF) which represents application code running on the processor core and L1 memories.

The ASF is combined with the CCLK frequency and $V_{\rm DD_INT}$ dependent data to calculate this part. The second part is due to transistor switching in the system clock (SCLK) domain, which is included in the $I_{\rm DD_INT}$ specification equation.

PROCESSOR — ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed in the table may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Rating
Internal Supply Voltage (V _{DD_INT})	TBD
External (I/O) Supply Voltage (V _{DD_EXT})	TBD
Input Voltage ^{1, 2}	TBD
Input Voltage ^{1, 2, 3}	TBD
Output Voltage Swing	TBD
Load Capacitance	TBD
Storage Temperature Range	TBD
Junction Temperature Under Bias	TBD

¹ Applies to 100% transient duty cycle. For other duty cycles see Table 11.

Table 11. Maximum Duty Cycle for Input Transient Voltage¹

V _{IN} Min (V)	V _{IN} Max (V)	Maximum Duty Cycle
TBD	TBD	TBD

¹ Applies to all signal pins with the exception of SYS_CLKIN, SYS_XTAL, SYS_EXTWAKE.

ESD SENSITIVITY

ESD (electrostatic discharge) sensitive device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PROCESSOR — PACKAGE INFORMATION

The information presented in Figure 9 and Table 12 provides details about package branding. For a complete listing of product availability, see Automotive Products on Page 43.

Figure 9. Product Information on Package

Table 12. Package Brand Information

Brand Key	Field Description
ADSP-BF60x	Product Name ¹
t	Temperature Range
рр	Package Type
Z	RoHS Compliant Designation
ccc	See Ordering Guide
VVVVV.X	Assembly Lot Code
n.n	Silicon Revision
yyww	Date Code

¹ See product names in the Automotive Products on Page 43.

 $^{^2}$ Applies only when V_{DD_EXT} is within specifications. When V_{DD_EXT} is outside specifications, the range is $V_{DD_EXT} \pm 0.2~Volts.$

³ Applies to pins TWI_SCL and TWI_SDA.

ENVIRONMENTAL CONDITIONS

To determine the junction temperature on the application printed circuit board use:

$$T_I = T_{CASE} + (\Psi_{IT} \times P_D)$$

where:

 T_I = Junction temperature (°C)

 T_{CASE} = Case temperature (°C) measured by customer at top center of package.

 Ψ_{IT} = From Table 13

 P_D = Power dissipation (see Total Power Dissipation on Page 34 for the method to calculate P_D)

Table 13. Thermal Characteristics

Parameter	Condition	Typical	Unit
θ_{JA}	0 linear m/s air flow	16.7	°C/W
θ_{JMA}	1 linear m/s air flow	14.6	°C/W
θ_{JMA}	2 linear m/s air flow	13.9	°C/W
θ_{JC}		4.41	°C/W
$\Psi_{ extsf{JT}}$	0 linear m/s air flow	0.11	°C/W
$\Psi_{ extsf{JT}}$	1 linear m/s air flow	0.24	°C/W
$\Psi_{ extsf{JT}}$	2 linear m/s air flow	0.25	°C/W

Values of θ_{JA} are provided for package comparison and printed circuit board design considerations. θ_{JA} can be used for a first order approximation of T_J by the equation:

$$T_I = T_A + (\theta_{IA} \times P_D)$$

where:

 T_A = Ambient temperature (°C)

Values of θ_{JC} are provided for package comparison and printed circuit board design considerations when an external heat sink is required.

In Table 13, airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6. The junction-to-case measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 2S2P JEDEC test board.

Thermal Diode

The processor incorporates thermal diode/s to monitor the die temperature. The thermal diode is a grounded collector, PNP Bipolar Junction Transistor (BJT). The SYS_TDA pin is connected to the emitter and the SYS_TDK pin is connected to the base of the transistor. These pins can be used by an external temperature sensor (such as ADM 1021A or LM86 or others) to read the die temperature of the chip.

