ASSP cmos

3 V Single Power Supply Audio Interface Unit (AIU)

MB86435

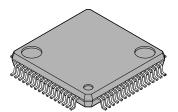
■ DESCRIPTION

The FUJITSU MB86435 is an AIU (audio interface unit) LSI for +3 V single-power source digital telephone devices, manufactured using CMOS process technology. The codec transmission filter characteristics meet G.712 standards, and can handle input and output in A-Law, μ -Law and linear conversion modes. The MB86435 also contains the necessary DTMF, microphone and receiver amps for telephone devices.

■ FEATURES

- +3 V single power supply
- Low power consumption: muting settings for each operating mode

Normal operation : 6.0 mA TYP (speaker amp mute) Tone generation : 1.8 mA TYP (speaker amp mute)

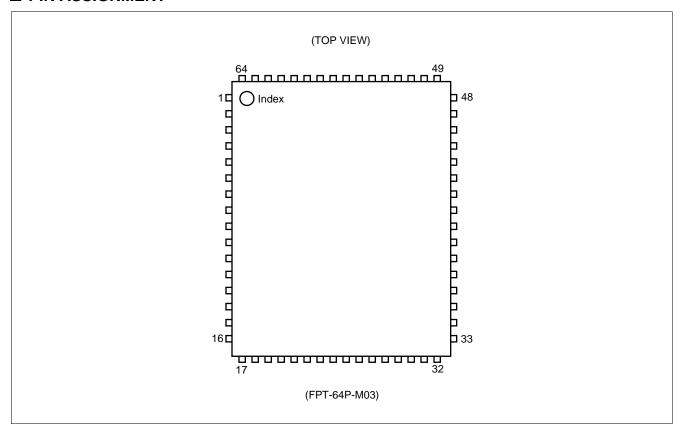

Standby mode : 0.5 µA TYP

- On-chip codec filter meets G.712 standards
- Selection of codec conversion methods (A-law, μ-law, linear)
- On-chip low-noise microphone amp (2-channel) (0 to 35 dB amplification)
- On-chip receiver speaker amps (32 ΩBTL type: 6.4 mW MIN)
- On-chip tone speaker amp (25 ΩBTL type: 10 mW MIN)
- On-chip earphone speaker amps (32 Ω single type: 2 mW MIN)

(Continued)

■ PACKAGE

64 pin, Plastic LQFP

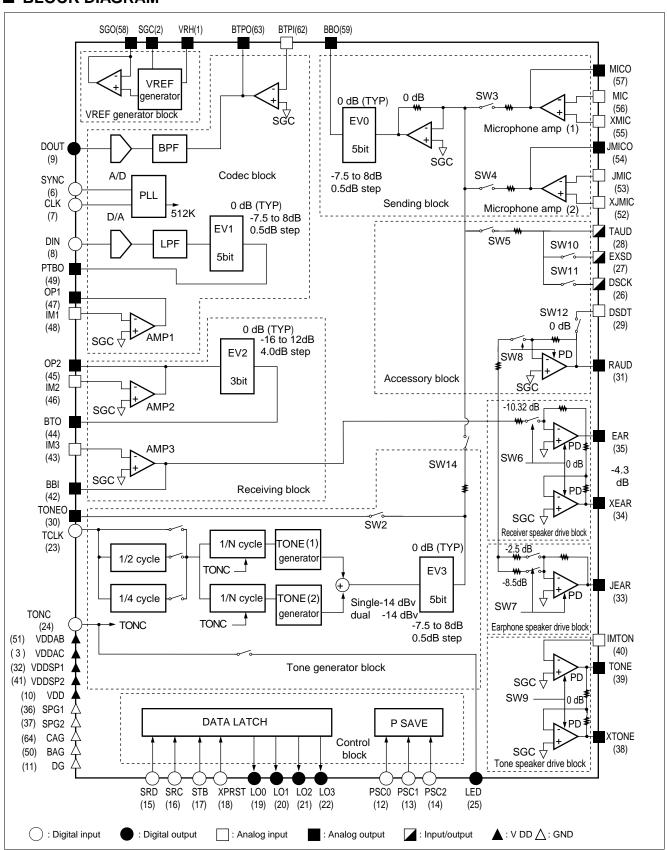


(FPT-64P-M03)

(Continued)

- On-chip electronic volume gain adjustments (sending, receiving, tone)
- On-chip accessory input/output circuits
- DTMF generator function
- Service tone generation
- CMOS compatible input/output

■ PIN ASSIGNMENT


■ PIN DESCRIPTION

Pin No.	Symbol	I/O	A/D	Desc	ription
1	VRH	0	Α	Bypass capacitor connector pin for the circuit. Place capacitor between VRH a	
2	SGC	0	Α	Bypass capacitor connector pin for the circuit. Place capacitor between SGC a	
3	VDDAC	Р	Α	Analog power supply pin for codec bloo	ck. To be set within range 2.7 to 3.6 V.
6	SYNC	I	D	PCM codec send/receive synchronizat frequency 8 kHz. CMOS interface. Corcodec block to power-down.	ion signal input pin. Operating clock astant H/L level signal will cause part of
7	CLK	I	D	Send/receive PCM signal series bit rate A-law modes may be set to any level in linear mode in the range 256 k to 3.152 cause part of codec block to power-down	the range 64 k to 3.152 MHz, and for 2 MHz. Constant H or L level signal will
8	DIN	I	D	PCM signal input pin. This signal is pic signal. CMOS interface.	ked up internally at the fall of the CLK
9	DOUT	0	D	PCM signal output pin. Data is output i After data output, loses PLL synchroniz fixed at H level. CMOS interface.	n sync with the rise of the CLK signal. zation, and at power-down this signal is
10	VDD	Р	D	Digital power supply pin. To be set with	in range 2.7 to 3.6 V.
11	DG	G	D	Digital ground pin. To be set to 0V.	
12	PSC0	ı	D	Power-down control signal input pin. CMOS interface. Used with PSC1,2 pins for power-down settings.	PSC 2 1 0
13	PSC1	ı	D	Power-down control signal input pin. CMOS interface. Used with PSC0,2 pins for power-down settings.	0 0 0 Full power-down 1 0 0 VREF operating — 1 0 Tone operating — — 1 All operations available
14	PSC2	ı	D	Power-down control signal input pin. CMOS interface. Used with PSC0,1 pins for power-down settings.	(—: value not determined)
15	SRD	I	D	9-bit serial data input pin. CMOS interfasignal from this pin.	ace. Data is written at the rise of the
16	SRC	I	D	Clock input pin for 9-bit serial data writi the rise of this pin.	ing. CMOS interface. Data is written at
17	STB	I	D	Serial data latch strobe signal. Data is interface.	latched by the L level signal. CMOS
18	XPRST	I	D	Digital reset signal input pin. CMOS into H level: normal operation	erface. L level: internal latch initialization
19	LO0	0	D	External control latch output pin. Output interface.	uts value D₀ of address 1000. CMOS
20	LO1	0	D	External control latch output pin. Output interface.	uts value D₁ of address 1000. CMOS

Pin No.	Symbol	I/O	A/D	Description
21	LO2	0	D	External control latch output pin. Outputs value D ₂ of address 1000. CMOS interface.
22	LO3	0	D	External control latch output pin. Outputs value D ₃ of address 1000. CMOS interface.
23	TCLK	I	D	Tone generator clock input pin. Can be used as a tone CLK signal by using address 1110 D4D3 to subdivide the internal clock signal by factors of 1/1, 1/2, 1/4. CMOS interface.
24	TONC	I	D	Tone generator cycle control input pin. CMOS interface. Hlevel signal outputs tone.
25	LED	0	D	Ring LED control output pin. CMOS interface.
26	DSCK	I/O	Α	Can be connected to EXSD or TAUD by switching bus.
27	EXSD	I/O	Α	Can be connected to DSCK or TAUD by switching bus.
28	TAUD	I/O	Α	Can be connected to EXSD or DSCK by switching bus.
29	DSDT	I	Α	Can be connected to RAUD by switching bus.
30	TONEO	0	Α	Tone signal output pin.
31	RAUD	0	Α	Output pin for external speaker, or audio test signal. Can be connected to DSDT by switching paths.
32	VDDSP1	Р	Α	Speaker amp power supply pin. To be set within range 2.7 to 3.6 V.
33	JEAR		0	Earphone speaker amp output pin. Capable of 2 mW output at 32 Ω load.
34	XEAR	0	А	Receiver speaker amp output pin. Internally connected to EAR and BTL. Maximum output of 6.4 mW can be obtained at 32 Ω load by connecting speaker between EAR and XEAR.
35	EAR	0	Α	Receiver speaker amp output pin. Connected to XEAR and BTL.
36	SPG1	G	Α	Speaker amp ground pin. To be set to 0 V.
37	SPG2	G	Α	Speaker amp ground pin. To be set to 0 V.
38	XTONE	0	А	Speaker amp tone output pin. Internally connected to TONE and BLT. Maximum output of 10 mW can be obtained at 25 Ω load by connecting speaker between TONE and XTONE.
39	TONE	0	Α	Speaker amp tone output pin. When speaker amp is not used for tone, TONE should be shorted to IMTON.
40	IMTON	I	А	Speaker drive inverted (–) signal input pin. Can be used to adjust gain by connecting resistance to TONE and IMTON.
41	VDDSP2	Р	Α	Speaker amp power supply pin. To be set within range 2.7 to 3.6 V.
42	BBI	0	А	AMP3 output pin. Should be included in HPF together with IM3, to prevent DC offset from entering speakers.
43	IM3	I	Α	AMP3 inverted (–) signal input pin.
44	вто	0	Α	Receiving volume adjustment circuit output pin.

