1A Low Dropout Positive Linear Regulator ### **FEATURES** - Guaranteed 1A Output - Three Terminal Adjustable or Fixed 2.5V, 3.0V and 3.3V - Low Quiescent Current - Low Dropout Voltage of 1.1V at Full Load - 0.2% Line and 0.3% Load Regulation - Voltage Temperature Stability 0.25% - Overcurrent and Thermal Protection - Available Packages: SOT-223,TO-252, TO-220, and TO-263 #### **APPLICATIONS** - SCSI-II Active Terminator - Portable/Palm Top/Notebook Computers - Battery Chargers Now Available in Lead Free Packaging SPX2810 is 2% Accuracy SPX2810A is 1% Accuracy - Disk Drives - Portable Consumer Equipment - Portable Instrumentation - SMPS Post-Regulator **DESCRIPTION** The SPX2810 is a low power positive-voltage regulator designed to satisfy moderate power requirements with a cost effective, small footprint solution. This device is an excellent choice for use in battery-powered applications and portable computers. The SPX2810 has a very low quiescent current and a low dropout voltage of 1.1V at full load. As output current decreases, quiescent current flows into the load, increasing efficiency. SPX2810 is available in adjustable or fixed 2.5V, 3.0V and 3.3V output voltages. The SPX2810 is offered in several industry standard 3-pin surface mount packages: SOT-223, TO-252, TO-220 and TO-263. An output capacitor of $10\mu F$ or larger, provides unconditionally stability for most applications. #### TYPICAL APPLICATION CIRCUITS #### **ABSOLUTE MAXIMUM RATINGS** | Lead Temperature (soldering, 5 seconds) | 300°C | |---|-----------------| | Storage Temperature Range | -65°C to +150°C | | Operating Junction Temperature Range | -40°C to +125°C | | Input Supply Voltage | +10V | #### ELECTRICAL CHARACTERISITCS $V_{IN} = V_{OUT} + 1.5V$, $C_{OUT} = 10 \mu F$, at $I_{OUT} = 10 mA$, $T_A = 25 ^{\circ}C$, unless otherwise specified. Limits in **Boldface** applies over the full operating temperature range. | | | S | PX2810A | | | SPX2810 | | | |------------------------------|--|-----------------------|-------------|-----------------------|-----------------------|---------|-----------------------|--------------| | PARAMETER | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | 2.5V Version | | | | , | | | | | | Output Voltage
(Note 2) | $0 \le I_{OUT} = 1A, 4.0V \le V_{IN} \le 10V$ | 2.475
2.450 | 2.500 | 2.525
2.550 | 2.450
2.425 | 2.500 | 2.550
2.575 | V | | 3.0V Version | | | | | | | | | | Output Voltage
(Note 2) | $0 \le I_{OUT} = 1A, 4.5V \le V_{IN} \le 10V$ | 2.970
2.940 | 3.000 | 3.030
3.060 | 2.940
2.790 | 3.000 | 3.060
3.090 | V | | 3.3V Version | | | | | • | | | | | Output Voltage
(Note 2) | $0 \le I_{OUT} = 1A, 4.8V \le V_{IN} \le 10V$ | 3.267
3.234 | 3.300 | 3.333
3.366 | 3.234
3.069 | 3.300 | 3.366
3.399 | V | | All Output Options | | | • | | • | | | | | Reference Voltage | I_{OUT} =10mA, $V_{IN} = V_{OUT} +3V$
10≤ I_{OUT} ≤ 1A, 1.5V≤ $(V_{IN} - V_{OUT})$ ≤ 5.75V | 1.238
1.225 | 1.250 | 1.263
1.281 | 1.225
1.212 | 1.250 | 1.275
1.288 | V | | Min Load Current