The technique used by the external temperature sensor is to measure the change in V_{BE} when the thermal diode is operated at two different currents. This is shown in the following equation:

$$\Delta V_{BE} = n \times \frac{kT}{a} \times In(N)$$

where

n = multiplication factor close to 1, depending on process variations

k = Boltzmann's constant

T = temperature (°C)

q =charge of the electron

N = ratio of the two currents

The two currents are usually in the range of 10 micro Amperes to 300 micro Amperes for the common temperature sensor chips available.

Table 14 contains the thermal diode specifications using the transistor model. Note that Measured Ideality Factor already takes into effect variations in beta (B).

Table 14. Thermal Diode Parameters - Transistor Model

Symbol	Parameter	Min	Тур	Max	Unit
I _{FW} ¹	Forward Bias Current	TBD		TBD	μΑ
I _E	Emitter Current	TBD		TBD	μΑ
$n_Q^{2,3}$	Transistor Ideality	TBD	TBD	TBD	
R _T ^{3, 4}	Series Resistance	TBD	TBD	TBD	Ω

¹ Analog Devices does not recommend operation of the thermal diode under reverse bias.

² Not 100% tested. Specified by design characterization.

³ The ideality factor, nQ, represents the deviation from ideal diode behavior as exemplified by the diode equation: $I_C = I_S \times (e^{qVBE/nqkT} - 1)$, where $I_S =$ saturation current, q = electronic charge, $V_{BE} =$ voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin).

⁴The series resistance (R_T) can be used for more accurate readings as needed.

349-BALL CSP_BGA BALL ASSIGNMENTS

Table 15 lists the CSP_BGA package by ball number for the ADSP-BF609. Table 16 lists the CSP_BGA package by signal.

Table 15. 349-Ball CSP_BGA Ball Assignment (Numerical by Ball Number)

D-IIN-	C: N	D-IIN-	C:	D-II N-	C: I N	D-UN-	C:I N
Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name
A01	GND	AA19	PG_07	B15	SMC0_D01	E03	JTG_TMS