Pin No.	Symbol	I/O	A/D	Description
45	OP2	0	Α	AMP2 output pin. If AMP2 is not used, IM2 should be shorted to OP2.
46	IM2	I	А	AMP2 inverted (–) signal input pin. Can form a circuit with OP2 to add sidetone or tone. Melody circuits, if used, can alsobe connected here.
47	OP1	0	Α	AMP1 output pin. Can form a circuit with IM1 to include LPF or HPF in receiving block. If AMP1 is not used, IM1 should be shorted to OP1.
48	IM1	I	Α	AMP1 inverted (–) signal input pin.
49	PTBO	0	Α	PCM receiver output pin.
50	BAG	G	Α	Analog ground pin for sending, receiving blocks. To be set to 0 V.
51	VDDAB	Р	А	Analog power supply pin for sending, receiving blocks. To be set within range 2.7 to 3.6 V.
52	XJMIC	I	Α	Microphone amp (2) non-inverted (+) signal input pin.
53	JMIC	I	Α	Microphone amp (2) inverted (–) signal input pin.
54	JMICO	0	Α	Microphone amp (2) output pin.
55	XMICI	I	Α	Microphone amp (1) non-inverted (+) signal input pin.
56	MIC	I	Α	Microphone amp (1) inverted (–) signal input pin.
57	MICO	0	Α	Microphone amp (1) output pin.
58	SGO	0	Α	Sending block signal ground potential output pin. Buffers SGC voltage.
59	BBO	0	Α	Sending analog signal output pin.
62	BTPI	I	Α	PCM ENCODE block input OP amp negative input pin.
63	BTPO	0	Α	PCM ENCODE block input OP amp output pin.
64	CAG	G	Α	Analog ground pin for codec block. To be set to 0 V.
4, 5, 60, 61	NC	_	_	Not connected. To be left open.

■ BLOCK DIAGRAM

■ FUNCTIONAL DESCRIPTION

1. Register Settings

The MB86435 IC chip controls all electronic volume, switching, tone generator circuits and power-down control circuits by means of the SRD, STB and SRC data input signals.

The MB86435 uses a 9-bit serial data format consisting of a 4-bit address followed by 5 data bits. Data is picked up at the rise of the SRC signal, and latched by the STB L-level signal. The 9-bits of serial data preceding the STB signal are considered valid. These register settings are not reset at power-down. They can be reset when data is initialized by an XPRST L-level signal.

(1) Mode Settings

Control	Address	Data bit	Setting description	Initial data bit setting (at reset)	Remarks
segment	A ₃ A ₂ A ₁ A ₀	D ₄ D ₃ D ₂ D ₁ D ₀		D ₄ D ₃ D ₂ D ₁ D ₀	
EV0	0 0 0 1	D ₄ D ₃ D ₂ D ₁ D ₀	Sending audio level adjustment. Adjusts EV0 gain.	0 1 1 1 1	
EV1	0 0 1 0	D ₄ D ₃ D ₂ D ₁ D ₀	Sending audio level adjustment. Adjusts EV1 gain.	0 1 1 1 1	*1
EV2	0 0 1 1	* * D ₂ D ₁ D ₀	Sending audio level adjustment. Adjusts EV2 gain.	* * 1 0 0	
TX-MUTE	0 1 0 0	D4 * * * D0	Do: Sending audio mute SW 3, 4, 5 on/off control. Mute: 1, Unmute: 0	0 * * * 0	*2, *3
RX-MUTE	0 1 0 0	D ₄ * * * D ₀	D ₄ : Sending audio mute SW 6, 7, 8, 9 on/ off control. Mute: 1, Unmute: 0	0 * * * 0	*3, *4
SW5			D ₀ : TAUD mute SW 5 on/off control. Mute: 1, Unmute: 0		*2, *5
SW4	0 1 0 1	D ₄ * D ₂ D ₁ D ₀	D ₁ : JMIC mute SW 4 on/off control. Mute: 1, Unmute: 0	0 * 0 0 0	*2
SW3		D4 D2 D1 D0	D ₂ : MIC mute SW 3 on/off control. Mute: 1, Unmute: 0		
SW8			D ₄ : RAUD mute SW 8 on/off control. Mute: 1, Unmute: 0		*3, *4, *6
SW6			D ₀ : EAR, XEAR mute SW 6 on/off control. Mute: 1, Unmute: 0		
SW9	0 1 1 0	D ₄ * D ₂ D ₁ D ₀	D ₁ : TONE, XTONE mute SW 9 on/off control. Mute: 1, Unmute: 0	0 * 0 0 0	*4
SW7			D ₂ : JEAR mute SW 7 on/off control. Mute: 1, Unmute: 0		
ATT			D ₄ : JEAR attenuation level switch. 0: –2.5 dB, 1: –8.5 dB.		

(Continued)

	ontrol	Α	dd	res	ss	Data bit	Setting description				ata k t res		Remarks
Se	egment	Аз	A ₂	A 1	Αo	D ₄ D ₃ D ₂ D ₁ D ₀	3	D	р Дз	Da	D ₁	Do	
SV	/10						D ₀ : EXSD pin selection SW 10 on/off control. On: 1, Off: 0						*3, *5
SW	/12						D ₁ : DSDT pin selection SW 12 on/off control. On: 1, Off: 0						*3, *6
SV	/11	0	1	1	1	D ₄ D ₃ D ₂ D ₁ D ₀	On: 1, Off: 0	0	0	0	0	0	*3, *5
SV	/2						D ₃ : TONEO mute SW 2 on/off control. Mute: 1, Unmute: 0						*7
SV	/14						D ₄ : TONE sending add SW 14 on/off control. On: 1, Off: 0						
pai	rial/ rallel nverter	1	0	0	0	* D ₃ D ₂ D ₁ D ₀	Parallel output $D_3 = LO3$, $D_2 = LO2$, $D_1 = LO1$, $D_0 = LO0$	*	0	0	0	0	*8
ΕV	3	1	0	0	1	D ₄ D ₃ D ₂ D ₁ D ₀	Tone level adjustment. Adjusts EV3 gain.	0	1	1	1	1	*1
		1	0	1	0	X ₈ X ₇ X ₆ X ₅ X ₄	Tone (1) frequency control, set by 8-bit value X ₇ to X ₀ .	0	0	0	0	0	
	Fre-	1	0	1	1	* X ₃ X ₂ X ₁ X ₀	$X_8 = 1$ to output trapezoidal wave, $X_8 = 0$ to output sine wave.	*	0	0	1	0	*0 *40
	quency control	1	1	0	0	Y ₈ Y ₇ Y ₆ Y ₅ Y ₄	Tone (2) frequency control, set by 8-bit value Y ₇ to Y ₀ .	0	0	0	0	0	*9, *10
ıol		1	1	0	1	* Y ₃ Y ₂ Y ₁ Y ₀	$Y_8 = 1$ to output trapezoidal wave, $Y_8 = 0$ to output sine wave.	*	0	0	1	0	
TONE control	Output control						Tone generator control D ₀ : tone (2) on/off control. On: 1, off: 0 D ₁ : tone (1) on/off control. On: 1, off: 0 D ₂ : LED output on/off control. On: 1, off: 0						*7, *11, *12
	Master clock control	1	1	1	0	D ₄ D ₃ D ₂ D ₁ D ₀	Tone CLK D ₄ , D ₃ 0 0 : TCLK1/1 frequency selected 0 1 : TCLK1/2 frequency selected 1 0 : TCLK1/4 frequency selected 1 1 : Prohibited	0	0	1	1	1	*9
PC		1	1	1	1	* * * D ₁ D ₀	PCM control D ₁ , D ₀ 0 0 : μ-law mode selected 1 0 : A-law mode selected 0 1 : linear mode selected	*	*	*	0	0	*13, *14
TE	ST	0	0	0	0	D ₄ D ₃ D ₂ D ₁ D ₀	Do not write in test mode.	0	0	0	0	0	

- *1: See (4) Electronic Volume Controls
- *2: See (2) Sending Audio Mute Setting
- *3: See 5. Power Saving Modes
- *4: See (3) Receiving Audio Mute Settings
- *5: See 2. Analog Input (2) Accessory Input
- *6: See 3. Analog Output (2) Accessory Output
- *7: See (5) Tone Generator Circuit Tone Generator Control Output Level
- *8: See (8) Parallel Output
- *9: See (5) Tone Generator Circuit Tone Frequency Control Registers
- *10: See (5) Tone Generator Circuit Tone Output Waveforms
- *11: See (5) Tone Generator Circuit Tone Output Controls
- *12: See (5) Tone Generator Circuit LED Output Controls
- *13: See (6) Codec Input/Output
- *14: See (7) The Codec SYNC Pin

(2) Sending Audio Mute Settings

Switches SW 3 to SW 5 have the following functions. Address 0100 signals have priority.