(Note 3) | 1.5≤(V _{IN} - V _{OUT})≤5.75V | | 5 | 10 | | | 10 | mA | | Line Regulation | $2.75 \le V_{IN} \le 7V$, $I_{OUT} = T_J = 25^{\circ}C$ (Note 2) | | 0.005 | 0.2 | | 0.005 | 0.2 | % | | Load Regulation | $(V_{IN} - V_{OUT}) = 3.0V, 10 \text{mA} \le I_{OUT} \le 1A, T_{J} = 25^{\circ}C \text{ (Note 3)}$ | | 0.05 | 0.3 | | 0.05 | 0.2 | % | | Dropout Voltage
(Note 2) | I _{out} =1A (Note 3)
I _{out} =1A (Note 2) | | 1.1
1.05 | 1.2
1.15 | | 1.1 | 1.2 | V | | Current Limit | V _{IN} =7V,1.4≤(V _{IN} -V _{OUT})(Note 3) | 1.2 | 2.0 | | | 1.2 | | Α | | Long Term Stability | T _A =25°C, 1000Hrs (Note2) | | | 0.03 | 1.0 | | 1.0 | % | | Thermal Regulation | 25°C, 20mS Pulse | | 0.01 | 0.02 | | 0.01 | 0.02 | %/Ω | | RMS Output Noise | T _A =25°C, 10Hz≤f≤10kHz | | 0.003 | | | 0.003 | | % | | Thermal Resistance | TO-220 Junction to Tab
TO-220 Junction to Ambient | | | 3.0
60 | | | 3.0
60 | °C/W | | | TO-220 Junction to Tab
TO-220 Juinction to Ambient | | | 3.0
60 | | | 3.0
60 | °C/W | | | TO-220 Junction to Tab
TO-220 Junction to Ambient | | | 6
126 | | | 6
126 | °C/W
°C/W | | | SOT-223 Junction Tab
TO-220 Junction to Ambient | | | 15
156 | | | 15
156 | °C/W | Note 1: Output temperature coefficient is defined as the worst case voltage change divided by the total temperature range. Note 2: Dropout voltage is defined as the input to output differential at which the output voltage drops 100mV below its nominal value measured at 1V differential at very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account. Note 3: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied excluding load or line regulation effect. #### TYPICAL PERFORMANCE CHARACTERISTICS Figure 1. Load Regulation for SPX2810M3-3.3; V_N =4.8V, C_{OUT} =2.2 μF Figure 3. Dropout Voltage vs Output Current for SPX2810M3-3.3; V_N =4.89V, C_{OUT} =10 μF Figure 5. Current Limit for SPX2810M3-3.3, Output Voltage Deviation, (I_{OUT} pulsed from 10mA to 1A). Figure 2. Line Regulation for SPX2810M3--3.3; V_{IN} =4.8V, C_{OUT} =2.2 μF Figure 4. Current Limit for SP1202M3-3.3; V_{IN} =4.8V, C_{IN} = C_{OUT} =1.0µF, I_{OUT} pulsed from 10mA to Current Limit # **Output Capacitor** To ensure the stability of the SPX1202, an output capacitor of at least $10\mu F$ (tantalum or ceramic) or $50\mu F$ (aluminum) is required. The value may change based on the application requirements of the output load or temperature range. The value of ESR can vary based on the type of capacitor used in the applications. The recommended value for ESR is 0.5Ω or less. A larger value of output capacitance (up to $100\mu F$) can improve the load transient response. ### **SOLDERING METHODS** The SPX2810 SOT-223 package is designed to be compatible with infrared reflow or vaporphase reflow soldering techniques. During soldering, the non-active or mildly active fluxes may be used. The SPX2810 die is attached to the heatsink lead which exits opposite the input, output, and ground pins. Hand soldering and wave soldering should be avoided since these methods can cause damage to the device with excessive thermal gradients on the package. The SOT-223 recommended soldering method are as follows: vapor phase