A02	USB0_DM	AA20	PG_13	B16	SMC0_D15	E05	V _{DD_USB}
A03	USB0_DP	AA21	GND	B17	SMC0_D09	E20	DMC0_CAS
A04	PB_10	AA22	GND	B18	SMC0_D02	E21	DMC0_DQ10
A05	PB_07	AB01	GND	B19	SMC0_D13	E22	DMC0_DQ13
A06	PA_14	AB02	PD_05	B20	SMC0_D05	F01	SYS_FAULT
A07	PA_12	AB03	PD_14	B21	GND	F02	SYS_FAULT
A08	PA_10	AB04	PE_01	B22	SMC0_AOE_NORDV	F03	SYS_NMI_RESOUT
A09	PA_08	AB05	PE_04	C01	USB0_CLKIN	F06	V_{DD_EXT}
A10	PA_06	AB06	PF_15	C02	USB0_VBC	F07	V_{DD_INT}
A11	PA_04	AB07	PF_13	C03	GND	F08	V_{DD_INT}
A12	PA_02	AB08	PF_11	C04	PB_12	F09	V_{DD_INT}
A13	PA_00	AB09	PF_09	C05	PB_09	F10	V_{DD_INT}
A14	SMC0_A01	AB10	PF_07	C06	PB_06	F11	V_{DD_EXT}
A15	SMC0_D00	AB11	PF_05	C07	PB_05	F12	V_{DD_EXT}
A16	SMC0_AMS0	AB12	PF_03	C08	PB_04	F13	V _{DD_INT}
A17	SMC0_D03	AB13	PF_01	C09	PB_03	F14	V _{DD_INT}
A18	SMC0_D04	AB14	PE_13	C10	PB_02	F15	V_{DD_INT}
A19	SMC0_D07	AB15	PG_03	C11	PB_01	F16	V _{DD_INT}
A20	SMC0_D10	AB16	PG_06	C12	PB_00	F17	V_{DD_DMC}
A21	SMC0_AWE	AB17	PG_02	C13	SMC0_BR	F20	DMC0_CS0
A22	GND	AB18	PG_12	C14	SMC0_D06	F21	DMC0_DQ15
AA01	PD_11	AB19	PG_14	C15	SMC0_D12	F22	DMC0_DQ08
AA02	GND	AB20	PG_15	C16	SMC0_ARE	G01	GND
AA03	PD_13	AB21	PG_10	C17	SMC0_D08	G02	SYS_HWRST
AA04	PE_00	AB22	GND	C18	SMC0_D11	G03	SYS_BMODE2
AA05	PE_03	B01	USB0_VBUS	C19	SMC0_D14	G06	V_{DD_EXT}
AA06	PF_14	B02	GND	C20	GND	G07	V_{DD_EXT}
AA07	PF_12	B03	USB0_ID	C21	TWI1_SCL	G08	V_{DD_INT}
80AA	PF_10	B04	PB_11	C22	TWI0_SCL	G09	V _{DD_INT}
AA09	PF_08	B05	PB_08	D01	JTG_TDI	G10	V_{DD_EXT}
AA10	PF_06	B06	PA_15	D02	JTG_TDO	G11	V_{DD_EXT}
AA11	PF_04	B07	PA_13	D03	JTG_TCK	G12	V_{DD_EXT}
AA12	PF_02	B08	PA_11	D11	V_{DD_EXT}	G13	V_{DD_EXT}
AA13	PF_00	B09	PA_09	D12	GND	G14	V_{DD_INT}
AA14	PG_00	B10	PA_07	D20	SMC0_ARDY_NORWT	G15	V_{DD_INT}
AA15	PE_15	B11	PA_05	D21	TWI1_SDA	G16	V_{DD_DMC}
AA16	PE_14	B12	PA_03	D22	TWI0_SDA	G17	V _{DD_DMC}
AA17	PG_05	B13	PA_01	E01	JTG_TRST	G20	DMC0_UDM
AA18	PG_08	B14	SMC0_A02	E02	JTG_EMU	G21	DMC0_UDQS