			S	etti	ng								
Address	Аз	A 2	A	1	Ao	A 3	A ₂	Α	1	Ao		Switching setting	
Address	0	1	()	0	0	1	0)	0			
	D ₄	Дз	D ₂	D ₁	D ₀	D ₄	Дз	D ₂	D ₁	D ₀	SW3	SW4	SW5
	—	*	*	*	1	_	*	_	_		0	0	0
	—	*	*	*	0	_	*	_	_	1	_	_	0
Data bit	—	*	*	*	0	_	*	_	1	_	_	0	_
Data bit	_	*	*	*	0	_	*	1	_	_	0	_	_
	—	*	*	*	0	_	*	_	_	0	_	_	×
	—	*	*	*	0	_	*	_	0	_	_	×	_
	—	*	*	*	0		*	0	_		×	_	_

 \bigcirc : muted, \times : unmuted, — : not determined

(3) Receiving Audio Mute Settings

Switches SW 6 to SW 9 have the following functions. Address 0100 signals have priority.

				S	ettir	ng										
Address	A ₃	A ₂	A ₁	A ₀	A ₃	A ₂	A ₁	A ₀	A ₃	A ₂	A ₁	A ₀		Switchin	g setting	
		D ₃ [D ₂ D		D ₄	D ₃ [) ₂ D	1 D 0		D ₃ [D ₂ D	1 D 0	SW8	SW7	SW9	SW6
	1	*	* *	_		* _		_	_	* -		_	0	0	0	0
	0	*	* *	_	_	* -		_		* -		1	_	_	_	0
	0	*	* *	_	_	* -		_		* -	– 1	_	_	_	0	_
Data bit	0	*	* *	_	_	* -		_		*	1 —	_	_	0	_	_
Data bit	0	*	* *	_	1	* _		_		* -		_	0	_	_	_
	0	*	* *	_	_	* -		_	-	* -		0	_	_	_	×
	0	*	* *	_	_	* -		_	_	* -	– 0	_	_	_	×	_
	0	*	* *	_	_	* -		_	_	*	0 —	_	_	×	_	_
	0	*	* *	_	0	* -		_		* -		_	×	_	_	_

 \bigcirc : muted, \times : unmuted, — : not determined

(4) Electronic Volume Controls

There are four different electronic volume controls, EV0 through EV3, with the following specifications. Electronic volume control settings are made by the SRD, SRC and STB signals, and setting values are reset by the XPRST signal. However, settings are not reset by PSC0, PSC1, PSC2 power-down mode operations.

Table 1 Relation of Volume Control Data bit Values to Gain

Step		Data	bit v	alue		EV0 sending gain adjustment	EV1 sending gain adjustment	EV2 sending gain adjustment	EV3 sending gain adjustment	Unit
	D ₄	Dз	D ₂	D ₁	D ₀	Тур.	Тур.	Тур.	Тур.	
0	0	0	0	0	0	-7.5	-7.5	-16	-7.5	
1	0	0	0	0	1	-7.0	-7.0	-12	-7.0	
2 3 4 5 6 7	0	0	0	1	0	-6.5	-6.5	-8	-6.5	
3	0	0	0	1	1	-6.0	-6.0	-4	-6.0	
4	0	0	1	0	0	-5.5	-5.5	0	-5.5	
5	0	0	1	0	1	-5.0	-5.0	4	-5.0	
6	0	0	1	1	0	-4.5	-4.5	8	-4.5	
7	0	0	1	1	1	-4.0	-4.0	12	-4.0	
8	0	1	0	0	0	-3.5	-3.5		-3.5	
9	0	1	0	0	1	-3.0	-3.0		-3.0	
10	0	1	0	1	0	-2.5	-2.5		-2.5	
11	0	1	0	1	1	-2.0	-2.0		-2.0	
12	0	1	1	0	0	-1.5	-1.5		-1.5	
13	0	1	1	0	1	-1.0	-1.0		-1.0	
14	0	1	1	1	0	-0.5	-0.5		-0.5	
15	0	1	1	1	1	0.0	0.0		0.0	dB
16	1	0	0	0	0	0.5	0.5		0.5	<u></u>
17	1	0	0	0	1	1.0	1.0		1.0	
18	1	0	0	1	0	1.5	1.5		1.5	
19	1	0	0	1	1	2.0	2.0		2.0	
20	1	0	1	0	0	2.5	2.5		2.5	
21	1	0	1	0	1	3.0	3.0		3.0	
22	1	0	1	1	0	3.5	3.5		3.5	
23	1	0	1	1	1	4.0	4.0		4.0	
24	1	1	0	0	0	4.5	4.5		4.5	
25	1	1	0	0	1	5.0	5.0		5.0	
26	1	1	0	1	0	5.5	5.5		5.5	
27	1	1	0	1	1	6.0	6.0		6.0	
28	1	1	1	0	0	6.5	6.5		6.5	
29	1	1	1	0	1	7.0	7.0		7.0	
30	1	1	1	1	0	7.5	7.5		7.5	
31	1	1	1	1	1	8.0	8.0		8.0	

Note: Each setting value is determined in relation to the initial setting value.

Returns to initial value at reset (— parts)

EV2 data bits D₄, D₃ are *.

Table 2 Volume Gain Deviation

Volume control No.	Condition	Min.	Тур.	Max.	Unit
EV0 EV1 EV3	Gain deviation, with respect to reference value shown in Table1	Reference value – 0.5 dB	Reference value	Reference value + 0.5 dB	dB
EV2	Input frequency = 1020 Hz Input level = - 20 dBv	Reference value – 1.0 dB	Reference value	Reference value + 1.0 dB	αв

(5) Tone Generator Circuit

• Tone Frequency Control Registers

The tone generator uses a clock signal obtained by subdividing the TCLK clock signal input by 1/1, 1/2 or 1/4 according to the data bit in address 1110.

Table 3 Tone Clock Frequency Register Control

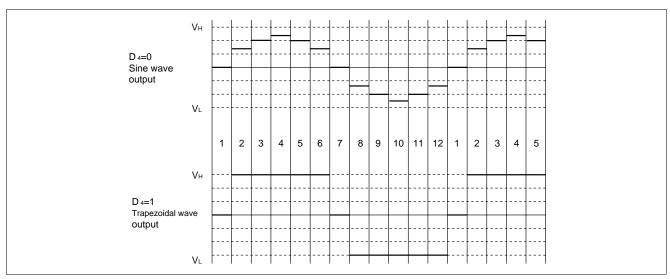
Addres	ss 1110	Tong generator clock signal (f)
D ₄	D 3	Tone generator clock signal (fin)
0	0	TCLK input clock signal
0	1	TCLK input clock signal subdivided by 1/2
1	0	TCLK input clock signal subdivided by 1/4
1	1	Prohibited

Frequency settings available through the tone frequency control register are determined by the following formula. Frequency setting $f = f_{IN}/(12^*(1+n))$, n=1, 2, 3, ..., 255. (where f_{IN} : tone generator clock signal frequency). Therefore the available frequency setting range when $f_{IN} = 512$ kHz is between $f_{min} = 167$ Hz and $f_{max} = 21333$ Hz.

Frequency settings corresponding to each DTMF rated reference frequency are shown in the following table.

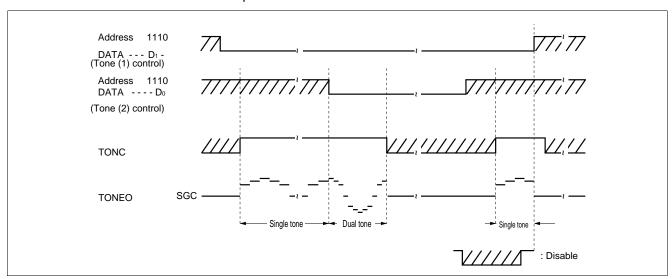
Table 4 Tone Frequency Register Control

(Condition: 512 kHz)

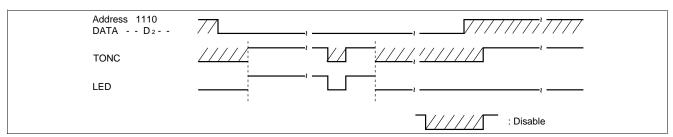

		Rated reference	Frequency			ddre 10/11					ddre 11/11				_
	one type	frequency (generator frequency)	setting	D ₄	Da Da	ata k D2		Do	D ₄	Da D3	ata k D ₂	oit D₁	Do	n	Error
		262 Hz	261.7 Hz	_	1	0	1	0	*	0	0	1	0	162	-0.11%
		384 Hz	384.4 Hz	_	0	1	1	0	*	1	1	1	0	110	0.10%
1	vice tone gle tone)	400 Hz	398.7 Hz	_	0	1	1	0	*	1	0	1	0	106	-0.32%
(0	g.o too,	2000 Hz	2031.7 Hz	_	0	0	0	1	*	0	1	0	0	20	1.56%
		2600 Hz	2666.7 Hz	_	0	0	0	0	*	1	1	1	1	15	2.50%
		697 Hz	699.4 Hz	_	0	0	1	1	*	1	1	0	0	60	0.34%
	Low tone	770 Hz	775.7 Hz	_	0	0	1	1	*	0	1	1	0	54	0.74%
_	Low tone	852 Hz	853.3 Hz	_	0	0	1	1	*	0	0	0	1	49	0.15%
D T		941 Hz	948.1 Hz	_	0	0	1	0	*	1	1	0	0	44	0.75%
M F		1209 Hz	1219.0 Hz	_	0	0	1	0	*	0	0	1	0	34	0.82%
[High tone	1336 Hz	1333.3 Hz	_	0	0	0	1	*	1	1	1	1	31	-0.20%
	High tone	1477 Hz	1471.3 Hz	_	0	0	0	1	*	1	1	0	0	28	-0.38%
		1633 Hz	1641.0 Hz	_	0	0	0	1	*	1	0	0	1	25	0.48%

Note: • Setting values are BIN display values

• Error represents frequency setting error with respect to rated reference frequency.


