DATA SHEET

TDA5630BT
 9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

Product specification
Supersedes data of 1995 Mar 20
File under Integrated Circuits, IC02

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

FEATURES

- Balanced mixer with a common emitter input for band A (single input)
- 2-pin oscillator for band A
- Balanced mixer with a common base input for band C
- 3-pin oscillator for band C
- Local oscillator buffer output for external prescaler
- SAW filter preamplifier with a low output impedance to drive a SAW filter
- Band gap voltage stabilizer for oscillator stability
- Electronic band switch.

APPLICATIONS

- Cable tuners for TV and VCR (switched concept for VHF)
- Recommended RF bands for Europe: 48.25 to $105.25 \mathrm{MHz}, 112.25$ to 294.25 MHz and 471.25 to 855.25 MHz
- Recommended RF bands for the USA: 55.25 to $133.25 \mathrm{MHz}, 139.25$ to 361.25 MHz and 367.25 to 801.25 MHz .

GENERAL DESCRIPTION

The TDA5630BT is a monolithic integrated circuit that performs VHF and UHF mixer/oscillator functions in TV and VCR cable tuners. With a proper oscillator application and by using a switchable inductor to split the VHF band into two sub-bands, the full VHF/UHF TV bands can be covered. This low-power mixer/oscillator requires a power supply of 9 V and is available in a very small package.

The device gives the designer the capability to design an economical and physically small cable tuner.

The tuner development time can be drastically reduced by using this device.

Frequency bands are determined by the external tank circuit. They can be adapted to various standards.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage		-	9.0	-	V
I_{P}	supply current		-	48	-	mA
f_{RF}	frequency range (picture carrier)	RF input; band A; note 1	45	-	470	MHz
		RF input; band C; note 1	430	-	860	MHz
G_{v}	voltage gain	band A	-	25	-	dB
		band C	-	36	-	dB
NF	noise figure	band A	-	7.5	-	dB
		band C	-	9.0	-	dB
V	output voltage to get 1% cross modulation in channel	band A	-	118	-	$\mathrm{dB} \mathrm{\mu} \mathrm{~V}$
		band C	-	120	-	$\mathrm{dB} \mu \mathrm{V}$

Note

1. The limits are related to the tank circuits used in Fig. 11 and the intermediate frequency. Frequency bands may be adjusted by the choice of external components.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA5630BT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

BLOCK DIAGRAM

Fig. 1 Block diagram.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

PINNING

SYMBOL	PIN	DESCRIPTION
CIN1	1	band C input 1
CIN2	2	band C input 2
RFGND	3	ground for RF inputs
AIN	4	band A input
V $_{\text {P }}$	5	supply voltage
LOOUT1	6	local oscillator amplifier output 1
LOOUT2	7	local oscillator amplifier output 2
BS	8	band switch input
IFOUT1	9	IF amplifier output 1
IFOUT2	10	IF amplifier output 2
GND	11	ground (0 V)
COSCOC1	12	band C oscillator output collector 1
COSCOC2	13	band C oscillator output collector 2
AOSCOC	14	band A oscillator output collector
COSCIB	15	band C oscillator input base
AOSCIB	16	band A oscillator input base

Fig. 2 Pin configuration.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{P}	supply voltage	-0.3	+10.5	V
$\mathrm{~V}_{\mathrm{SW}}$	switching voltage	0	10.5	V
I_{O}	output current of each pin referenced to ground	-	-10	mA
$\mathrm{t}_{\mathrm{s}(\max)}$	maximum short-circuit time (all pins)	-	10	s
$\mathrm{~T}_{\mathrm{stg}}$	IC storage temperature	-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature	-10	+70	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	-	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$R_{\text {th } j-a}$	thermal resistance from junction to ambient in free air	115	K/W

HANDLING

Human body model: the IC withstands 2000 V in accordance with the UZW-B0/FQ-A302 specification equivalent to the MIL-STD-883C category B (2000 V)
(stress reference pins RFGND, GND and V_{P} short-circuited together).
Machine model: the IC withstands 200 V in accordance with the UZW-B0/FQ-B302 specification (issue date: Nov $6^{\text {th }}, 1990$)
(stress reference pins RFGND, GND and V_{P} short-circuited together).