reflow and infrared reflow with the component preheated to within 65°C of the soldering temperature range. #### THERMAL CHARACTERISTICS The thermal resistance of SPX2810 depends on type of package and PC board layout as shown in Table 1. The SPX2810 features the internal thermal limiting to protect the device during overload conditions. Special care needs to be taken during continuous load conditions such that the maximum junction temperature does not exceed 125°C. Thermal protection is activated at >144°C and deactiviated at <137°C. Taking the FR-4 printed circuit board and 1/16 thick with 1 ounce copper foil as an experiment, the PCB material is effective at transmitting heat with the tab attached to the pad area and a ground plane layer on the backside of the substrate. Refer to table 1 for the results of the experiment. Figure 7. Substrate Layout for SOT-223 for thermal experiment. The thermal interaction from other components in the application can effect the thermal resistance of the SPX2810. The actual thermal resistance can be determined with experimentation. SPX2810 power dissipation is calculated as follows: $$P_{D} = (V_{IN} - V_{OUT})(I_{OUT})$$ Maximum Junction Temperature range: $$T_J = T_{AMBIENT} (max) + P_D^* (Junction to ambient Thermal Resistance)$$ Although the SPX2810 offers some limiting circuitry for overload conditions, it is still necessary to insure that maximum junction tepmerature is not exceeded. Heat will flow through the lowest resistance path, in this case the junction to case. Therfore proper mounting of the regulator to the board is critical. The case of the device is electrically connected to the output. If the case must be electrically isolated, a thermal nonconductive spacer should be used between the case and the board. It thermal resistance must be taken into account. For example: $$V_{IN}=10V$$, $V_{OUT}=5V$. $I_{OUT}=1.5A$ and $T_A=50$ °C/W Theta_{JC}=3°C/W, theta_{SinkCase}=6°C/W theta_{Sink}=0.5°C/W Power dissipation is calculated as $P_D=(V_{IN}-V_{OUT})^*I_{OUT}=7.5W$ Junction Temperature will be $T_{_J}\!\!=\!\!T_{_A}+P_{_D}^*\!(theta_{_{Case\text{-Hs}}}+theta_{_{Hs}}+theta_{_{Jc}}) \text{ or } \\ T_{_J}=50+7.5(0.5+6+3)=121.25^\circ\text{C}$ # Ripple Rejection Ripple rejection can be improved by adding a capacitor between the ADJ pin and ground as shown in Figure 6. When ADJ pin bypassing is used, the value of the output capacitor required increases to its maximum. If the ADJ pin is not bypassed, the value of the output capacitor can be lowered to 10(F for an electrolytic aluminum capacitor or $2.2\mu F$ for a solid tantalum capacitor (Fig 10). However the value of the ADJ-bypass capacitor should be chosen with respect to the following equation: $$C = 1 / (6.28 * F_R * R_1)$$ Where C = value of the capacitor in Farads (select an equal or larger standard value), F_R = ripple frequency in Hz, R_1 = value of resistor R_1 in Ohms If an ADJ-bypass capacitor is used, the amplitude of the output ripple will be independent of the output voltage. If an ADJ-bypass capacitor is not used, the output