• Tone Output Waveform

The D4 data bit at address 1010, 1100 may be used to select either sine-wave or trapezoidal waveforms for tone output.

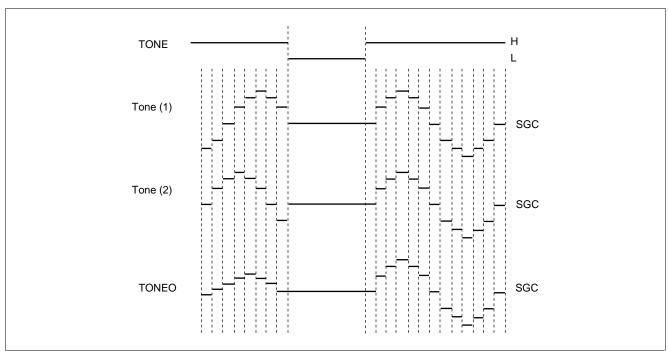

• Tone Output Control

Tone output may be controlled by address and through the external tone control input pin TONC. In addition, the tone control offers a choice of sine or trapezoidal waveforms.

• LED Output Controls

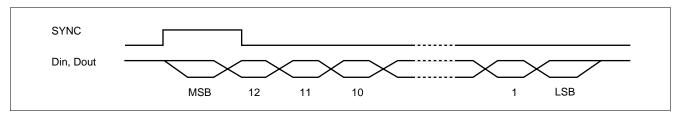
Output from the LED output pins can be controlled by the TONC signal and the address 1110 data bit D_2 . When the TONC signal is H-level, and the address 1110 data bit D_2 value is L-level, the output level will be high. Output levels are CMOS levels.

• Tone Generator Control Output Level


(Condition: $EV3 = 0 dB$)

	Extern	xternal pins				ss) its	Address 0111 data bits Tone ge circ		ating		ut pin ode	Remarks		
PSC2	PSC1	PSC0	TONC	D ₂	(1) (2)		LED	TONEO						
0	0	0	_	_	_	_	_	×	×	L	H-Z			
1	0 0		_	_	_	_	_	×	×	L	H-Z			
_	1 or 1		0	_	_	_	0	SGC	SGC	L	SGC			
_	1 c	or 1	0	_	-	_	1	SGC	SGC	L H-Z				
_	1 c	or 1	1	1	_	_	_	_	_	L	_			
_	1 c	or 1	1	0	-	_		_		0	_			
_	1 c	or 1	1		1	1	0	SGC	SGC		SGC			
_	1 c	or 1	1	_	1	0	0	SGC	0	_	-14 dBv	Single tone output		
_	_ 1 or 1 1		1	_	0	1	0	0	SGC	_	-14 dBv	Single tone output		
_	1 or 1		1	—	0	0	0	0 0		_	–14 dBv	Dual tone output		

 \bigcirc : Operational, \times : Power down, H-Z : High-impedance, L: L-level fixed, SGC: SGC fixed


Note: When the TONC pin signal is L-level, the tone generator circuit counters will be reset. When a dual tone is generated at the time of reset, the initial phase settings for tone (1) and tone (2) will be in phase.

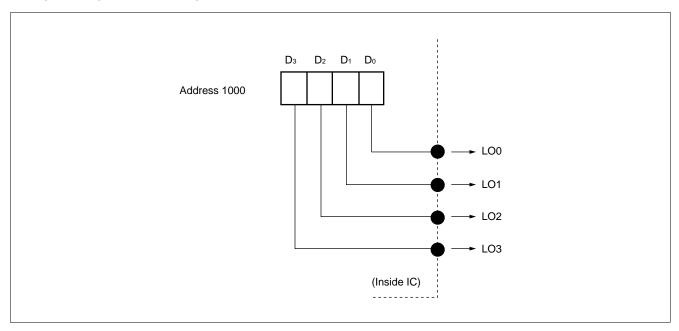
• Example: When Tone (1), Tone (2) are at the same frequency:

(6) Codec Input/Output

Both the μ -law and A-law coding/decoding conversion processes used by the MB86435 codec are compatible with CCITT Recommendation G.711. In addition, linear coding in the form of 14-bit two's complement code can be output starting with MSB values.

MSB	Code	LSB	PTBO reference voltage (V)
0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	0.7354 to
0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	1.4991 1.5000 1.5009
1 0	0 0 0 0 0 0 0 0 0 0	0 0 0 1	to 2.2647

(7) The Codec SYNC Pin

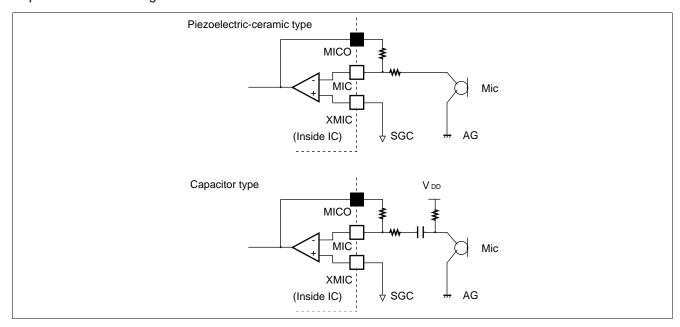

The codec block requires the input of an 8 kHz sampling clock signal at the SYNC pin, as well as a data transfer clock at the CLK pin. In order to conserve power consumption, whenever the SYNC pin or CLK pin signal is inactive, the system goes into SYNC power-down mode and stops code conversion.

Also, if either the SYNC or CLK pins encounters jitter of 5 μ s or greater, the system may go into power-down mode. Table 1.10 shows the status of output pins in SYNC power-down mode.

Pin symbol	Operation
SGC	Normal operation (1.5 V)
SGO	Normal operation (1.5 V)
VRH	Normal operation (2.5 V)
DOUT	H-level fixed
РТВО	SGC
ВТРО	High impedance

(8) Parallel Output

The LO0 to 3 pins carry latched output for external controls. The data written to address 1000 can be output through these pins. Output is CMOS output.



2. Analog Input

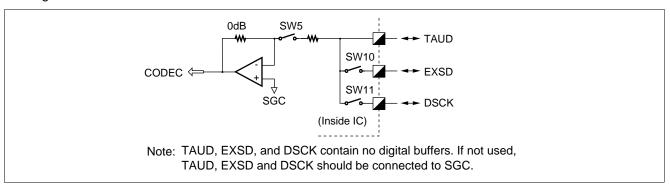
Analog input signals in the MB86435 include the two microphone inputs and the three accessory input.

(1) Microphone Amps

The microphone amps take the incoming signal from the microphones and amplify it to any desired level of gain. The microphone lines are low-noise types for use with piezoelectric-ceramic or capacitor microphones, and are capable of a wide range of amplification. All microphones and amps must be coupled with capacitors to prevent amplification of offset signals.

Table 5 Microphone Amp Characte

Parameter	Characteristics (typ)
Gain measurement range	0 to 35 dB
Minimum load level	50 kΩ
Maximum output level	0.75 Vop


(2) Accessory Input

Direct input from the TAUD to the codec unit is possible through SW5, without passing through the microphone amp. Care must be taken with the input signal in this case, however, because input resistance is not at high-impedance level.

Microphone amp output may be added to the signal by using switching controls.

In this case, the result will be at the additional output level.

In addition, SW10 and SW11 may be used to transmit digital data from the TAUD to EXSD and DSCK, allowing the sending of fax or PC data without modification.

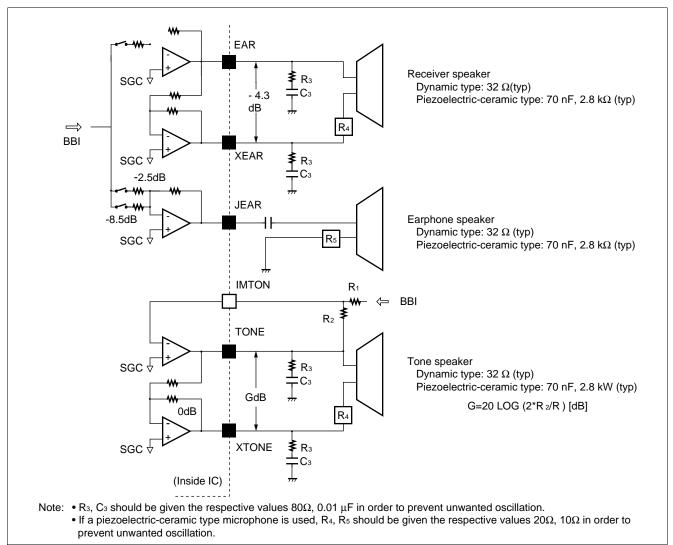
3. Analog Output

The MB86435 has a total of four analog output circuits, including the three speaker drive circuits (receiver, earphone and tone) and the accessory output.