Table 15. 349-Ball CSP_BGA Ball Assignment (Numerical by Ball Number)

	1	1	Jament (Numerical	·		1	T
Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name
G22	DMC0_UDQS	L06	V_{DD_EXT}	N20	DMC0_WE	U01	PC_14
H01	SYS_CLKIN	L08	GND	N21	DMC0_DQ04	U02	PC_13
H02	SYS_XTAL	L09	GND	N22	DMC0_DQ03	U03	PD_09
H03	SYS_BMODE1	L10	GND	P01	PC_08	U06	V_{DD_EXT}
H06	V_{DD_EXT}	L11	GND	P02	PC_07	U07	V_{DD_INT}
H07	V_{DD_EXT}	L12	GND	P03	PD_06	U08	V_{DD_INT}
H16	V_{DD_DMC}	L13	GND	P06	V_{DD_EXT}	U09	V_{DD_INT}
H17	V_{DD_DMC}	L14	GND	P09	GND	U10	V_{DD_INT}
H20	DMC0_RAS	L15	GND	P10	GND	U11	V_{DD_EXT}
H21	DMC0_DQ09	L17	V_{DD_DMC}	P11	GND	U12	V_{DD_EXT}
H22	DMC0_DQ14	L19	VREF_DMC	P12	GND	U13	V_{DD_INT}
J01	GND	L20	DMC0_CK	P13	GND	U14	V_{DD_INT}
J02	SYS_PWRGD	L21	DMC0_DQ06	P14	GND	U15	V_{DD_INT}
J03	SYS_BMODE0	L22	DMC0_DQ07	P17	V_{DD_DMC}	U16	V_{DD_INT}
J06	V_{DD_EXT}	M01	PC_04	P20	DMC0_CKE	U17	V _{DD_DMC}
J09	GND	M02	PC_03	P21	DMC0_DQ02	U20	DMC0_A09
J10	GND	M03	PB_15	P22	DMC0_DQ05	U21	DMC0_A05
J11	GND	M04	GND	R01	PC_10	U22	DMC0_A01
J12	GND	M06	V_{DD_EXT}	R02	PC_09	V01	PD_00
J13	GND	M08	GND	R03	PD_07	V02	PC_15
J14	GND	M09	GND	R06	V_{DD_EXT}	V03	PD_10
J17	V_{DD_DMC}	M10	GND	R07	V_{DD_EXT}	V20	DMC0_BA1
J20	DMC0_ODT	M11	GND	R16	V_{DD_DMC}	V21	DMC0_A13
J21	DMC0_DQ12	M12	GND	R17	V_{DD_DMC}	V22	DMC0_A11
J22	DMC0_DQ11	M13	GND	R20	DMC0_BA2	W01	PD_04
K01	PC_00	M14	GND	R21	DMC0_BA0	W02	PD_01
K02	SYS_EXTWAKE	M15	GND	R22	DMC0_A10	W03	PD_12
K03	PB_13	M17	V_{DD_DMC}	T01	PC_12	W11	GND
K06	V_{DD_EXT}	M19	GND	T02	PC_11	W12	V_{DD_TD}
K08	GND	M20	DMC0_CK	T03	PD_08	W20	DMC0_A04
K09	GND	M21	DMC0_DQ00	T06	V_{DD_EXT}	W21	DMC0_A06
K10	GND	M22	DMC0_DQ01	T07	V_{DD_EXT}	W22	DMC0_A08
K11	GND	N01	PC_06	T08	V_{DD_INT}	Y01	PD_03
K12	GND	N02	PC_05	T09	V_{DD_INT}	Y02	PD_02
K13	GND	N03	SYS_CLKOUT	T10	V_{DD_EXT}	Y03	GND
K14	GND	N06	V_{DD_EXT}	T11	V_{DD_EXT}	Y04	PD_15
K15	GND	N08	GND	T12	V_{DD_EXT}	Y05	PE_02
K17	V_{DD_DMC}	N09	GND	T13	V_{DD_EXT}	Y06	PE_05
K20	DMC0_LDM	N10	GND	T14	V_{DD_INT}	Y07	PE_06
K21	DMC0_LDQS	N11	GND	T15	V _{DD_INT}	Y08	PE_07
K22	DMC0_LDQS	N12	GND	T16	V_{DD_DMC}	Y09	PE_08
L01	PC_02	N13	GND	T17	V_{DD_DMC}	Y10	PE_09
L02	PC_01	N14	GND	T20	DMC0_A03	Y11	SYS_TDK
L03	PB_14	N15	GND	T21	DMC0_A07	Y12	SYS_TDA
L04	V_{DD_EXT}	N17	V_{DD_DMC}	T22	DMC0_A12	Y13	PE_12

Table 15. 349-Ball CSP_BGA Ball Assignment (Numerical by Ball Number)

Ball No.	Signal Name						
Y14	PE_10	Y19	PG_11				
Y15	PE_11	Y20	GND				
Y16	PG_09	Y21	DMC0_A00				
Y17	PG_01	Y22	DMC0_A02				
Y18	PG_04						

Table 16. 349-Ball CSP_BGA Ball Assignment (Alphabetical by Signal Name)