ripple will be proportional to the ratio of the output voltage to the reference voltage: $$M = V_{_{OUT}} \, / \, V_{_{REF}}$$ Where M = multiplier for the ripple seen when the ADJ pin is optimally bypassed. $$V_{per} = 1.25V$$ | PC BOARD | TOPSIDE COPPER | BACKSIDE COPPER | THERMAL RESISTANCE | |----------------------|----------------------|----------------------|---------------------| | AREA mm ² | AREA mm ² | AREA mm ² | JUNCTION TO AMBIENT | | | | | °C/W | | 2500 | 2500 | 2500 | 46 | | 2500 | 1250 | 2500 | 47 | | 2500 | 950 | 2500 | 49 | | 2500 | 2500 | 0 | 51 | | 2500 | 1800 | 0 | 53 | | 1600 | 600 | 1600 | 55 | | 2500 | 1250 | 0 | 58 | | 2500 | 915 | 0 | 59 | | 1600 | 600 | 0 | 67 | | 900 | 240 | 900 | 72 | | 900 | 240 | 0 | 85 | | 1 | [| | | #### TYPICAL APPLICATION CIRCUITS Figure 8. 600mA Current Source Figure 9. Typical Adjustable Regulator Figure 10. Improving Ripple Rejection Figure 11. 12.5V Regulator with Shutdown ## **Output Voltage** The output of the adjustable regulator can be set to any voltage between 1.25V and 10V. The value of V_{out} can be quickly approximated using the formula (Figure 9) $$V_{OUT} = 1.25 * (R1 + R2)/R1.$$ A small correction to this formula is required depending on the values of resistors R1 and R2, since adjustable pin current (approx $50\mu A$) flows through R2. When I_{ADJ} is taken into account, the formula becomes $$V_{OUT} = V_{REF}(1 + (R_2/R_1)) + I_{ADJ} * R_2$$, where $V_{REF} = 1.25V$. # **Layout Considerations** Parasitic line resistance can degrade load regulation. In order not to affect the behavior of the regulator, it is best to connect R_1 to the case as illustrated in Figure 11. For the same reason, R_2 should be connected to the negative side of the load. Figure 12. Recommended Connections for Best Results # BLOCK DIAGRAM | 3 PIN SOT-223
JEDEC TO-261 | Dimensions in (mm) | | | | |-------------------------------|--------------------|------|------|--| | (AA) Variation | MIN | NOM | MAX | | | A | - | - | 1.80 | | | A1 | 0.02 | - | 0.10 | | | A2 | 1.50 | 1.60 | 1.70 | | | b | 0.66 | 0.76 | 0.84 | | | b2 | 2.90 | 3.00 | 3.10 | | | С | 0.23 | 0.30 | 0.35 | | | D | 6.30 | 6.50 | 6.70 | | | Е | 6.70 | 7.00 | 7.30 | | | E1 | 3.30 | 3.50 | 3.70 | | | e | 2.30 BASIC | | | | | e1 | 4.60 BASIC | | | | | L | 0.75 | - | - | | | ø | 0° | - | 10° | | **3 PIN SOT-223** E1- -E1/2 → D1 | 3 PIN TO-252
JEDEC TO-252 | Dimensions in inches | | | | |------------------------------|----------------------|-----|------|--| | (AA) Variation | MIN | NOM | MAX | | | A1 | - | - | .005 | | | С | .018 | - | .024 | | | D1 | .205 | - | - | | | E1 | .170 | - | - | | | Н | .370 | - | .410 | | | L | .055 .060 .070 | | .070 | | | L1 | .108 REF | | | | | L2 | .020 BSC | | | | 3 PIN TO-252 | Dimensions in (mm) | 3 PIN TO-220
JEDEC TO-220