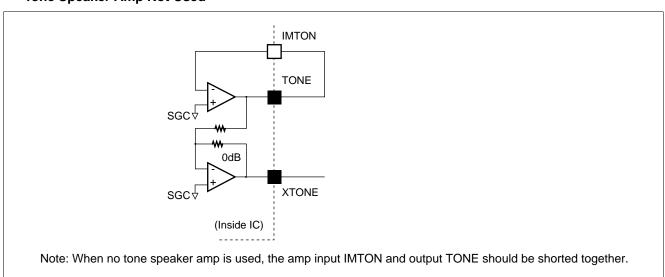
(1) Speaker Drive Amp

The speaker drive amps include two circuits (receiver and tone) with BTL output and one system (earphone) with single output. Because the speaker amp requires relatively high levels of power, it is connected to speaker selection switches (sw6-sw9) for power-down mode selection.

Two systems (receiver and earphone) have fixed gain levels, while the other system (tone) allows gain adjustment by means of external resistors.


Table 6 Speaker Drive Amp Output Standards
Receiver speaker amps | Earphone speaker amp

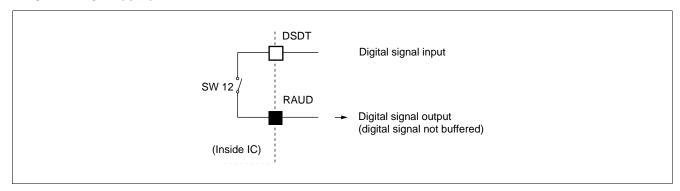
Parameter	Receiver speaker amps (EAR, XEAR)	Earphone speaker amp (JEAR)	Tone speaker amps (TONE, XTONE)
Output type	BTL	Single	BTL
Load resistance *1	32 Ω (typ)	32 Ω (typ)	25 Ω (typ)
Load resistance *2	2.8 kΩ (typ)	2.8 kΩ (typ)	2.8 kW (typ)
Load capacity *2	70 nF	70 nF	70 nF
Final stage gain	–4.3 dB	–2.5 dB/–8.5 dB	–5 to 20 dB
	(between EAR-XEAR)	(JEAR)	(between TONE-XTONE)
Maximum output power	6.4 mW (min)	2 mW (min)	10 mW (min)


^{*1:} Dynamic-type speaker

^{*2:} Piezoelectric-ceramic type speaker

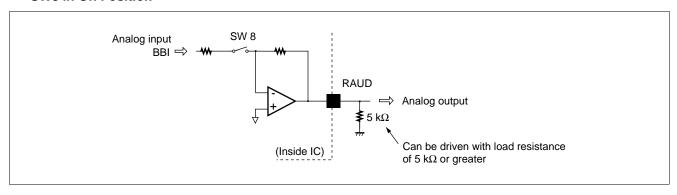
• Analog Output Connection Example

• Tone Speaker Amp Not Used



(2) Accessory Output

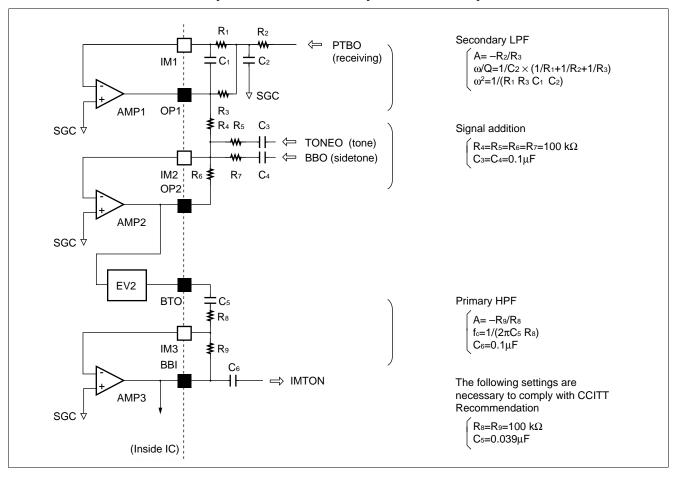
The accessory output (RAUD pin) can carry either digital or analog output signals, and is controlled by address 0101 data bit D_4 (SW 8), and address 0111 data bit D_1 (SW 12).


When both SW 8 and SW 12 are in off position, the accessory outputline is in H-Z (high impedance) state. Caution: never place both SW 8 and SW 12 in on position at the same time. This may cause the MB86435 to function improperly.

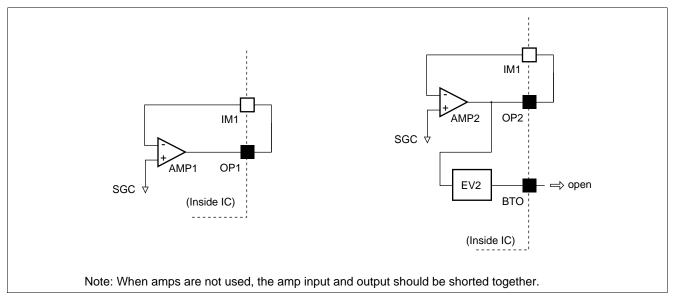
• SW12 in On Position

Address	Data bit
A ₄ A ₃ A ₂ A ₁	D_4 D_3 D_2 D_1 D_0
0 1 1 1	1 _

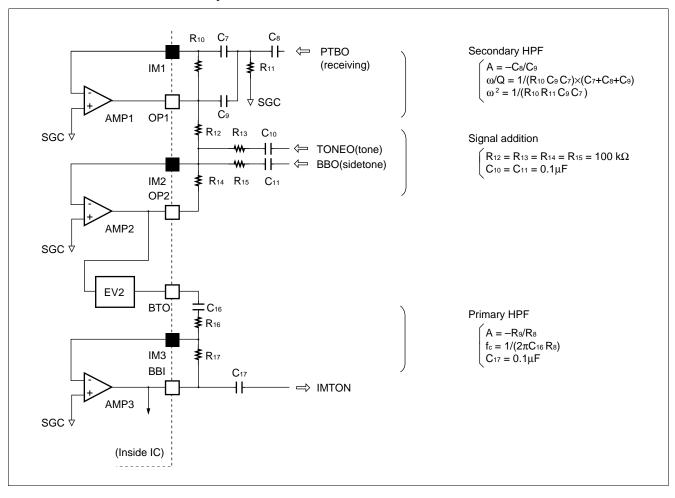
• SW8 in On Position


	Add	ress		Data bit						
A 4	A 3	A_2	A 1	D ₄	D ₃	D_2	\mathbf{D}_1	D_0		
0	1	0	0	0	*	*	*	_		
0	1	0	1	0	*	_	_	_		

19


4. Receiver Connections

It is possible to add tones and adjust sidetones by using amp 1,2 and 3 and the electronic volume control. When using amp 3, however, it is necessary to include HPF to avoid interference from the speaker amp DC.


• Tone and Sidetone Addition by Inclusion of Secondary LPF and Primary HPF.

• Amp1, Amp2 not used

• Tone and Sidetone Addition by Inclusion of Third-Order HPF

5. Power Saving Modes

(1) Mode Selection

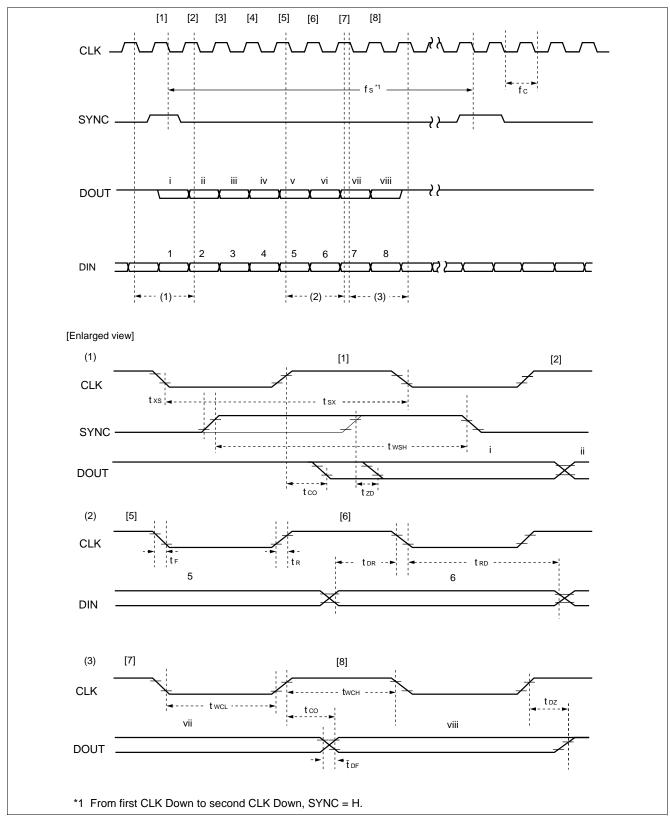
The MB86435 power saving modes can be controlled by using the external control signal lines (3 lines). It is also possible to apply power saving modes to the speaker amps with high power consumption levels by writing changes to register settings. Whenever the MB86435 changes directly from a power-down mode to normal operating mode, there is a possibility that speaker tones may be produced. The recommended sequence of coding changes to go into normal mode is (VREF mode) \rightarrow (Tone mode) \rightarrow (Normal mode).