Signal Name	Ball No.						
DMC0_A00	Y21	DMC0_UDQS	G22	GND	M19	PB_03	C09
DMC0_A01	U22	DMC0_WE	N20	GND	N08	PB_04	C08
DMC0_A02	Y22	GND	A01	GND	N09	PB_05	C07
DMC0_A03	T20	GND	A22	GND	N10	PB_06	C06
DMC0_A04	W20	GND	AA02	GND	N11	PB_07	A05
DMC0_A05	U21	GND	AA21	GND	N12	PB_08	B05
DMC0_A06	W21	GND	AA22	GND	N13	PB_09	C05
DMC0_A07	T21	GND	AB01	GND	N14	PB_10	A04
DMC0_A08	W22	GND	AB22	GND	N15	PB_11	B04
DMC0_A09	U20	GND	B21	GND	P09	PB_12	C04
DMC0_A10	R22	GND	C20	GND	P10	PB_13	K03
DMC0_A11	V22	GND	D12	GND	P11	PB_14	L03
DMC0_A12	T22	GND	G01	GND	P12	PB_15	M03
DMC0_A13	V21	GND	J01	GND	P13	PC_00	K01
DMC0_BA0	R21	GND	J09	GND	P14	PC_01	L02
DMC0_BA1	V20	GND	J10	GND	W11	PC_02	L01
DMC0_BA2	R20	GND	J11	GND	Y03	PC_03	M02
DMC0_CAS	E20	GND	J12	GND	Y20	PC_04	M01
DMC0_CK	M20	GND	J13	GND	C03	PC_05	N02
DMC0_CKE	P20	GND	J14	GND	B02	PC_06	N01
DMC0_CK	L20	GND	K08	JTG_EMU	E02	PC_07	P02
DMC0_CS0	F20	GND	K09	JTG_TCK	D03	PC_08	P01
DMC0_DQ00	M21	GND	K10	JTG_TDI	D01	PC_09	R02
DMC0_DQ01	M22	GND	K11	JTG_TDO	D02	PC_10	R01
DMC0_DQ02	P21	GND	K12	JTG_TMS	E03	PC_11	T02
DMC0_DQ03	N22	GND	K13	JTG_TRST	E01	PC_12	T01
DMC0_DQ04	N21	GND	K14	PA_00	A13	PC_13	U02
DMC0_DQ05	P22	GND	K15	PA_01	B13	PC_14	U01
DMC0_DQ06	L21	GND	L08	PA_02	A12	PC_15	V02
DMC0_DQ07	L22	GND	L09	PA_03	B12	PD_00	V01
DMC0_DQ08	F22	GND	L10	PA_04	A11	PD_01	W02
DMC0_DQ09	H21	GND	L11	PA_05	B11	PD_02	Y02
DMC0_DQ10	E21	GND	L12	PA_06	A10	PD_03	Y01
DMC0_DQ11	J22	GND	L13	PA_07	B10	PD_04	W01
DMC0_DQ12	J21	GND	L14	PA_08	A09	PD_05	AB02
DMC0_DQ13	E22	GND	L15	PA_09	B09	PD_06	P03
DMC0_DQ14	H22	GND	M04	PA_10	A08	PD_07	R03
DMC0_DQ15	F21	GND	M08	PA_11	B08	PD_08	T03
DMC0_LDM	K20	GND	M09	PA_12	A07	PD_09	U03
DMC0_LDQS	K22	GND	M10	PA_13	B07	PD_10	V03
DMC0_LDQS	K21	GND	M11	PA_14	A06	PD_11	AA01
DMC0_ODT	J20	GND	M12	PA_15	B06	PD_12	W03
DMC0_RAS	H20	GND	M13	PB_00	C12	PD_13	AA03
DMC0_UDM	G20	GND	M14	PB_01	C11	PD_14	AB03
DMC0_UDQS	G21	GND	M15	PB_02	C10	PD_15	Y04

Table 16. 349-Ball CSP_BGA Ball Assignment (Alphabetical by Signal Name)

Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.
PE_00	AA04	PG_13	AA20	USB0_CLKIN	C01	V_{DD_EXT}	T10
PE_01	AB04	PG_14	AB19	USB0_DM	A02	V_{DD_EXT}	T11
PE_02	Y05	PG_15	AB20	USB0_DP	A03	V_{DD_EXT}	T12
PE_03	AA05	SMC0_A01	A14	USB0_ID	B03	V_{DD_EXT}	T13
PE_04	AB05	SMC0_A02	B14	USB0_VBC	C02	V_{DD_EXT}	U06
PE_05	Y06	SMC0_AMS0	A16	USB0_VBUS	B01	V_{DD_EXT}	U11
PE_06	Y07	SMC0_AOE_NORDV	B22	V_{DD_DMC}	F17	V_{DD_EXT}	U12
PE_07	Y08	SMC0_ARDY_NORWT	D20	V_{DD_DMC}	G16	V_{DD_INT}	F07
PE_08	Y09	SMC0_ARE	C16	V_{DD_DMC}	G17	V_{DD_INT}	F08
PE_09	Y10	SMC0_AWE	A21	V_{DD_DMC}	H16	V_{DD_INT}	F09
PE_10	Y14	SMC0_BR	C13	V_{DD_DMC}	H17	V_{DD_INT}	F10
PE_11	Y15	SMC0_D00	A15	V_{DD_DMC}	J17	V_{DD_INT}	F13
PE_12	Y13	SMC0_D01	B15	V_{DD_DMC}	K17	V_{DD_INT}	F14
PE_13	AB14	SMC0_D02	B18	V_{DD_DMC}	L17	V_{DD_INT}	F15
PE_14	AA16	SMC0_D03	A17	V_{DD_DMC}	M17	V_{DD_INT}	F16
PE_15	AA15	SMC0_D04	A18	V_{DD_DMC}	N17	V_{DD_INT}	G08
PF_00	AA13	SMC0_D05	B20	V_{DD_DMC}	P17	V_{DD_INT}	G09
PF_01	AB13	SMC0_D06	C14	V_{DD_DMC}	R16	V_{DD_INT}	G14
PF_02	AA12	SMC0_D07	A19	V_{DD_DMC}	R17	V_{DD_INT}	G15
PF_03	AB12	SMC0_D08	C17	V_{DD_DMC}	T16	V_{DD_INT}	T08
PF_04	AA11	SMC0_D09	B17	V_{DD_DMC}	T17	V_{DD_INT}	T09
PF_05	AB11	SMC0_D10	A20	V_{DD_DMC}	U17	V_{DD_INT}	T14
PF_06	AA10	SMC0_D11	C18	V_{DD_EXT}	D11	V_{DD_INT}	T15
PF_07	AB10	SMC0_D12	C15	V_{DD_EXT}	F06	V_{DD_INT}	U07
PF_08	AA09	SMC0_D13	B19	V_{DD_EXT}	F11	V_{DD_INT}	U08
PF_09	AB09	SMC0_D14	C19	V_{DD_EXT}	F12	V_{DD_INT}	U09
PF_10	AA08	SMC0_D15	B16	V_{DD_EXT}	G06	V_{DD_INT}	U10
PF_11	AB08	SYS_BMODE0	J03	V_{DD_EXT}	G07	V_{DD_INT}	U13
PF_12	AA07	SYS_BMODE1	H03	V_{DD_EXT}	G10	V_{DD_INT}	U14
PF_13	AB07	SYS_BMODE2	G03	V_{DD_EXT}	G11	V_{DD_INT}	U15
PF_14	AA06	SYS_CLKIN	H01	V_{DD_EXT}	G12	V_{DD_INT}	U16
PF_15	AB06	SYS_CLKOUT	N03	V_{DD_EXT}	G13	V_{DD_TD}	W12
PG_00	AA14	SYS_EXTWAKE	K02	V_{DD_EXT}	H06	V_{DD_USB}	E05
PG_01	Y17	SYS_FAULT	F02	V_{DD_EXT}	H07	VREF_DMC	L19
PG_02	AB17	SYS_FAULT	F01	V_{DD_EXT}	J06		
PG_03	AB15	SYS_NMI_RESOUT	F03	V_{DD_EXT}	K06		
PG_04	Y18	SYS_PWRGD	J02	V_{DD_EXT}	L04		
PG_05	AA17	SYS_HWRST	G02	V_{DD_EXT}	L06		
PG_06	AB16	SYS_TDA	Y12	V_{DD_EXT}	M06		
PG_07	AA19	SYS_TDK	Y11	V_{DD_EXT}	N06		
PG_08	AA18	SYS_XTAL	H02	V_{DD_EXT}	P06		
PG_09	Y16	TWI0_SCL	C22	V_{DD_EXT}	R06		
PG_10	AB21	TWI0_SDA	D22	V_{DD_EXT}	R07		
PG_11	Y19	TWI1_SCL	C21	V_{DD_EXT}	T06		
PG_12	AB18	TWI1_SDA	D21	V_{DD_EXT}	T07		