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit of Fig. 11 ; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage		8.1	9.0	9.9	V
Ip	supply current		35	48	55	mA
$\mathrm{V}_{\text {SW }}$	switching voltage	band A	0	-	1.1	V
		band C	3.0	-	5.0	V
ISW	switching current	band A	-	-	2	$\mu \mathrm{A}$
		band C	-	-	10	$\mu \mathrm{A}$

Band A mixer including IF amplifier

f_{RF}	frequency range	note 1; $\mathrm{V}_{\mathrm{t}}=0.45$ to 28 V	45	-	300	MHz
$\mathrm{f}_{\text {max }}$	maximum frequency	note 1	-	470	-	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Fig.3; note 2	22.5	25	27.5	dB
		$\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$; see Fig.3; note 2	22.5	25	27.5	dB
		$\mathrm{f}_{\mathrm{RF}}=470 \mathrm{MHz}$; see Fig.3; note 2	-	25	-	dB
NF	noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Figs 4 and 5	-	7.5	8.5	dB
		$\mathrm{f}_{\mathrm{RF}}=180 \mathrm{MHz}$; see Figs 4 and 5	-	9	10	dB
		$\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$; see Fig. 5	-	10.5	11.5	dB
V 。	output voltage	causing 1% cross modulation in channel; $\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$; see Fig. 6	115	118	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage	causing 10 kHz pulling in channel; $\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$; note 3	-	104	-	$\mathrm{dB} \mu \mathrm{V}$
gos	optimum source conductance for noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$	-	0.5	-	mS
		$\mathrm{f}_{\mathrm{RF}}=180 \mathrm{MHz}$	-	1.1	-	mS
g_{i}	input conductance	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Fig.12; note 4	-	0.26	-	mS
		$\mathrm{f}_{\mathrm{RF}}=180 \mathrm{MHz}$; see Fig.12; note 4	-	0.35	-	mS
C_{i}	input capacitance	$\mathrm{f}_{\mathrm{RF}}=50$ to 180 MHz ; see Fig.12; note 4	-	2	-	pF

Band A oscillator

$\mathrm{f}_{\text {osc }}$	frequency range	note 5; $\mathrm{V}_{\mathrm{t}}=0.45$ to 28 V	80	-	336	MHz
$\mathrm{f}_{\text {shift }}$	frequency shift	$\Delta V_{P}=10 \%$; note 6	-	-	200	kHz
$\mathrm{f}_{\text {drift }}$	frequency drift	$\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ with no compensation; NP0 capacitors; note 7	-	-	500	kHz
		5 s to 15 min after switch on; with no compensation; NP0 capacitors; note 8	-	500	950	kHz
		5 s to 15 min after switch on; with compensation; note 9	-	200	300	kHz

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Band C mixer including IF amplifier; measurements using hybrid; note 10						
f_{RF}	frequency range	$\mathrm{V}_{\mathrm{t}}=0.45$ to 28 V ; note 1	430	-	860	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig.7; note 2	33	36	39	dB
		$\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig.7; note 2	33	36	39	dB
NF	noise figure	not corrected for image $\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz} ; \text { see Fig. } 8 \\ & \mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz} ; \text { see Fig. } 8 \end{aligned}$	\|-	$\begin{aligned} & 9 \\ & 11 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
V 。	output voltage	causing 1% cross modulation in channel $\begin{aligned} & f_{R F}=430 \mathrm{MHz} \text {; see Fig. } 9 \\ & \mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz} \text {; see Fig. } 9 \end{aligned}$	$\begin{aligned} & 116 \\ & 116 \end{aligned}$	$\begin{array}{\|l\|} 120 \\ 120 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{dB} \mu \mathrm{~V} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$
V_{i}	input voltage	causing 10 kHz pulling in channel; $\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; note 3	-	84	-	$\mathrm{dB} \mu \mathrm{V}$
		causing $\mathrm{N}+5-1 \mathrm{MHz}$ pulling; $\mathrm{f}_{\mathrm{RF}}=820 \mathrm{MHz}$; see Fig. 10	-	63	-	$\mathrm{dB} \mu \mathrm{V}$
Z_{i}	input impedance ($\mathrm{R}_{S}+j L_{s} \omega$)	R_{S} at $\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig.13; note 4	-	40	-	Ω
		R_{S} at $\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig.13; note 4	-	53	-	Ω
		L_{S} at $f_{R F}=430$ to 860 MHz ; see Fig.13; note 4	-	9	-	nH

Band C oscillator

$\mathrm{f}_{\text {osc }}$	frequency range	note 5; $\mathrm{V}_{\mathrm{t}}=0.45$ to 28 V	470	-	900	MHz
$\mathrm{f}_{\text {shift }}$	frequency shift	$\Delta V_{P}=10 \%$; note 6	-	-	400	kHz
$\mathrm{f}_{\text {drift }}$	frequency drift	$\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ with no compensation; NP0 capacitors; note 7	-	-	2.5	MHz
		5 s to 15 min after switch on; with no compensation; NP0 capacitors; note 8	-	1000	1300	kHz
		5 s to 15 min after switch on; with compensation; note 9	-	550	950	kHz
IF amplifier						
S_{22}	output reflection coefficient	magnitude; see Fig.14; note 4	-	-10	-	dB
		phase; see Fig.14; note 4	-	9	-	-
Z_{0}	output impedance$\left(R_{S}+j L_{s} \omega\right)$	R_{S}; see Fig.14; note 4	-	95	-	Ω
		LS; see Fig.14; note 4	-	45	-	nH

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LO output; $\mathrm{R}_{\mathrm{L}}=100 \Omega$						
Yo	output admittance $\left(G_{p}+j C_{p} \omega\right)$	$\mathrm{f}_{\text {osc }}=80 \mathrm{MHz}$; see Fig. 15 ; note 4	-	2.5	-	mS
			-	0.9	-	pF
		$\mathrm{f}_{\text {osc }}=900 \mathrm{MHz}$; see Fig.15; note 4	-	3.5	-	mS
			-	0.7	-	pF
V 。	output voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega ; \mathrm{V}_{\mathrm{t}}=0.45$ to 28 V	83	91	100	$\mathrm{dB} \mu \mathrm{V}$
SRF	spurious signal on LO output with respect to LO output signal	note 11	-	-	-10	dBc
SHD	LO signal harmonics with respect to LO signal		-	-	-10	dBc

Notes to the characteristics

1. The RF frequency range is defined by the oscillator frequency range and the intermediate frequency.
2. The gain is defined as the transducer gain (measured in Fig.11) plus the voltage transformation ratio of L6 to L7 ($10: 2,15.4 \mathrm{~dB}$ including transformer loss).
3. The input level causing 10 kHz frequency detuning at the LO output. $\mathrm{f}_{\mathrm{OSc}}=\mathrm{f}_{\mathrm{RF}}+33.4 \mathrm{MHz}$.
4. All s-parameters are referred to a 50Ω system.
5. Limits are related to the tank circuits used in Fig.11. Frequency bands may be adjusted by the choice of external components.
6. The frequency shift is defined as the change in oscillator frequency when the supply voltage varies from $V_{P}=9$ to 8.1 V or from $\mathrm{V}_{\mathrm{P}}=9$ to 9.9 V .
7. The frequency drift is defined as the change in oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25$ to $0^{\circ} \mathrm{C}$ or from 25 to $50^{\circ} \mathrm{C}$. With no compensation, all capacitors are NPO.
8. Switch on drift with no compensation is defined as the change of oscillator frequency between 5 s and 15 min after switch on. All capacitors are NPO.
9. Switch on drift with compensation is defined as the change of oscillator frequency between 5 s and 15 min after switch on. C5 to C11 are N750; C1, C2 and C4 are N470.
10. The values have been corrected for hybrid and cable losses. The symmetrical output impedance of the hybrid is 100Ω.
11. Measured with RF input voltage:
a) RF voltage $=120 \mathrm{~dB} \mu \mathrm{~V}$ at $\mathrm{f}_{\mathrm{RF}}<180 \mathrm{MHz}$.
b) RF voltage $=107.5 \mathrm{~dB} \mu \mathrm{~V}$ at $180 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}}<225 \mathrm{MHz}$.
c) RF voltage $=97 \mathrm{~dB} \mu \mathrm{~V}$ at $225 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}}<860 \mathrm{MHz}$.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

$\mathrm{Z}_{\text {in }}(\mathrm{AIN}) \gg 50 \Omega \mathrm{~V}_{\mathrm{i}}=2 \times \mathrm{V}_{\text {meas }}$.
$V_{i}=V_{\text {meas }}+6 d B$.
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {meas }}^{\prime}+15.4 \mathrm{~dB}$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and transformer loss).
$G_{v}=20 \log \left(\frac{V_{0}}{V_{i}}\right)$
Fig. 3 Gain measurement in band A.

(a)

(b) For $f_{\mathrm{RF}}=150 \mathrm{MHz}$:
mixer A frequency response measured $=150.3 \mathrm{MHz}$, loss $=1.3 \mathrm{~dB}$ image suppression $=13 \mathrm{~dB}$
C3 $=5 \mathrm{pF}$
$\mathrm{C} 4=25 \mathrm{pF}$
12 = semi rigid cable (RIM): 30 cm long
I3 = semi rigid cable (RIM): 5 cm long
(semi rigid cable (RIM); $33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega ; 96 \mathrm{pF} / \mathrm{m}$).

Fig. 4 Input circuit for optimum noise figure in band A.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

(1) $\mathrm{NF}=\mathrm{NF}_{\text {meas }}-$ loss (input circuit) dB .

Fig. 5 Noise figure measurement in band A.

$\mathrm{V}_{\text {meas }}=\mathrm{V}_{\mathrm{o}}-15.4 \mathrm{~dB}$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and transformer loss).
Wanted output signal at $\mathrm{f}_{\mathrm{RFW}}=300 \mathrm{MHz}$: $\mathrm{V}_{\text {ow }}=104 \mathrm{~dB} \mu \mathrm{~V}\left(\mathrm{~V}_{\text {meas }}=88.6 \mathrm{~dB} \mu \mathrm{~V}\right)$.
We measure the level of the unwanted signal $\mathrm{V}_{\text {ou }}$ causing $0.3 \% \mathrm{AM}$ modulation in the wanted output signal; $\mathrm{f}_{\mathrm{RFU}}=305.5 \mathrm{MHz}$.
$V_{\text {ou }}=V_{\text {meas }}+15.4 \mathrm{~dB}$.
$\mathrm{f}_{\mathrm{osc}}=338.9 \mathrm{MHz}$.
Filter characteristics: $\mathrm{f}_{\mathrm{c}}=38.9 \mathrm{MHz} ; \mathrm{f}_{-3 \mathrm{dBBW}}=1.2 \mathrm{MHz} ; \mathrm{f}_{-30 \mathrm{dBBW}}=2.64 \mathrm{MHz}$.

Fig. 6 Cross modulation measurement in band A.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

Loss of the hybrid: 1 dB .
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}$ - loss of the hybrid.
$\mathrm{V}_{0}=\mathrm{V}^{\prime}$ meas +15.4 dB (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and transformer loss).
$G_{v}=20 \log \left(\frac{V_{0}}{V_{i}}\right)$

Fig. 7 Gain measurement in band C .

Loss of the hybrid: 1 dB .
$N F=N F_{\text {meas }}-$ loss of the hybrid.

Fig. 8 Noise figure measurement in band C.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

$\mathrm{V}_{\text {meas }}=\mathrm{V}_{\mathrm{o}}-15.4 \mathrm{~dB}$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and transformer loss).
Wanted output signal at $\mathrm{f}_{\mathrm{RFw}}: \mathrm{V}_{\text {ow }}=108 \mathrm{~dB} \mu \mathrm{~V}, \mathrm{~V}_{\text {meas }}=92.6 \mathrm{~dB} \mu \mathrm{~V}$.
We measure the level of the unwanted output signal $\mathrm{V}_{\text {ou }}$ causing 0.3% AM modulation in the wanted output signal.
$V_{\text {ou }}=V_{\text {meas }}+15.4 \mathrm{~dB}$.
$\mathrm{f}_{\mathrm{RFU}}=\mathrm{f}_{\mathrm{RFW}}+5.5 \mathrm{MHz} ; \mathrm{f}_{\mathrm{osc}}=\mathrm{f}_{\mathrm{RF}}+38.9 \mathrm{MHz}$.
Filter characteristics: $\mathrm{f}_{\mathrm{c}}=38.9 \mathrm{MHz} ; \mathrm{f}_{-3 \mathrm{dBBW}}=1.2 \mathrm{MHz} ; \mathrm{f}_{-30 \mathrm{dBBW}}=2.64 \mathrm{MHz}$.

Fig. 9 Cross modulation measurement in band C .

Loss of the hybrid: 1 dB .
$f_{\text {RFw }}=781 \mathrm{MHz}$. This wanted signal is not used during the measurement.
$\mathrm{f}_{\text {osc }}=819.9 \mathrm{MHz}$.
$\mathrm{f}_{\mathrm{RFU}}=820 \mathrm{MHz}=\mathrm{f}_{\mathrm{RFW}}+5 \times 8 \mathrm{MHz}-1 \mathrm{MHz}$.
We measure the level of the unwanted signal V_{iu} causing FM sidebands 30 dB below the oscillator carrier at the LO output.
$\mathrm{V}_{\mathrm{iu}}=\mathrm{V}_{\text {meas }}$ - loss of the hybrid.

Fig. $10 \mathrm{~N}+5-1 \mathrm{MHz}$ pulling measurement in band C .

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

(1) There are two applications for the band A oscillator:

- from 80 to 216 MHz : the band A tank circuit is built with C1, D1, L1, C5 and C7. R6 is a short-circuit.
- from 180 to 506 MHz : the band A tank circuit is built with R6, C4, D3, L4, C9 and C11.
(2) L6, L7 and C24 are only required for measurement purposes; they are not used in a tuner.

Fig. 11 Measurement circuit.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

Component values for measurement circuit

Table 1 Capacitors (all SMD and NPO except C28)

COMPONENT	VALUE
C1	82 pF
C2	5.6 pF
C3	100 pF
C4	150 pF
C5	2.2 pF
C6	1 pF
C7	2.2 pF
C8	1 pF
C9	1.8 pF
C10	2.2 pF
C11	3.9 pF
C12	1 nF
C13	1 nF
C16	1 nF
C17	1.5 nF
C18	1.5 nF
C19	1 nF
C20	1 nF
C21	1.5 nF
C22	1 nF
C23	1 nF
C24	18 pF
C25	1.5 nF
C26	1.5 nF
C28	$1 \mu \mathrm{~F} ; 40 \mathrm{~V}$ electrolytic
C29	1.5 nF
C30	0.56 pF

Table 2 Resistors (all SMD)

COMPONENT	VALUE
$R 1$	$47 \mathrm{k} \Omega$
$R 2$	$22 \mathrm{k} \Omega$
R3	$2.2 \mathrm{k} \Omega$
R4	$22 \mathrm{k} \Omega$
R6	22Ω
R7	$1 \mathrm{k} \Omega$
R12	470Ω

Table 3 Diodes and IC

COMPONENT	VALUE
D1	BB911
D2	BB405 or BB215
D3	BB909 or BB219
IC	TDA5630BT

Table 4 Coils (wire size 0.4 mm)

COMPONENT	VALUE
L1	7.5 turns; diameter 3 mm
L2	2.5 turns; diameter 3 mm
L3	1.5 turns; diameter 2.5 mm
L4	1.5 turns; diameter 4 mm
L5	$4.7 \mu \mathrm{H}$; choke coil

Table 5 Transformers; note 1

COMPONENT	VALUE
L6	2×5 turns
L7	2 turns

Note

1. Coil type: TOKO 7 kN ; material: 113 kN ; screw core 03-0093; pot core 04-0026.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

Fig. 12 Input admittance $\left(s_{11}\right)$ of the band A mixer input (40 to 200 MHz); $\mathrm{Y}_{0}=20 \mathrm{mS}$.

Fig. 13 Input impedance (s_{11}) of the band C mixer input (430 to 860 MHz); $\mathrm{Z}_{0}=50 \Omega$.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

Fig. 14 Output impedance (s_{22}) of the IF amplifier (25 to 45 MHz); $\mathrm{Z}_{0}=50 \Omega$.

Fig. 15 Output admittance (s_{22}) of the LO output (80 to 900 MHz); $\mathrm{Y}_{0}=20 \mathrm{mS}$.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

INTERNAL PIN CONFIGURATION

SYMBOL	PIN	DESCRIPTION	AVERAGE DC VOLTAGE IN (V) measured in circuit of Fig. 11	
			BAND A	BAND C
CIN1	1		NR ${ }^{(1)}$	2.2
CIN2	2		$N R^{(1)}$	2.2
RFGND	3		0.0	0.0
AIN	4		2.2	$\mathrm{NR}^{(1)}$
V_{P}	5	supply voltage	9.0	9.0
LOOUT1	6		7.3	7.3
LOOUT2	7		7.3	7.3
BS	8		0.0	5.0

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

SYMBOL	PIN	DESCRIPTION	AVERAGE DC VOLTAGE IN (V) measured in circuit of Fig. 11	
			BAND A	BAND C
IFOUT1	9	MGD609	4.0	4.0
IFOUT2	10		4.0	4.0
GND	11		0	0
COSCOC1	12		NR ${ }^{1)}$	4.4
COSCOC2	13		NR ${ }^{(1)}$	4.4
COSCIB	15		$N R^{(1)}$	2.3
AOSCOC	14		4.0	NR ${ }^{(1)}$
AOSCIB	16		2.2	$N R^{(1)}$

Note

1. $\mathrm{NR}=$ not relevant.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

PACKAGE OUTLINE

SO16: plastic small outline package; 16 leads; body width 3.9 mm
SOT109-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & \hline 0.0098 \\ & 0.0039 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.057 \\ 0.049 \end{array}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0098 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.24 \\ & 0.23 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	PROJECTION	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC			$-91-08-13$	

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

9 V VHF and UHF mixer/oscillator for TV and VCR cable tuners

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

9 V VHF and UHF mixer/oscillator for TV
 TDA5630BT

NOTES

9 V VHF and UHF mixer/oscillator for TV
 TDA5630BT

NOTES

9 V VHF and UHF mixer/oscillator for TV
 TDA5630BT

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +612805 4455, Fax. +61 28054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 7082968556
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +453288 2636, Fax. +4531571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 615 800, Fax. +358 61580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402352 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. +30 14894 339/911, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722 Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36481007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +1 800234 7381, Fax. +1 7082968556
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 402783749 , Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095926 5361, Fax. +7 0955648323
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11470 5911, Fax. +27 114705494
South America: Rua do Rocio 220-5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil, P.O. Box 7383 (01064-970), Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. +886 2382 4443, Fax. +886 23824444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 2A Akademika Koroleva str., Office 165, 252148 KIEV, Tel. +380 44476 0297/1642, Fax. +380 444766991
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +1 7082968556
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11825 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1996
SCA49
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

PHILIPS