Power Saving Modes

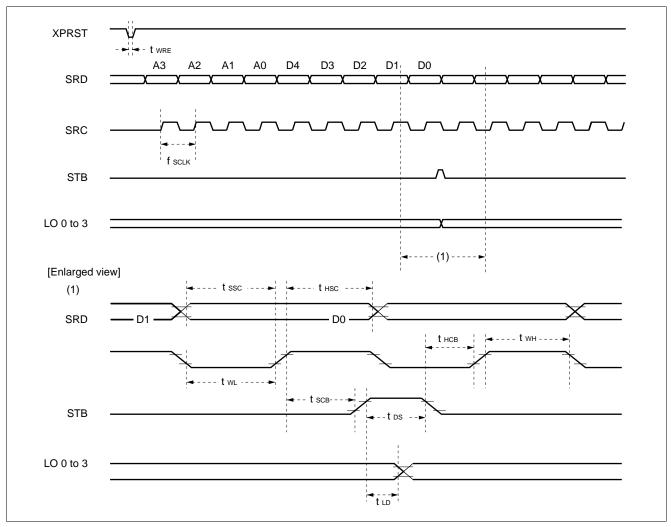
			nal	A		Ad-		ddre					0	utpı	ıt pin	sta	tus					0	per	atiı	ng d	circu	it st	atus		D					
Mode	pins		dre	ess	dress		0110		4 Y	Ä	빌빌	۵ſ	7	ပဝ	20	စ္တစ္	_	BBO VRH	_	EC	ator	ator	g	ng	/ing	one	o)	sory	Power supply						
			SPS 1C0					D 4 D 0	D4 D0	D4 D0	D	D	D	D	EAR	JEAR	TONE	RAUD	DOUT	86C 860	P P	PTB0 BTP0	OP1	0	BBI	CODEC	generator	generator	Sending	Receiving	Receiving	Earphone	Tone	Accessory	current (mA)
	C2	C1		D4	DO	SW8	SW7	SW9	SW6	SW6	SW7	SW9	SW8						MICO			VREF	TONE	Se	ı — ı		_	01110		(typ)					
L																						>	ř			SW6	SW7	SW9	SW8						
All Power- down	0	0	0	_	_	_		_	_	ZA	H-Z	ZB	H-Z	Н	H-Z	ZC	H-Z	H-Z	H-Z	*	×	×	×	×	×	×	×	×	×	0.0005					
VREF	1	0	0	_	_	_	_	_	_	ZA	H-Z	ZB	H-Z	Н	0	ZC	H-Z	H-Z	H-Z	*	×	0	X	×	X	×	X	X	×	0.41					
	_	1	0	1	1	_	_	_	_	ZA	H-Z	ZB	H-Z	Н	0	0	H-Z	H-Z	H-Z	0	×	0	\bigcirc	×	\bigcirc	\times	\times	X	×	1.8					
	_	1	0	0	1	0	1	1	1	ZA	H-Z	ZB	0	Н	0	0	H-Z	H-Z	H-Z	0	×	0	\bigcirc	×	\bigcirc	\times	\times	X	0	2.4					
Tone	_	1	0	0	1	1	0	1	1	ZA	0	ZB	H-Z	Ι	\circ	0	H-Z	H-Z	H-Z	\circ	×	\bigcirc	\bigcirc	\times	\bigcirc	\times	\circ	X	×	4.4					
	_	1	0	0	1	1	1	0	1	ZA	H-Z	0	H-Z	Ι	0	\circ	H-Z	H-Z	H-Z	\circ	×	\bigcirc	\bigcirc	\times	\bigcirc	\times	\times	\circ	×	6.6					
	_	1	0	0	1	1	1	1	0	0	H-Z	ZB	H-Z	Ι	0	0	H-Z	H-Z	H-Z	\circ	×	\bigcirc	\bigcirc	\times	\bigcirc	\circ	\times	X	×	6.6					
	_	_	1	0	0	0	1	1	1	ZA	H-Z	ZB	0	0	0	0	0	0	0	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	X	\times	X	\circ	6.0					
	_	_	1	0	0	1	0	1	1	ZA	0	ZB	H-Z	0	0	\circ	0	0	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	X	\circ	X	×	8.0					
Normal	_	_	1	0	0	1	1	0	1	ZA	H-Z	0	H-Z	0	0	\circ	0	0	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	X	X	\circ	×	10.2					
	_	_	1	0	0	1	1	1	0	0	H-Z	ZB	H-Z	0	0	0	0	0	0	0	0	0	\circ	0	\bigcirc	\circ	\times	X	×	10.2					
	—	—	1	0	0	0	0	0	0	0	0	0	0	0	\circ	\circ	0	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\circ	\circ	18.2					

Note: • ○ : Operational, ×: Power-down, H-Z: High impedance, H: H-level fixed

: High impedance may not be applied, depending on status of SW6, SW7, SW8.


ZA: EAR and XEAR are floating, however high resistance connection between EAR and XEAR.

ZB: TONE and XTONE are floating, however, high resistance connection between TONE and XTONE, and between SGO and XTONE.


- ZC : Floating, however high resistance connection between OP2 and BTO. Codec in [Normal] mode operates with SYNC = 8 kHz, CLK = 2048 kHz.
- When RAUD is operating, address 0111 data bit D1 value should be "0" (SW12 off).
- In tone mode, address 0111 data bit D3 should be "0" (SW2 on), and address 0111 data bit D4 should be "0" (SW14 off).
- When the SYNC and CLK pin signals are fixed at either L-level or H-level, part of the codec unit will go into power-down mode. At this time the PTBO signal will be SGC level, BTPO will be H-Z, and VRH output will be approximately 4.0 V.

■ TIMING CHART

• Codec-Related Signals

• Microcomputer Data-Related Signals

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Rat	Unit	
Farameter	Symbol	Min.	Max.	Offic
Power supply voltage	Vs	-0.3	7.0	V
Analog input voltage	Vain	-0.3	+Vs + 0.3	V
Digital input voltage	Vdin	-0.3	+Vs + 0.3	V
Storage temperature	Vstg	- 55	+125	°C

WARNING: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

■ RECOMMENDED OPERATING CONDITIONS

Donomotor	Comp. al	Din nome		Value						
Parameter	Symbol	Pin name	Min.	Тур.	Max.	Unit				
Operating temperature	Та	_	-20	+25	+80	°C				
Power supply voltage	Vs	VDD, VDDAB, VDDAC, VDDSP1 , VDDSP2	2.7	3.0	3.6	V				
Digital input voltage	VL	All digital input pins	0.0	_	Vs	V				
Analog output load resistance	RLB	BBO, PTBO, TONEO,	75	_	_	kΩ				
Analog output load capacity	Сьв	BTO, BTPO	_	_	20	pF				
Analog output load resistance*1	RLE	Between EAR-XEAR	_	32	_	Ω				
Analog output load capacity*2	CLE	Detween EAR-AEAR	_	_	70	nF				
Analog output load resistance*1	RLJ	R⊔ JEAR		32	_	Ω				
Analog output load capacity*2	CLJ	JEAR	_	_	70	nF				
Analog output load resistance*1	RLT	Between TONE-XTONE	_	25	_	Ω				
Analog output load capacity*2	Сьт	Detween TONE-XTONE	_	_	70	nF				
Analog output load resistance	RLM	MICO, JMICO, SGO,	50	_	_	kΩ				
Analog output load capacity	Сьм	BBI, OP1, OP2	_	_	20	pF				
Analog output load resistance*3	RLM	DALID	5	_	_	kΩ				
Analog output load capacity*3	Сьм	RAUD	_	_	20	pF				
Analog output voltage	VAOUT	All analog output pins	0.45	_	V _{DD} -0.45	V				
Analog input voltage	Vain	All analog input pins	1.2	_	1.8	V				

^{*1:} Dynamic typ speakers

^{*2:} Piezoelectric type speakers

^{*3:} When SW8 = on, SW12 = off

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

		Courselle ed	D:	Oo malition o		Value		11
P	arameter	Symbol	Pin	Conditions	Min.	Тур.	Max.	Unit
Power suppower-do	oply current at full wn mode	Ivsst1		PSC0 = 0 : PSC1 = 0 : PSC2 = 0, Ain = AG, Din = L	_	0.5	50	μΑ
Power sup VREF ope	oply current with erating	Ivsst2		PSC0 = 0 : PSC1 = 0 : PSC2 = 1, Ain = SGC, Din = L	_	410	800	μА
Power sup TONE op	oply current with erating	Ivsst3		PSC0 = 0 : PSC1 = 1, Ain = SGC, Din = ICN SW6 = SW7 = SW8 = SW9 = off	_	1.8	3.0	mA
Power supply current for normal operation (only speaker ampmute)		Ivsst4		PSC0 = 1, Ain = SGC, Din = ICN SW6 = SW7 = SW9 = off	_	6.0	8.5	mA
	Receiver amps EAR, XEAR	Ivsst5	All V _{DD} pins	PSC0 = 0, PSC1 = 1, Ain = SGC, Din = ICN, Power supply current differential when SW6 is on/off.	_	4.8	7.0	mA
Speaker amp power supply voltage	Earphone amp JEAR	Ivsst6		PSC0 = 0, PSC1 = 1, Ain = SGC, Din = ICN, Power supply current differential when SW7 is on/off.	_	2.6	4.0	mA
Speaker amp power supply voltage	Tone amps TONE, XTONE	Ivsst8		PSC0 = 0, PSC1 = 1, Ain = SGC, Din = ICN, Power supply current differential when SW9 is on/off.	_	4.8	7.0	mA
Digital inn	out voltage	Vıн		_	Vs×0.7	_	Vs	V
טואונמו וווף טויטן	out voitage	VIL	All digital input	_	0	_	Vs×0.3	V
Digital inc	out current	Іін	pins		_		10	μΑ
	out our ont	I⊫		_	_	_	10	μΑ
Input offs	et voltage	V _{FM}	Between MIC-XMIC, between JMIC-XJMIC	_	-10	_	10	mA