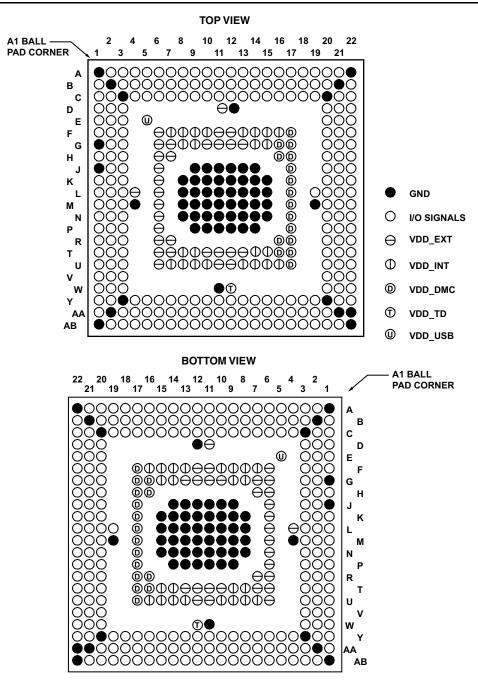
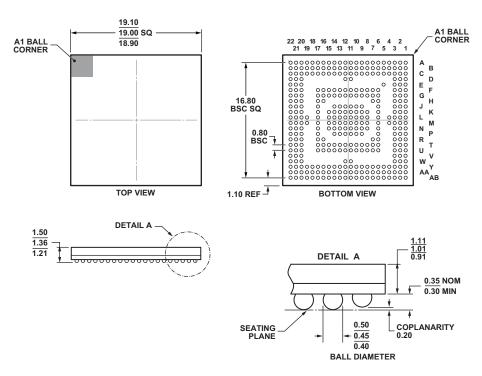



Figure 10. 349-Ball CSP_BGA Ball Configuration

OUTLINE DIMENSIONS

Dimensions for the 19 mm \times 19 mm CSP_BGA package in Figure 11 are shown in millimeters.

COMPLIANT TO JEDEC STANDARDS MO-275-PPAB-2.

Figure 11. 349-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-349-1)
Dimensions shown in millimeters

SURFACE-MOUNT DESIGN

Table 17 is provided as an aid to PCB design. For industry-standard design recommendations, refer to IPC-7351, *Generic Requirements for Surface-Mount Design and Land Pattern Standard.*

Table 17. BGA Data for Use with Surface-Mount Design

Package	Package	Package	Package
	Ball Attach Type	Solder Mask Opening	Ball Pad Size
BC-349-1	Solder Mask Defined	0.4 mm Diameter	0.5 mm Diameter

AUTOMOTIVE PRODUCTS

The TBD model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models and designers should review the product specifications section of this data

sheet carefully. Only the automotive grade products shown in below are available for use in automotive applications. Contact your local ADI account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

Model	Temperature Range ¹	Package Description	Package Option	Processor Instruction Rate (Max)
TBD	TBD	349-Ball Chip Scale Package Ball Grid Array	BC-349-1	500 MHz

¹ Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 31 for the junction temperature (TJ) specification which is the only temperature specification.

PRE RELEASE PRODUCTS

Model	Temperature Range ¹	Package Description	Package Option	Processor Instruction Rate (Max)
ADSP-BF609-ENG	TBD	349-Ball Chip Scale Package Ball	BC-349-1	500 MHz
		Grid Array		

¹ Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 31 for the junction temperature (TJ) specification which is the only temperature specification.

