

LM2567 LAN DC/DC Converter

General Description

The LM2567 DC/DC converter is intended for use in LAN applications as a power supply for the DP8392 Coaxial Transceiver. The converter may be operated from an input voltage of 5V (\pm 10%) to 15V. It provides an isolated output of -9V for loads of up to 180 mA, with an efficiency of 78% (typical). The few external components required for the converter are completely specified within this datasheet.

Protection features for the LM2567-based DC/DC converter include thermal and current limit. Undervoltage lockout and soft-start are incorporated to minimize the inrush current during start-up.

Features

- Wide input voltage range, 5V to 15V
- Tight line regulation, 0.5% (typ)
- Output voltage tolerance ±5%
- Few external components required
- Surface-mount packaging
- Fixed switching frequency of 52 kHz
- Current-mode operation for improved transient response

Typical Applications

Power supply for DP8392 (LAN) coaxial transceiver: Isolated -9V output for up to 180 mA load

©1995 National Semiconductor Corporation TL/H/11731

RRD-B30M115/Printed in U. S. A.

LM2567 LAN DC/DC Converter

November 1992

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 40V

Operating Ratings

Supply Voltage	$3.5V \le V_{IN} \le 35V$
Output Switch Voltage	$0V \le V_{SW} \le 45V$
Output Switch Current	$I_{SW} \le 3.0A$
Junction Temperature Range	$0^{\circ}C \leq T_J \leq + 125^{\circ}C$
Ambient Temperature Range	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$

Electrical Characteristics

Minimum ESD Rating (C = 100 pF, R = $1.5 \text{ k}\Omega$)

Lead Temperature (Soldering, 10 sec.)

Output Switch Voltage

Output Switch Current

Storage Temperature Range

Maximum Junction Temperature

Power Dissipation

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those in **bold typeface** apply over full **Operating Temperature Range.** Unless otherwise specified, $V_{IN} = 5$ V, $V_{FB} = V_{REF}$, and $I_{SWITCH} = 0$. (Note 2)

50V

6.0A

260°C

150°C

2 kV

Internally Limited

 $-65^{\circ}C$ to $+150^{\circ}C$

Symbol	Parameter	Conditions	Тур	Min	Max	Units
GENERAL DE	EVICE PARAMETERS					
I _S	Input Supply Current	V _{FB} = 1.5V (Switch Off)	7.5		10.0 14.0	mA mA
		$I_{SW} = 2.0A$ $V_{COMP} = 2.0V$ (Max. Duty Cycle)	20		50 85	mA mA
V _{UV}	Input Supply Undervoltage Lockout	$I_{SW} = 100 \text{ mA}$ $V_{COMP} = 1.2V$	2.90	2.60 2.55	3.10 3.15	V V
fO	Oscillator Frequency	Measured at Switch Pin $I_{SW} = 100 \text{ mA}$	52	48 42	56 62	kHz kHz
V _{REF}	Reference Voltage	Measured at Feedback Pin $V_{IN} = 3.5V$ to $35V$ $V_{COMP} = 1.0V$	1.230	1.214 1.206	1.246 1.254	v v
ΔV _{REF} / ΔV _{IN}	Reference Voltage Line Regulation	$V_{IN} = 3.5V$ to $35V$	0.5			mV
θ_{JA}	Thermal Resistance	Junction-to-Ambient (Note 3)	100			°C/W
ERROR AMP	LIFIER PARAMETERS					
Ι _Β	Error Amp Input Bias Current	$V_{COMP} = 1.0V$	100		300 800	nA nA
G _M	Error Amp Transconductance	$I_{COMP} = -30 \ \mu A \text{ to } +30 \ \mu A$ $V_{COMP} = 1.0V$	3700	2400 1600	4800 5800	μmho μmho
A _V	Error Amp Voltage Gain	$V_{COMP} = 1.1V \text{ to } 1.6V$ $R_{COMP} = 1.0 \text{ M}\Omega \text{ (Note 4)}$	800	500 250		V/V V/V
	Error Amp Output Swing	Upper Limit V _{FB} = 1.0V	2.4	2.2 2.0		V V
		Lower Limit V _{FB} = 1.5V	0.3		0.40 0.55	V V
	Error Amp Output Current	$V_{FB} = 1.0V$ to 1.5V $V_{COMP} = 1.0V$	±200	±130 ±90	±300 ± 400	μΑ μΑ
I _{SS}	Soft Start Current	$V_{FB} = 1 0V$ $V_{COMP} = 0V$	5.0	2.5 1.5	7.5 9.5	μΑ μΑ
D	Maximum Duty Cycle	$V_{COMP} = 1.2V$ ISW = 100 mA	95	93 88		%

Electrical Characteristics (Continued)

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those in **bold typeface** apply over full **Operating Temperature Range.** Unless otherwise specified, $V_{IN} = 5V$, $V_{FB} = V_{REF}$, and $I_{SWITCH} = 0$. (Note 2)

Symbol	Parameter	Conditions	Тур	Min	Max	Units				
SWITCH PARAMETERS										
$\Delta I_{SWITCH}/\Delta V_{COMP}$	Switch Transconductance		12.5			A/V				
۱L	Switch Leakage Current	Switch Off (V _{FB} = 1.5V) V _{SW} = 50V	10		300 600	μΑ μΑ				
V _{SAT}	Switch Saturation Voltage	$I_{SW} = 2.0A$ $V_{COMP} = 1.2V$	0.5		0.75 1.0	V V				
ICL	NPN Switch Current Limit	$V_{COMP} = 2.0V$	4.3	3.7 3.0	5.3 6.0	A				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: All limits guaranteed at room temperature (standard typeface) and at temperature extremes (**boldface type**). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.

Note 3: Junction-to-Ambient thermal resistance with approximately 1 square inch of p.c. board copper surrounding the leads. Additional copper area will lower thermal resistance further.

Note 4: A 1.0 M Ω resistor is connected to the compensation pin (which is the error amplifier's output) to ensure accuracy in measuring A_{VOL}. In actual applications, this pin's load resistance should be $\geq 10 \ M\Omega$, resulting in A_{VOL} that is typically twice the guaranteed minimum limit.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

LM2567 LAN DC/DC Converter