(Continued)

Daramatar	Cumbal	Pin	Conditions		Value		Unit
Parameter	Symbol	Pin	Conditions	Min.	Тур.	Max.	Unit
	VFR	RAUD	BBI = SGC SW8 = on, SW6 = SW7 = SW9 = SW12 = off	-15	_	15	mV
	VFE	Between EAR-XEAR	BBI = SGC SW6 = on, SW7 = SW8 = SW9 = SW12 = off	-20	_	20	mV
Output offset voltage	VFT	Between TONE-XTONE	IMTON = SGC SW9 = on, SW6 = SW7 = SW8 = SW12 = off	-20	_	20	mV
	V _{FP}	PTBO	Din = ICN, EV2 = 0 dB	-100	_	100	mV
	Vон	Between MIC0-BBO	EV0 = 0 dB	100		100	m)/
	Vol	Between JMIC0-BBO	EVO = 0 UB	-100	_	100	mV
SGC output voltage	Vsgc	SGC	_	1.40	1.50	1.60	V
SGO output voltage	Vsgo	SGO	_	1.40	1.50	1.60	V
VRH output voltage	Ivrh	VRH	_	_	2.5	_	V
Digital output voltage	Vон	All digital output pins	Iон = − 0.5 mA	Vs×0.8	_	Vs	V
Digital output voltage	Vol	All digital output pins	IoL = 0.5 mA	0.0	_	Vs×0.2	V
Resistance between pins TAUD and DSCK	RDR	Between DSTD-RAUD	SW12 = on, SW8 = off	_	_	2	kΩ
Resistance between pins TAUD and EXSD	RTE	Between TAUD-EXSD	SW10 = on, SW11 = off	_	_	2	kΩ
Resistance between pins DSTD and RAUD	RDE	Between TAUD-DSCK	SW11 = on, SW10 = off	_	_	2	kΩ

Note: Measurement conditions: ■ Standard Test Circuit

2. AC Characteristics

(1) Codec-Related Signals

Daramatar	Symbol	Conditions		Value		l lni4
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Digital input rise time	t R	Vs×0.3→Vs×0.7	_	_	50	ns
Digital input fall time	t⊧	V\$XU.3→V\$XU.7	_	_	50	ns
Chift clock fraguency	fc	μ-law , A-law	64	_	3152	kHz
Shift clock frequency	IC	Linear	256	_	3152	kHz
Shift clock pulse width (H)	twcн	V _{IH} = V _S ×0.7	1/fc×0.3	_	1/fc×0.7	ns
Shift clock pulse width (L)	twcL	VIL =VS×0.3	1/fc×0.3	_	1/fc×0.3	ns
Sync frequency	f s	_	_	8	_	kHz
Sync pulse width	twsн	_	1/fc	_	62	μs
SYNC to CLK setup time	tsx	_	100	_	_	ns
CLK to SYNC hold time	txs	_	50	_	_	ns
CLK to DIN hold time	t RD	_	50	_	_	ns
DIN to CLK setup time	t DR	_	50	_	_	ns
SYNC to DOUT delay time	t zp	BIT 1	_	_	200	ns
CLK to DOUT delay time	tco	BIT 2 to 8	_	_	200	ns
CLK to DOUT disable time	t dz	"H"	_	_	200	ns
DOUT fall time	t DF	_	10	_	100	ns

(2) Microcomputer Data-Related Signals

Parameter	Symbol	Pin		Value		Unit
raiametei	Syllibol	FIII	Min.	Тур.	Max.	Oilit
SRC to SRD data setup time	tssc	SRD, SRC	50	_	_	ns
SRC to SRD data hold time	t HSC	SKD, SKC	50	_	_	ns
SRC to STB setup time	tscв	SRC, STB	50	_	_	ns
SRC pulse width (H)	twн	SRC	200	_	_	ns
SRC pulse width (L)	t wL	SKC	200	_	_	ns
STB pulse width	t DS	STB	50	_	_	ns
STB to SRC hold time	t нсв	STB, SRC	50	_	_	ns
LO0 to 3 delay time	t LD	LO0 to 3	_	_	200	ns
Shift clock frequency	fsclk	SRC	_	_	2048	kHz
Reset pulse width	t wre	XPRST	1	_	_	μs

3. Transmission Characteristics

(1) Microphone Amp System

Parameter	Symbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Ullit
Gain (between MIC0 and BBO)	G мв	MICO = -20 dBv, 1020 Hz SW3 = on, SW4 = SW5 = SW14 = off EV0 = 0 dB	-1.5	_	1.5	dB
Gain (between JMIC0 and BBO)	G _{ЈВ}	JMICO = -20 dBv, 1020 Hz SW4 = on, SW3 = SW5 = SW14 = off EV0 = 0 dB	-1.5	_	1.5	dB
Signal to noise ratio (between MIC and BBO) (between XMIC and BBO)	Ѕмв	Ain1 = -40 dBv (+20 dBgain) SW3 = on, SW4 = SW5 = SW14 = off EV0 = 0 dB, 1020 Hz C message	40	_	_	dB
Signal to noise ratio (between JMIC and BBO) (between XJMIC and BBO)	Sjb	Ain2 = -40 dBv (+20 dBgain) SW4 = on, SW3 = SW5 = SW14 = off EV0 = 0 dB, 1020 Hz C message	40	_	_	dB

Note: Measurement conditions: ■ Standard Test Circuit

(2) Speaker Amp System

Parameter	Symbol	Conditions		Value		Unit
raiailletei	Symbol	Conditions	Min.	Тур.	Max.	Oilit
Gain (between EAR and XEAR)	GBE	BBI = -20 dBv, 1020 Hz	_	-4.3	_	dB
Gain	G вл	BBI = -20 dBv, 1020 Hz, ATT = -2.5 dB	_	-2.5		dB
(between BBI and JEAR)	G вJ6	BBI = -20 dBv, 1020 Hz, ATT = -8.5 dB	_	-8.5	_	dB
Gain (between BBI and RAUD)	G _{BR}	BBI = -20 dBv, 1020 Hz SW8 = on, SW6 = SW7 = SW12 = off	_	0.0	_	dB
	WE	$R = 32 \Omega$, between EAR-XEAR THD = 10%	6.4	_	_	mW
Output power	WT	R = 25 Ω , between TONE-XTONE gain = 0 dB, THD = 10%	10.0	_	_	mW
	Mı	$R = 32 \Omega$, JEAR, ATT = -2.5 dB THD = 10%	2.0	_	_	mW

Note: Measurement conditions: ■ Standard Test Circuit

(3) TONE System

Parameter	Symbol	Conditions	Value			Unit
raiametei	Syllibol	Conditions	Min.	Тур.	Max.	Oilit
TONE output level	G _{T1}	1 tone generated, SW2 = on f ₁ = 948.1 kHz	_	-14.0	_	dBv
(TONE0)	G _{T2}	2 tone generated, SW2 = on f ₁ = 948.1 kHz, f ₂ = 1219.1 kHz	_	-14.0	_	dBv

Note: Measurement conditions: ■ Standard Test Circuit

(4) Electric Volume System

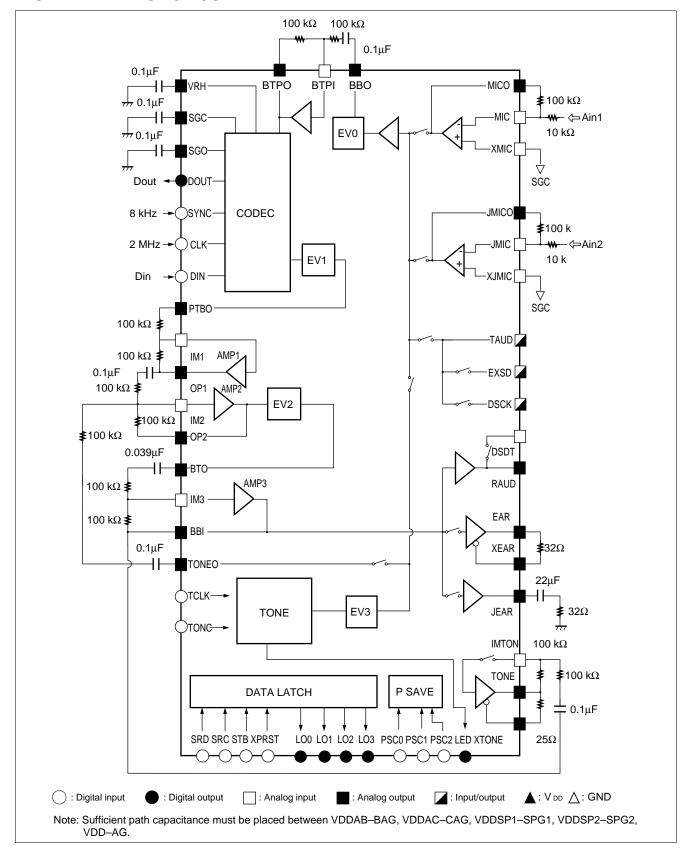
Parameter	Symbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Volume gain error EV0 (between TAUD-BBO)	GEO	SW5 = on, SW3 = SW4 = SW14 = off TAUD = -20 dBv, 1020 Hz	-0.7	_	0.7	dB
Volume gain error EV1 (between DIN-PTBO)	G _{E1}	D _{IN} = -20 dBm0, 1020 Hz	-0.8	_	0.8	dB
Volume gain error EV2 (between IM 2-BTO)	S _{E2}	IM2 = -20 dBv, 1020 Hz	-1.0	_	1.0	dB
Volume gain error EV3 (TONEO)	S _{E3}	SW2 = on 1 tone generated f ₁ = 948.1 kHz	-0.5	_	0.5	dB

Note: Measurement conditions: ■ Standard test circuit

(5) Sending/Receiving System (Codec, Analog Block)

Parameter	Symbol	ol Conditions		Value			
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Crosstalk (send → receive)	СТХ	Ain1 = 1020 Hz, − 40 dBv (20 dBgain) D _{IN} = ICN Measured at RAUD pin	_	_	-50	dB	
Crosstalk (send → receive)	CTR	D _{IN} = 1020 Hz, 0 dBm0 A _{IN} = SGC Measured at DOUT pin	_	_	-50	dB	
Power supply noise reduction ratio	PSRR	0 < f < 50 kHz, V _{DD} + 30 mV _{OP} C message A _{IN} = SGC, D _{IN} = ICN	_	22	_	dB	

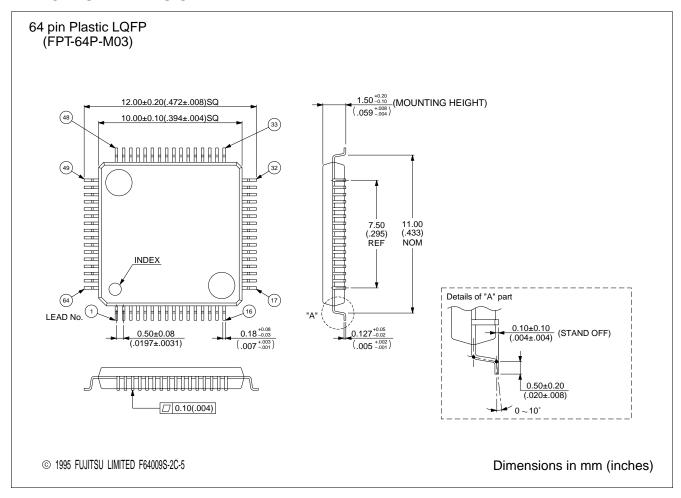
Note: Measurement conditions: ■ Standard test circuit


(6) Codec

Doromatar	Curchal	Conditions			Value		11:4:4
Parameter	Symbol	Cond	itions	Min.	Тур.	Max.	Unit
Gain tracking			+3 to -40 dBm0	-0.2	_	0.2	dB
(A to D)	GTX	1020 Hz, –10 dBm0 Reference value	-40 to −50 dBm0	-0.4	_	0.4	dB
BTPO → DOUT		Treference value	−50 to −55 dBm0	-0.8	_	8.0	dB
Gain tracking		1020 Hz, -10 dBm0	+3 to -40 dBm0	-0.4	_	0.4	dB
(D to A)	GTR	Reference value	−40 to −50 dBm0	-0.6	_	0.6	dB
$DIN \to PTBO$		EV1 = 0 dB	−50 to −55 dBm0	-1.0	_	1.0	dB
Gain tracking		400011 4505 0 15	AFST to AFST-43 dB	-0.2	_	0.2	dB
(A to D) (Linear)	GTXL	1020 Hz, AFST–3 dB Reference value	AFST-43 to AFST-53 dB	-0.4	_	0.4	dB
BTPO → DOUT		Troioronoo valao	AFST-53 to AFST-53 dB	-0.8	_	8.0	dB
Gain tracking		1020 Hz, AFST-3 dB	AFSR to AFSR-43 dB	-0.4	_	0.4	dB
(D to A) (Linear)	GTRL	Reference value	AFSR-43 to AFSR-53 dB	-0.6	_	0.6	dB
$DIN \to PTBO$		EV1 = 0 dB	AFSR-53 to AFSR-53 dB	-1.0	_	1.0	dB
			0 to 60 Hz	24.0	_		dB
Sending frequency		0 dBm0	60 to 300 Hz	-0.20	_		dB
characteristics	FRX	(Linear : AFST-3 dB)	300 to 3000 Hz	-0.20	_	0.20	dB
(A to D) BTPO → DOUT	FKA	1020 Hz	3000 to 3400 Hz	-0.20	_	8.0	dB
BIPO → DOOT		Reference value	3400 to 4600 Hz	*		_	dB
			4600 to 12 kHz	32.0	_		dB
		0.400	0 to 300 Hz	-0.30	_		dB
Receiving frequency		0 dBm0 (Linear : AFSR-3 dB)	300 to 3000 Hz	-0.30		0.30	dB
characteristics (D to A)	FRR	1020 Hz	3000 to 3400 Hz	-0.30	_	1.10	dB
DIN → PTBO		Reference value EV1 = 0 dB	3400 to 4600 Hz	*	_		dB
			4600 to 12 kHz	32.0	_	_	dB
Sending absolute gain	0.434	1020 Hz, 0 dBm0 (Line EV1 = 0 dB, Vs = 3.0 V,		-1.0	0	-1.0	dB
(A to D)	GAX	Power supply variation		_	±0.02		dB
BTPO → DOUT		Temperature variation		_	±0.001		dB/°C
Receiving absolute	0.45	1020 Hz, 0 dBm0 (Line Vs = 3.0 V, Ta = +25°C		-1.20	0	1.20	dB
gain (D to A) DIN → PTBO	GAR	Power supply variation		_	±0.04	_	dB
		Temperature variation		_	±0.002	_	dB/°C
Absolute level	VABS	Over load level μ-Law A-Law	= 3.17 dB = 3.14 dB	_	0.7647	_	Vop

Darameter	Symbol	Condi	tions		Value	/alue	
Parameter	Symbol	Condi	tions	Min.	Тур.	Max.	Unit
Sending signal to		1020 Hz	0 to -30 dBm0	34.0		_	dB
noise ratio	SDX	C message	-40 dBm0	28.0	_	_	dB
$BTPO \to DOUT$		(A to D)	-45 dBm0	23.0		_	dB
Receiving signal to		1020 Hz	0 to -30 dBm0	34.0		_	dB
noise ratio	SDR	C message	-40 dBm0	28.0	_	_	dB
$DIN \to DOUT$		(D to A)	–45 dBm0	23.0		_	dB
Sending signal to		1020 Hz	AFST-3 to AFST-33 dB	34.0			dB
noise ratio BTPO → DOUT	SDXL	C message	AFST-43 dB	28.0		_	dB
(Linear)		(A to D)	AFST-45 dB	23.0			dB
Recieving signal to		1020 Hz	AFSR-3 to AFSR-33 dB	34.0		_	dB
noise ratio BTPO → DOUT	SDRL	C message	AFSR-43 dB	28.0	_	_	dB
(Linear)		(D to A)	AFSR-45 dB	23.0	_	_	dB
Sending no-talk noise BTPO → DOUT	ICNX	C message (A to D)		_	-72	-68	dBm0C
Receiving no-talk noise DIN → PTBO	ICNR	C message (D to A)	C message (D to A)			-68	dBm0C
Analog input level BTPO	AILU	1020 Hz, 0 dBm0, Ta = Vs = 3.0 V μ-la	0.3290	0.3739	0.4195	Vrms	
Analog output level PTBO	AOLU	1020 Hz, 0 dBm0, Ta = Vs = 3.0 V μ-la		0.3290	0.3739	0.4195	Vrms
Analog input level BTPO	AILA	1020 Hz, 0 dBm0, Ta = Vs = 3.0 V A-la		0.3315	0.3767	0.4227	Vrms
Analog output level PTBO	AOLA	1020 Hz, 0 dBm0, Ta = Vs = 3.0 V A-la		0.3315	0.3767	0.4227	Vrms
Analog input fullscale level BTPO	AFST	Vs = 3.0 V, Ta = +25°C Line	ear	0.6729	0.7647	0.8581	Vop
Analog output fullscale level PTBO	AFSR	Vs = 3.0 V, Ta = +25°C Line	ear	0.6729	0.7647	0.8581	Vop
Overall absolute delay (BTPO \rightarrow PTBO)	PDA	Fc ≥ 1544 kHz (DOUT-DIN short)	_	490	550	μs	
Single frequency noise (BTPO \rightarrow PTBO)	SFNA	BTPO = SCG 0-4 (DOUT-DIN short) 4.6-	_	_	-70 -50	dBm0 dBm0	
Discrimination (BTPO → PTBO)	DISA	BTPO = 0 dBmO, 4.6-2 (DOUT-DIN short)	30	_	_	dB	
In-band spurious response (BTPO → PTBO)	IBSA	Second and third harm 700-1100 Hz (DOUT-DI		43	_	_	dB

*:
$$14.5 \times \{1 - SIN \ \frac{\pi \ (4000 - f)}{1200}\}$$


■ STANDARD TEST CIRCUIT

■ ORDERING INFORMATION

Part number	Package	Remarks
MB86435PFV	64 pins, Plastic LQFP (FPT-64P-M03)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763

Fax: (044) 754-3763

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

F9703

© FUJITSU LIMITED Printed in Japan