(AB) Variation | | | | |--------------------|--|------|------|--| | , , | MIN | NOM | MAX | | | A | .140 | - | .190 | | | A1 | .020 | - | .055 | | | A2 | .080 | - | .115 | | | b | .015 | .027 | .040 | | | b2 | .045 | - | .070 | | | С | .014 | - | .024 | | | D | .560 | - | .650 | | | D1 | .330 | - | .355 | | | D2 | .480 | - | .507 | | | Е | .380 | - | .420 | | | E1 | .270 | - | .350 | | | E2 | - | - | .030 | | | e | .100 BSC | | | | | e1 | .200 BSC | | | | | H1 | .230 | - | .270 | | | L1 | - | - | .250 | | | L2 | - | - | - | | | ΔΡ | .139 | - | .161 | | | Q | .100 | - | .135 | | 3 PIN TO-220 | 3-PIN TO-263
JEDEC TO-263 | Dimensions in inches | | | |------------------------------|----------------------|-----|------| | (AA) Variation | MIN | NOM | MAX | | A | .160 | - | .190 | | A1 | .000 | - | .010 | | b | .020 | - | .039 | | С | .015 | - | .029 | | D | .330 | - | .380 | | D1 | .270 | - | - | | Е | .380 | - | .420 | | E1 | .245 | - | - | | е | .100 BSC | | | | Н | .575 | - | .625 | | L | .070 | - | .110 | | L1 | - | - | .066 | | L2 | - | - | .070 | | L3 | .010 BSC | | | 3 PIN TO-263 | Part Number A | Accuracy | Package Types | |-------------------|----------|----------------| | SPX2810AM3 | | | | SPX2810AM3/TR | 1% | 3 lead SOT-223 | | SPX2810AM3-2.5 | 1% | 3 lead SOT-223 | | SPX2810AM3-2.5/TR | 1% | 3 lead SOT-223 | | SPX2810AM3-3.0 | | | | SPX2810AM3-3.0/TR | | | | SPX2810AM3-3.3 | 1% | 3 lead SOT-223 | | SPX2810AM3-3.3/TR | | | | SPX2810AR | 1% | 3 lead TO-252 | | SPX2810AR/TR | 1% | 3 lead TO-252 | | SPX2810AR-2.5 | 1% | 3 lead TO-252 | | SPX2810AR-2.5/TR | | | | SPX2810AR-3.0 | | | | SPX2810AR-3.0/TR | 1% | 3 lead TO-252 | | SPX2810AR-3.3 | | | | SPX2810AR-3.3/TR | 1% | 3 lead TO-252 | | SPX2810AT | | | | SPX2810AT/TR | | | | SPX2810AT-2.5 | 1% | 3 Lead TO-263 | | SPX2810AT-2.5/TR | 1% | 3 Lead TO-263 | | SPX2810AT-3.0 | | | | SPX2810AT-3.0/TR | 1% | 3 Lead TO-263 | | SPX2810AT-3.3 | | | | SPX2810AT-3.3/TR | 1% | 3 Lead TO-263 | | SPX2810AU | | | | SPX2810AU-2.5 | 1% | 3 lead TO220 | | SPX2810AU-3.0 | 1% | 3 lead TO220 | | SPX2810AU-3.3 | 1% | 3 lead TO220 | Available in lead free packaging. To order add "-L" suffix to part number. Example: SPX2810AM-3.3/TR = standard; SPX2810AM-L-3.3/TR = lead free /TR = Tape and Reel Pack quantity is 500 for TO-263, 2000 for TO-252 and 2500 for SOT-223. ANALOG EXCELLENCE Sipex Corporation Headquarters and Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com | Part Number | Accuracy | Package Types | |------------------|----------|----------------| | SPX2810M3 | 2% | 3 lead SOT-223 | | SPX2810M3/TR | 2% | 3 lead SOT-223 | | SPX2810M3-2.5 | 2% | 3 lead SOT-223 | | SPX2810M3-2.5/TR | 2% | 3 lead SOT-223 | | | 2% | | | SPX2810M3-3.0/TR | 2% | 3 lead SOT-223 | | SPX2810M3-3.3 | 2% | 3 lead SOT-223 | | SPX2810M3-3.3/TR | 2% | 3 lead SOT-223 | | SPX2810R | 2% | 3 lead TO-252 | | SPX2810R | 2% | 3 lead TO-252 | | SPX2810R-2.5 | 2% | 3 lead TO-252 | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | | 2% | | | SPX2810U-3.3 | 2% | 3 lead TO220 | Available in lead free packaging. To order add "-L" suffix to part number. Example: SPX2810AM-3.3/TR = standard; SPX2810AM-L-3.3/TR = lead free /TR = Tape and Reel Pack quantity is 500 for TO-263, 2000 for TO-252 and 2500 for SOT-223. # ANALOG EXCELLENCE Sipex Corporation Headquarters and Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.