SCBS071A - AUGUST 1990 - REVISED NOVEMBER 1993 - State-of-the-Art BiCMOS Design Significantly Reduces I_{CCZ} - ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) - Full Parallel Access for Loading - Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Plastic and Ceramic 300-mil DIPs (J, N) ### description These 8-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. The eight latches of the 'BCT573 are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs will follow the data (D) inputs. When the latch enable is taken low, the Q outputs will be latched at the logic levels that were set up at the D inputs. A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance SN54BCT573 ... J OR W PACKAGE SN74BCT573 ... DW OR N PACKAGE (TOP VIEW) # SN54BCT573 . . . FK PACKAGE (TOP VIEW) state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components. The output enable (\overline{OE}) does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. The SN54BCT573 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74BCT573 is characterized for operation from 0° C to 70° C. ## FUNCTION TABLE (each latch) | | INPUTS | OUTPUT | | |----|--------|--------|----------------| | OE | LE | D | Q | | L | Н | Н | Н | | L | Н | L | L | | L | L | X | Q ₀ | | Н | X | Χ | Z | ### logic symbol† ### logic diagram (positive logic) ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡ | | – 0.5 V to 7 V | |---------------------------------|--| | | – 0.5 V to 7 V | | disabled or power-off state, VO | – 0.5 V to 5.5 V | | nigh state, V _O | – 0.5 V to V _{CC} | | | –30 mÅ | | SN54BCT573 | 96 mA | | SN74BCT573 | 128 mA | | SN54BCT573 | – 55°C to 125°C | | SN74BCT573 | 0°C to 70°C | | | – 65°C to 150°C | | | disabled or power-off state, V _O high s | [‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### recommended operating conditions | | | SN54BCT573 | | | SN | UNIT | | | |----------|--------------------------------|--------------|-----|-----|-----|------|-----|------| | | | MIN | NOM | MAX | MIN | NOM | MAX | UNII | | VCC | Supply voltage | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | V | | VIH | High-level input voltage | 2 | | | 2 | | | V | | V_{IL} | Low-level input voltage | | | 0.8 | | | 0.8 | V | | liK | Input clamp current | | | -18 | | | -18 | mA | | ІОН | High-level output current | -12 -15 | | mA | | | | | | lOL | Low-level output current | 48 64 | | mA | | | | | | TA | Operating free-air temperature | -55 125 0 70 | | °C | | | | | [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. SCBS071A - AUGUST 1990 - REVISED NOVEMBER 1993 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TE | CT CONDITIONS | SN | SN54BCT573 | | | SN74BCT573 | | | |------------------|--|---|------|------------|------|------|------------|------|------| | PARAWETER | 15 | ST CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | VIK | V _{CC} = 4.5 V, | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | | $I_{OH} = -3 \text{ mA}$ | 2.4 | 3.3 | | 2.4 | 3.3 | | | | Voн | V _{CC} = 4.5 V | $I_{OH} = -12 \text{ mA}$ | 2 | 3.2 | | | | | V | | | | $I_{OH} = -15 \text{ mA}$ | | | | 2 | 3.1 | | | | Va | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | I _{OL} = 48 mA | | 0.38 | 0.55 | | | | V | | VOL | V _{CC} = 4.5 V | $I_{OL} = 64 \text{ mA}$ | | | | | 0.42 | 0.55 | ٧ | | lį | V _{CC} = 5.5 V, | V _I = 5.5 V | | | 0.4 | | | 0.4 | mA | | lН | V _{CC} = 5.5 V, | $V_{I} = 2.7 \text{ V}$ | | | 20 | | | 20 | μΑ | | Ι _{ΙL} | $V_{CC} = 5.5 \text{ V},$ | $V_{I} = 0.5 V$ | | | -0.6 | | | -0.6 | mA | | los [‡] | $V_{CC} = 5.5 \text{ V},$ | V _O = 0 | -100 | | -225 | -100 | | -225 | mA | | lozh | V _{CC} = 5.5 V, | V _O = 2.7 V | | | 50 | | | 50 | μΑ | | lozL | V _{CC} = 5.5 V, | V _O = 0.5 V | | | -50 | | | -50 | μΑ | | ICCL | V _{CC} = 5.5 V, | Outputs open | | | 62 | | | 62 | mA | | ICCH | V _{CC} = 5.5 V, | Outputs open | | | 8 | | | 8 | mA | | I _{CCZ} | V _{CC} = 5.5 V, | Outputs open | | | 8 | | | 8 | mA | | C _i | V _{CC} = 5 V, | $V_{I} = 2.5 \text{ V or } 0.5 \text{ V}$ | | 5.5 | | | 5.5 | | pF | | Co | V _{CC} = 5 V, | V _O = 2.5 V or 0.5 V | | 7.5 | | | 7.5 | | pF | [†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. # timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) | | | V _{CC} = 5 V,
T _A = 25°C | | SN54BCT573 | | SN74BCT573 | | UNIT | |-----------------|-----------------------------|---|-----|------------|-----|------------|-----|------| | | | MIN | MAX | MIN | MAX | MIN | MAX | | | t _W | Pulse duration, LE high | 4 | | 4 | | 4 | | ns | | t _{su} | Setup time, data before LE↓ | 1 | | 2.5 | | 1 | | ns | | th | Hold time, data after LE↓ | 4 | | 4 | | 4 | | ns | # switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Note 2) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | | CC = 5 V
4 = 25°C | | SN54B | CT573 | SN74B | CT573 | UNIT | |------------------|-----------------|----------------|-----|----------------------|-----|-------|-------|-------|-------|------| | | (INFOT) | (0011-01) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | | | ^t PLH | D | Q | 2 | 5 | 7.2 | 1 | 9.8 | 2 | 8.4 | ns | | ^t PHL | | ζ | 2.8 | 5.9 | 8.2 | 1.5 | 10.3 | 2.8 | 9.6 | 115 | | ^t PLH | LE | Q | 2.4 | 6.1 | 7.2 | 2 | 9.7 | 2.4 | 8.1 | ns | | ^t PHL | | α | 2.9 | 5.2 | 7.1 | 2 | 8.8 | 2.9 | 7.8 | 115 | | ^t PZH | ŌĒ | Q | 3 | 6.2 | 8.5 | 2.5 | 11 | 3 | 10.4 | ns | | ^t PZL | OE | ζ | 4.3 | 7.1 | 9.3 | 3.5 | 11.5 | 4.3 | 11 | 115 | | ^t PHZ | ŌĒ | Q | 2.2 | 3.9 | 5.6 | 1.5 | 7.2 | 2.2 | 6 | ns | | t _{PLZ} | | γ | 1.7 | 3.6 | 5.2 | 1 | 7 | 1.7 | 6 | 115 | NOTE 2: Load circuits and voltage waveforms are shown in Section 1. [‡] Not more than one output should be tested at a time, and the duration of the test should not exceed one second. #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated