HGTG32N60E2 April 1995 # 32A, 600V N-Channel IGBT ## Features - 32A, 600V - Latch Free Operation - Typical Fall Time 600ns - · High Input Impedance - Low Conduction Loss # Description The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C. IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors. This device incorporates generation two design techniques which yield improved peak current capability and larger short circuit withstand capability than previous designs. ## **PACKAGING AVAILABILITY** | PART NUMBER | PACKAGE | BRAND | | | | |-------------|---------|----------|--|--|--| | HGTG32N60E2 | TO-247 | G32N60E2 | | | | NOTE: When ordering, use the entire part number. ## Package #### **JEDEC STYLE TO-247** # Terminal Diagram ## **N-CHANNEL ENHANCEMENT MODE** HGTG32N60E2 ## **Absolute Maximum Ratings** T_C = +25°C, Unless Otherwise Specified | | HG I G3ZNOUEZ | UNITS | |--|-------------------------------|-------| | Collector-Emitter Voltage | 600 | V | | Collector-Gate Voltage $R_{GF} = 1M\Omega \dots V_{CGR}$ | 600 | V | | Collector Current Continuous at T _C = +25°C | 50 | Α | | at $V_{GE} = 15V$, at $T_C = +90^{\circ}C$ | 32 | Α | | Collector Current Pulsed (Note 1) | 200 | Α | | Gate-Emitter Voltage Continuous | ±20 | V | | Gate-Emitter Voltage Pulsed | ±30 | V | | Switching Safe Operating Area at T _J = +150°C | 200A at 0.8 BV _{CFS} | - | | Power Dissipation Total at T _C = +25°C | 208 | W | | Power Dissipation Derating T _C > +25°C | 1.67 | W/°C | | Operating and Storage Junction Temperature Range | -55 to +150 | °C | | Maximum Lead Temperature for Soldering | 260 | °C | | Short Circuit Withstand Time (Note 2)at V _{GE} = 15Vt _{SC} | 3 | μs | | at V _{GE} = 10Vt _{SC} | 15 | μs | | NOTES: | | | - 1. Repetitive Rating: Pulse width limited by maximum junction temperature. - 2. $V_{CE(PEAK)} = 360V$, $T_C = +125^{\circ}C$, $R_{GE} = 25\Omega$. | , , | | | | | | | | |-----------|------------|---------------|---------------|--------------|---------------|---------------|-----------| | INTERSIL | CORPORATIO | N IGBT PRODUC | CT IS COVERED | BY ONE OR MO | RE OF THE FOL | LOWING U.S. P | ATENTS: | | 4,364,073 | 4,417,385 | 4,430,792 | 4,443,931 | 4,466,176 | 4,516,143 | 4,532,534 | 4,567,641 | | 4,587,713 | 4,598,461 | 4,605,948 | 4,618,872 | 4,620,211 | 4,631,564 | 4,639,754 | 4,639,762 | | 4,641,162 | 4,644,637 | 4,682,195 | 4,684,413 | 4,694,313 | 4,717,679 | 4,743,952 | 4,783,690 | | 4,794,432 | 4,801,986 | 4,803,533 | 4,809,045 | 4,809,047 | 4,810,665 | 4,823,176 | 4,837,606 | | 4,860,080 | 4,883,767 | 4,888,627 | 4,890,143 | 4,901,127 | 4,904,609 | 4,933,740 | 4,963,951 | | 4,969,027 | | | | | | | | | | | | | | | | | PIMITS # Specifications HGTG32N60E2 # **Electrical Specifications** $T_C = +25$ °C, Unless Otherwise Specified | | | | | LIMITS | | | | |--|----------------------|---|------------------------|--------|-----|------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | | MIN | TYP | МАХ | UNITS | | Collector-Emitter Breakdown Voltage | BV _{CES} | $I_C = 250\mu A, V_{GE} = 0V$ | | 600 | - | - | V | | Collector-Emitter Leakage Voltage | I _{CES} | $V_{CE} = BV_{CES}$ $T_C = +25^{\circ}C$ | | - | - | 250 | μΑ | | | | V _{CE} = 0.8 BV _{CES} | $T_C = +125^{\circ}C$ | - | - | 4.0 | mA | | Collector-Emitter Saturation Voltage | V _{CE(SAT)} | $I_{C} = I_{C90},$ | $T_{C} = +25^{\circ}C$ | - | 2.4 | 2.9 | V | | | $V_{GE} = 1$ | V _{GE} = 15V | $T_C = +125^{\circ}C$ | - | 2.4 | 3.0 | V | | Gate-Emitter Threshold Voltage | V _{GE(TH)} | $I_C = 1 \text{mA},$
$V_{CE} = V_{GE}$ | $T_{C} = +25^{\circ}C$ | 3.0 | 4.5 | 6.0 | V | | Gate-Emitter Leakage Current | I _{GES} | V _{GE} = ±20V | | - | - | ±500 | nA | | Gate-Emitter Plateau Voltage | V _{GEP} | $I_{C} = I_{C90}, V_{CE} = 0.5 \text{ BV}_{CES}$ | | - | 6.5 | - | V | | n-State Gate Charge Q _{G(ON)} | | V _{GE} = 15V | - | 200 | 260 | nC | | | | | $V_{CE} = 0.5 \text{ BV}_{CES}$ | V _{GE} = 20V | - | 265 | 345 | nC | | Current Turn-On Delay Time | t _{D(ON)I} | $\begin{split} & L = 500 \mu \text{H}, \ I_{\text{C}} = I_{\text{C90}}, \ \text{R}_{\text{G}} = 25 \Omega, \\ & V_{\text{GE}} = 15 \text{V}, \ \text{T}_{\text{J}} = +125 ^{\circ} \text{C}, \\ & V_{\text{CE}} = 0.8 \ \text{BV}_{\text{CES}} \end{split}$ | | - | 100 | - | ns | | Current Rise Time | t _{RI} | | | - | 150 | - | ns | | Current Turn-Off Delay Time | t _{D(OFF)I} | | | - | 630 | 820 | ns | | Current Fall Time | t _{FI} | 1 | - | 620 | 800 | ns | | | Turn-Off Energy (Note 1) | W _{OFF} | 1 | - | 3.5 | - | mJ | | | Thermal Resistance | $R_{ heta JC}$ | | | - | 0.5 | 0.6 | °C/W | #### NOTE: # **Typical Performance Curves** FIGURE 1. TRANSFER CHARACTERISTICS (TYPICAL) FIGURE 2. SATURATION CHARACTERISTICS (TYPICAL) Turn-Off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A) The HGTG32N60E2 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. # Typical Performance Curves (Continued) FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT P_D = ALLOWABLE DISSIPATION P_C = CONDUCTION DISSIPATION FIGURE 10. OPERATING FREQUENCY vs COLLECTOR-EMITTER CURRENT AND VOLTAGE # **Operating Frequency Information** Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature. f_{MAX1} is defined by $f_{MAX1}=0.05/t_{D(OFF)I}.\ t_{D(OFF)I}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)I}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device turn-off delay can establish an additional frequency limiting condition for an application other than T_{JMAX} . $t_{\text{D(OFF)I}}$ is important when controlling output ripple under a lightly loaded condition. f_{MAX2} is defined by f_{MAX2} = $(P_D$ - $P_C)/W_{OFF}$. The allowable dissipation (P_D) is defined by P_D = $(T_{JMAX}$ - $T_C)/R_{\theta JC}$. The sum of device switching and conduction losses must not exceed P_D . A 50% duty factor was used (Figure 10) so that the conduction losses (P_C) can be approximated by P_C = $(V_{CE} \ x \ I_{CE})/2$. W_{OFF} is defined as the sum of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CE}$ - 0A). The switching power loss (Figure 10) is defined as $f_{MAX1} \times W_{OFF}$. Turn on switching losses are not included because they can be greatly influenced by external circuit conditions and components. All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com # Sales Office Headquarters ## **NORTH AMERICA** FAX: (407) 724-7240 Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 # EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 #### **ASIA** Intersil (Taiwan) Ltd. Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029